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La astronomía de neutrinos es un campo en auge dentro de la Física de 

Astropartículas. Los neutrinos ofrecen grandes ventajas como sondas para estudiar el 

Universo lejano y de alta energía. En la comunidad científica es extensamente 

aceptado que mediante la combinación de la información que proporcionan los 

neutrinos junto a la obtenida mediante fotones de alta energía (rayos gamma) y 

partículas cargadas (rayos cósmicos) se podría obtener una imagen más completa de 

los procesos astrofísicos fundamentales que tienen lugar a lo largo de nuestro 

Universo. Además, los neutrinos también proporcionan el único medio de entender 

algunos aspectos de la Física de Partículas. La prueba experimental de que los 

neutrinos tienen masa y de que sufren mezcla de sabores procede de observaciones 

realizadas en los primeros telescopios de neutrinos.  

La razón fundamental por la que los neutrinos son tan altamente valorados como 

mensajeros es la baja interacción con el medio que los rodea. Al ser partículas sin 

carga interactúan muy débilmente con la materia, por ello pueden escaparse de la 
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fuente donde se han producido y, al contrario de lo que ocurre con el resto de 

mensajeros, pueden llegar a la Tierra sin ser desviados por los campo magnéticos y 

sin prácticamente pérdida de energía. Esta misma razón que los hace tan valorados 

es a su vez la que los hace tan difíciles de detectar. Dada su baja interacción con la 

materia se impone la necesidad de construir detectores con grandes volúmenes de 

detección, del orden del km3, altamente instrumentados.  Para ello se utilizan medios 

naturales (en el fondo del mar, en lagos o en enterrados en el hielo de la Antártida) 

aprovechando el agua (o hielo) como material diana donde se espera que interaccione 

el neutrino. ANTARES (Astronomy with a Neutrino Telescope and Abyss 

environmental RESearch) es el primer telescopio submarino de neutrinos construido 

en el fondo del mar Mediterráneo. Fue desarrollado por un consorcio internacional y 

financiado con fondos europeos y de los distintos países colaboradores. ANTARES 

está optimizado para la detección óptica de la luz Cherenkov inducida por los muones 

relativistas producidos en la interacción de neutrinos de alta energía en los 

alrededores del detector. La información de la carga, posición y tiempo de llegada de 

los fotones a los fotomultiplicadores que componen el detector permite tanto la 

reconstrucción de la trayectoria del neutrino, con una alta resolución angular, como 

el conocimiento de su energía. Además, ANTARES acoge el experimento 

AMADEUS (Antares Modules for Acoustic DEtection Under Sea) mediante el cual 

se está investigando y testeando la detección acústica de neutrinos de muy alta 

energía que, al interaccionar en el agua, producen un pulso termo-acústico que se 

pretende registrar con una red de hidrófonos.   

El trabajo desarrollado en esta tesis se engloba bajo el marco del experimento 

ANTARES, por ello es el tema desarrollado en el Capítulo 1 a modo de 

contextualización. Como es común en las tesis desarrolladas en este experimento, el 

trabajo se ha dividido en dos áreas diferenciadas: por un lado, una parte de enfoque 

más tecnológico y, por otro lado, una parte analítica de datos tomados por el 

telescopio. Por su contexto y el carácter de las actividades realizadas ha sido necesaria 
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la formación en distintos campos: telescopios de neutrinos, astropartículas, física de 

partículas. Además, se ha desarrollado diversas capacidades y destrezas en diversos 

ámbitos como instrumentación, aplicaciones informáticas, técnicas de simulación, 

análisis masivo de datos. 

La primera parte de la tesis está centrada en el desarrollo de un calibrador capaz de 

reproducir la señal acústica que se emite en la interacción de un neutrino de alta 

energía con un núcleo de agua que, generalizando, es un pulso bipolar altamente 

directivo. El disponer de un buen calibrador es clave a la hora de testear la detección 

acústica en el telescopio y poder sintonizar y “entrenar” los receptores para este tipo 

de señales.  

