A non-linear duality-invariant conformal deformation of Maxwell’s equations does exist

In 1865 Maxwell published the paper which unified electricity, magnetism and optics and describe them by a set of equations (latter a bit corrected by Heaviside) which are known now as Maxwell equations. The spacetime symmetry of these equations, described by the so-called Lorentz group, was
unexpected in XIX century and served as an inspiration for Albert Einstein in his discovery of the Special Theory of Relativity.

Free Maxwell equations, which describe the propagation of light in the vacuum, possess, besides the Lorentz group, two more very special symmetries: conformal symmetry, described by suitable re-scaling of spacetime coordinates and fields, and the duality symmetry which interchanges/rotates the electric and magnetic fields. Till recently it was believed that the requirement of these three symmetries fixes the Maxwell theory uniquely.

However, in a recent paper published in Rapid Communication of Physical Review D by the member of GRASS team Igor Bandos with collaborators from Italy (Padova University) and United Kingdom (Cambridge University),   a new one-parametric family of nonlinear theories possessing these three symmetries was found and called Modified Maxwell or ModMax theories. The free Maxwell equations appear as a member of the family of nonlinear equations corresponding to zero value of the coupling constant  γ.

For any positive γ, the equations possess the plane wave solutions and, thus, at small γ>0, can be considered as an alternative to the Maxwell theory for the description of the light in vacuum and/or in optical materials. The ModMax equations predict, in particular, the birefringence effect the properties of which differ from that predicted by effective theory of usual Quantum
Electrodynamics. Therefore, its existence should be taken into account in the analysis of future experiments aimed to observe the birefringence effect in the vacuum.

Furthermore, a possible small but non-vanishing γ in real world electrodynamics can have also wide range of interesting implications including that for cosmology.

Efectos de teoría de cuerdas en agujeros negros en rotación

En los próximos años, y por primera vez en la historia, vamos a poder medir con precisión las propiedades de los agujeros negros astrofísicos. Esto será posible gracias a detectores de ondas gravitacionales como LIGO y Virgo — que son capaces de detectar las ondas producidas tras la colisión de dos agujeros negros — , así como a otros experimentos como el Event Horizon Telescope, que recientemente nos ha proporcionado la primera imagen de un agujero negro. Estas nuevas observaciones nos van a permitir poner a prueba la Teoría de la Relatividad General (RG) de Einstein en condiciones de gravedad extrema. Una de las preguntas que caben preguntarse es, ¿tendrán los agujeros negros del mundo real las mismas propiedades que predice la teoría de Einstein, o serán distintos?

Continuar leyendo «Efectos de teoría de cuerdas en agujeros negros en rotación»