En el Capítulo 2 se describen los procesos que intervienen en la emisión acústica del 

neutrino y las condiciones de propagación y ruido ambiental presentes en el site de 

ANTARES. Asimismo se introduce el concepto de fuentes acústicas paramétricas 

que será el punto de partida para el diseño del calibrador. En el Capítulo 3 se 

describen y se presentan los test iniciales realizados para evaluar la posibilidad de 

usar la técnica de fuentes paramétricas para reproducir el característico pulso acústico 

generado por el neutrino. Este trabajo supuso realizar estudios pioneros de generación 

paramétrica en casos con simetría cilíndrica y señales transitorias y demostraron el 

potencial de esta técnica para el desarrollo de un calibrador compacto para detección 

acústica de neutrinos. En el Capítulo 4 se presenta el prototipo desarrollado, un array 

de tres elementos ensamblados en una estructura compacta, y los test realizados al 

mismo. Éste es capaz de operar en dos rangos frecuenciales aumentando así su 

funcionalidad pudiéndose utilizar tanto desde el fondo del mar como operado desde 

un barco. 

La segunda parte de la tesis, con carácter de análisis de datos, se ha centrado en el 

análisis de datos registrados por ANTARES con el fin de contrastar posibles modelos 

astrofísicos para la búsqueda de materia oscura. Este trabajo ha focalizado en la 

detección de los productos de la aniquilación de materia oscura atrapada en el centro 
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del Sol. En concreto, se ha testeado el modelo de Secluded Dark Matter (SDM) a 

través de la detección de di-muones (pareja de muones co-lineales) y neutrinos en la 

dirección del Sol. A grandes rasgos, este modelo se basa en la idea de la existencia 

de un mediador resultado de la aniquilación de materia oscura que posteriormente 

decaería en partículas del modelo estándar como muones o neutrinos. Estos modelos 

han sido propuestos con el fin de explicar ciertas ‘anomalías’ experimentales 

observadas, tales como el espectro del flujo de positrones detectado en satélites, 

medido recientemente con gran precisión por AMS-II. El estudio realizado en esta 

tesis constituye la primera búsqueda de evidencias experimentales de este tipo de 

modelos en telescopios de neutrinos.  

En el Capítulo 5 se resumen las evidencias de la presencia de materia oscura en el 

Universo así como los actuales métodos de detección de la misma. También se 

recogen las búsquedas de materia oscura realizadas con ANTARES, entre otras en el 

Sol, y se introducen las características del modelo de SDM. El Capítulo 6 está 

dedicado a la descripción de la metodología y herramientas utilizadas para este 

análisis. Se detalla el funcionamiento del código creado para la simulación de la 

generación de di-muones provenientes del decaimiento del mediador y su detección 

por ANTARES con objeto de conocer la respuesta del detector a este tipo de señal. 

Para finalizar, el Capítulo 7 recoge el proceso de análisis de los datos y su 

interpretación en términos de búsqueda indirecta de SDM. Dado que los resultados 

obtenidos en el análisis no indican un exceso de señal significativo se han establecido 

experimentalmente los primeros límites a modelos SDM en telescopios de neutrinos. 

Los límites impuestos a estos modelos son los más restrictivos que existen en la 

actualidad para un buen rango de valores de los parámetros a considerar: masa de la 

materia oscura, masa del mediador y vida media de este último. Así pues, estos 

resultados mejoran y/o complementan límites realizados por otros métodos, tales 

como la detección directa de materia oscura o detección indirecta a través de la 

búsqueda de positrones o rayos gamma. 
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L’astronomia de neutrins és un camp en auge dins la Física d’Astropartícules. Els 

neutrins ofereixen grans avantatges com a sondes per estudiar l’Univers llunyà i 

d’alta energia. En la comunitat científica està extensament acceptat que mitjançant la 

combinació de la informació proporcionada pels neutrins junt a la obtinguda 

mitjançant fotons d’alta energia (rajos gamma) i partícules carregades (rajos còsmics) 

es podria obtindre una imatge més completa dels processos astrofísics fonamentals 

que es donen al llarg del nostre Univers. A més, els neutrins també proporcionen 

l’únic mitjà d’entendre alguns aspectes de la Física de Partícules. La prova 

experimental de que els neutrins tenen massa i de que pateixen mescla de sabors 

prové de les observacions realitzades als primers telescopis de neutrins.  

La raó fonamental per la qual els neutrins són altament valorats com a missatgers és 

la baixa interacció amb el medi que els envolta. Al ser partícules sense càrrega 

interactuen molt dèbilment amb la matèria, per això poden escapar-se de la font on 

s’han produït i, al contrari del que ocorre amb la resta de missatgers, poden arribar a 
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La Terra sense desviar-se pels camps electromagnètics i sense pràcticament pèrdua 

d’energia. Aquesta mateixa raó que els fan tan valorats és al mateix temps la que els 

fa tan difícil de detectar. Degut a la seua baixa interacció amb la matèria s’imposa la 

necessitat de construir detectors amb grans volums de detecció, de l’ordre del km3, 

altament instrumentats. Per això s’utilitzen medis naturals (al fons de la mar, en llacs, 

al gel de l’Antàrtida) aprofitant l’aigua (o el gel) com a material diana on 

interaccionen el neutrins. ANTARES (Astronomy with a Neutrino Telescope and 

Abyss environmental RESearch) és el primer telescopi submarí de neutrins construït 

al fons de la mar Mediterrània operat per un consorci internacional, finançat amb fons 

europeus i dels diferents països col·laboradors. ANTARES està optimitzat per a la 

detecció òptica de la llum de Cherenkov induïda pels muons relativistes produïts en 

la interacció de neutrins d’alta energia als voltants del detector. La informació de la 

carrega, posició i temps d’arribada dels fotons als fotomultiplicadors que composen 

el detector permet tant la reconstrucció de la trajectòria del neutrí, amb gran resolució 

angular, com el coneixement de la seua energia. A més, ANTARES acull 

l’experiment AMADEUS (Antares Modules for Acoustic DEtection Under Sea) 

mitjançant el qual s’està investigant i testejant la detecció acústica de neutrins de molt 

alta energia, que, al interaccionar a l’aigua produeixen un pols termo-acústic que es 

pretén registrar amb una xarxa d’hidròfons.  

El treball dut a terme en esta tesi s’engloba baix el marc de l’experiment ANTARES, 

per això es el tema desenvolupat en el Capítol 1 a mode de contextualització. Com es 

comú en les tesis desenvolupades en aquest experiment, el treball s´ha dividit en dues 

àrees diferenciades: per una banda una part d’enfocament mes tecnològic i, d’altra 

banda, una part analítica de les dades preses pel telescopi. Pel seu context i el caràcter 

de les activitats realitzades, ha sigut necessària la formació en distints camps com: 

telescopis de neutrins, Física d’Astropartícules, etc. A més a més s´han desenvolupat 

diverses capacitats i destreses en diferents àmbits com la instrumentació, aplicacions 

informàtiques, tècniques de simulació, anàlisi massiu de dades, etc. 
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La primera part de la tesi està centrada en el desenvolupament d’un calibrador capaç 

de reproduir la senyal acústica que es genera en la interacció d’un neutrí d’alta energia 

amb un nucli de l’aigua que, generalitzant, és un pols bipolar altament directiu. 

Disposar d’un bon calibrador es clau a l’hora de testejar la detecció acústica al 

telescopi i poder sintonitzar i “entrenar” els receptors a aquest tipus de senyals.  

Al Capítol 2 es descriuen els processos que intervenen en l’emissió acústica del neutrí 

i les condicions de propagació i soroll ambiental presents al site d’ANTARES. Així 

mateix, s’introdueix el concepte de fonts acústiques paramètriques que seran el punt 

de partida per al disseny del calibrador. En el Capítol 3 es descriu i es presenten els 

tests inicials realitzats per avaluar la possibilitat d’utilitzar la tècnica de fonts 

paramètriques per a reproduir el característic pols acústic generat per el neutrí. Aquest 

treball va suposar realitzar estudis pioners de generació paramètrica en casos amb 

simetria cilíndrica i senyals transitòries. En el Capítol 4 es presenta el prototip 

desenvolupat, un array de tres elements assemblats en una estructura compacta, i els 

tests realitzats al mateix. Aquest és capaç d'operar en mode de baixa i alta freqüència 

per augmentar la funcionalitat tant per al seu ús en telescopis de neutrins com des de 

campanyes marines operat des del vaixell. 

La segona part de la tesi, amb caràcter d’anàlisi de dades, s’ha centrat en l’anàlisi de 

les dades registrades per ANTARES amb el fi de contrastar possibles models 

astrofísics per a la recerca de matèria fosca. Aquest treball es centra en la detecció 

dels productes d´aniquilació de matèria fosca atrapada al centre del Sol. En concret, 

s’ha testejat el model de Secluded Dark Matter (SDM) a través de la detecció de di-

muons (parell de muons co-lineals) i neutrins en la direcció del Sol. A grans trets, 

aquest model es basa en la idea de l’existència d´un mediador resultat de l’aniquilació 

de matèria fosca que posteriorment decauria en partícules del model estàndard com 

muons o neutrins. Aquests models han sigut proposats amb la fi d’explicar certes 

“anomalies” experimentals observades, tals com l’espectre del flux de positrons 

detectat en satèl·lits, mesurat recentment amb gran precisió per AMS-II. L’estudi 
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realitzat en esta tesi constitueix la primera recerca d’evidències experimentals 

d’aquest tipus de models en telescopis de neutrins. 

Al Capítol 5 es resumeixen les evidències de la presència de matèria fosca a l’Univers 

així com els actuals mètodes per a detectar-la. També es recullen les recerques de 

matèria fosca realitzades amb ANTARES, entre altres al Sol, i s’introdueixen les 

característiques del model de SDM. El Capítol 6 està dedicat a la descripció de la 

metodologia i ferramentes utilitzades en l’anàlisi. Es detalla el funcionament del codi 

creat per a la simulació de la generació de di-muons provinents del decaïment del 

mediador i la seua detecció per ANTARES amb l’objecte de conèixer la resposta del 

detector a aquest tipus de senyal. Per a finalitzar, el Capítol 7 recull el procés d’anàlisi 

de les dades i la seua interpretació en termes de detecció indirecta de SDM. Donat 

que els resultats obtinguts de l’anàlisi no indiquen un excés de senyal significatiu, 

s’han establert experimentalment els primers límits a models SDM en telescopis de 

neutrins. Els límits imposats a aquests models són els més restrictius que existeixen 

en la actualitat per a un bon rang de valors dels paràmetres a considerar: la massa de 

la matèria fosca, la massa del mediador i la vida mitjana d’aquest. Així doncs, aquests 

resultats milloren i/o complementen els límits realitzats per altres mètodes, tals com 

la detecció directa de matèria fosca o la detecció indirecta a través de detecció de 

positrons o rajos gamma.  
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Neutrino astronomy is a booming field in astroparticle physics. Due to the particular 

characteristics of neutrinos, these particles offer great advantages as probes for the 

study of the far and high-energy Universe. Moreover, it is extensively accepted by 

the scientific community that a multi-messenger approach with the combination of 

information provided by neutrinos, photons and charged particles (cosmic rays) is 

possible to obtain a more complete image of the fundamental astrophysics processes 

taking place in our Universe. Furthermore, neutrinos also provide a unique way to 

understand some particle physics principles. As an example, the evidences that 

neutrinos have mass and flavour mixing did come from observations in the first 

neutrino telescopes.  

Since neutrinos are neutral and very weak interacting particles they can reach the 

Earth from astrophysical sources without deflection by magnetic fields and almost 

without energy losses and absorption, contrarily to the rest of messengers. The other 

side of the coin of neutrino properties is that detection of neutrinos is very challenging 
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and big highly instrumented detection volumes are needed. Natural media (deep sea, 

lakes or ice in the Antarctica) host this kind of experiments using the water (or ice) 

as target material where the neutrino interaction is produced. ANTARES (Astronomy 

with a Neutrino Telescope and Abyss environmental RESearch) is the first undersea 

neutrino telescope, located at 2475 m depth in the Mediterranean Sea. It has been 

built by an international collaboration with funds from European Union and 

participating countries. ANTARES is optimized for optical detection of the Cerenkov 

light induced by relativistic muons produced by high energy neutrino interactions 

near the detector. The charge, position and arrival time of the photons to the optical 

modules which compose the detector allows the muon track reconstruction, and thus, 

knowing the neutrino coming direction with high angular resolution. Some 

information of the event energy is also derived. In addition, ANTARES is also 

hosting the AMADEUS (Antares Modules for Acoustic DEtection Under Sea) 

experiment which is investigating the feasibility of the acoustic detection of Ultra-

High Energy (UHE) neutrinos.  

The framework of this thesis is the ANTARES experiment. In this sense, Chapter 1 

describes the telescope and is dedicated to contextualize the work. As commonly 

done in the thesis developed in this experiment (and in this field), the work has been 

divided in two different areas. On the one hand, a part more devoted to technological 

aspects related to the detector and, on the other hand, a part dedicated to ANTARES 

data analysis. For the context and the characteristics of the activities performed, 

training in different fields has been necessary: neutrino telescopes, astroparticle 

physics, etc. Moreover different skills have been developed as well, such as 

instrumentation, computer applications, simulation techniques, massive data 

analysis, etc. 

The first part of the thesis is focused in the development of a calibrator able to 

reproduce the acoustic signal generated in the UHE neutrino interaction with a water 

nucleus which, roughly speaking, generates a highly directive bipolar acoustic pulse. 
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Having a good calibrator is crucial to test and tune the telescope response for this 

kind of signals. 

Chapter 2 describes the processes that intervene in the acoustic emission due the UHE 

neutrino interaction, the propagation conditions and background noise existing in the 

ANTARES site. The concept of parametric acoustic sources is also introduced as 

starting point for the calibrator design. The initial tests performed to evaluate the 

parametric acoustic technique for the generation of the characteristic acoustic 

neutrino pulse are presented in Chapter 3. These works were pioneering in the 

parametric generation of transient signals using cylindrical symmetry transducers and 

demonstrated the applicability of this technique for the development of a compact 

acoustic neutrino detection calibrator. Chapter 4 is devoted to describe the design and 

tests of the prototype developed, a three element array assembled in a compact 

structure. It is able to operate in low and high-frequency modes to increase the 

functionality for both possible uses: in deep-sea or being operated from a vessel.  

The second part of the thesis, the data analysis part, is centred in the analysis of the 

ANTARES data in order to constrain possible Dark Matter models. This work is 

focused on the detection of products resulting of the Dark Matter annihilation trapped 

in the centre of the Sun. Specifically, the Secluded Dark Matter (SDM) model has 

been tested by the detection of di-muons (co-linear muon pair) and/or neutrinos 

coming from Sun direction. Broadly speaking, this model is based on the idea of the 

existence of a mediator resulting of the Dark Matter annihilation which, 

subsequently, would decay into standard model particles as muons or neutrinos. 

These models have been proposed in order to explain some experimental “anomalies” 

observed, such as the electron-positron ratio spectrum detected in satellites, measured 

recently with high accuracy by AMS-II. The study of this thesis constitutes the first 

search of experimental evidences of this kind of models in neutrino telescopes.  

The evidences of the Dark Matter in the Universe and the methods to detect it are 

reviewed in Chapter 5. Dark Matter searches in ANTARES have been summarized, 
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among others, the ones using the Sun as source. The SDM model characteristics are 

also introduced. Chapter 6 describes the methodology and tools used in this analysis. 

A dedicated code has been developed for the simulation of di-muon generation from 

mediator decay, and its detection in ANTARES, in order to know the detector 

response to this kind of signal. To finalize, Chapter 7 deals with the data analysis 

process and the interpretation in terms of indirect SDM search. Since the conclusion 

of the analysis is that there is not a significant signal excess, limits to SDM models 

in neutrino telescopes have been established being the first time that these models are 

constrained in neutrino telescopes. The imposed limits to these models are the more 

restrictive ones for a wide range of values of the parameters to consider: Dark Matter 

mass and mass, and lifetime, of the mediator. Therefore, these results improve and/or 

complement the limits obtained by different methods, such as Dark Matter direct 

detection or positron and gamma ray indirect detection searches. 
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1 
Framework of the thesis: 
ANTARES Neutrino Telescope

In this Chapter the importance of the neutrinos and its detection for the knowledge of 

the Universe will be reviewed. The ANTARES neutrino telescope, as a framework 

of the work carried out during this thesis, will be presented. Its scientific aims and 

the detection methods will be described, including the infrastructure dedicated to test 

the acoustic detection of neutrinos. To finalize, the KM3Net neutrino telescope, 

which is currently being deployed and has been developed with the knowledge 

acquired in the previous experience in the Mediterranean Sea with ANTARES, will 

be presented. In the future, it will be the biggest neutrino telescope in the northern 

hemisphere. 

1.1 Why Neutrino Astrophysics? 

Most of the knowledge of the Universe comes from the observation of photons. These 

messengers have many advantages because they provide valuable information about 

the chemical and physical properties of the source. Moreover they are copiously 

produced, stable, electrically neutral and easy to detect over a wide energy range. 

Unfortunately, the properties of the hot dense regions which form the central engines 
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of stars, active galactic nuclei and other astrophysical energy sources are completely 

opaque to photons, for this reason, they cannot be investigated by direct photon 

observation, but only by indirect inference. Furthermore, high energy photons 

interact with photons of the infrared background radiation and with the cosmic 

microwave background to create electron-positron pairs; this is the Greisen-Zatsepin-

Kuz’min effect (GZK) (R. J. Gould & Schreder, 1966; Greisen, 1966; Zatsepin & 

Kuz'min, 1966), which suppresses any possibility of exploring the sky over distances 

greater than 100 Mpc with high energy (>10 TeV) gamma rays.  

Another possibility is the observation of the proton component of the cosmic rays, 

which can provide information about the sources but, since they are charged, they 

can be deflected by the galactic magnetic fields and lose the directional information 

being impossible point back to their source. 

In order to observe the inner workings of the astrophysical objects and to obtain a 

description of the Universe over a larger range of energies a messenger electrically 

neutral, so that its trajectory will not be affected by magnetic fields, stable, so that it 

will reach us from distant sources, and weakly interacting, so that it will penetrate 

regions which are opaque to photons, is needed. The only candidate currently known 

is the neutrino. Fig 1.1 shows the different messengers that could be used for studying 

astrophysical sources and its interaction with the medium along the way to reach the 

Earth.  

The neutrino was proposed by Pauli in 1930 in order to explain the energy 

conservation and linear momentum during β disintegration: en p e ν+→ + + . It was 

described as a sub-atomic fermion particle without electrical charge, zero mass and 

very small cross section 44 210 cmσ −
∼ . Its interaction probability was considered so low 

that its own proponent bet that the neutrino never could be detected. Fortunately, 

there were scientists who did not cease in its efforts. Years after, in 1956, Cowen and 

Reines presented the first measurement of neutrinos coming from fragments of 
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nuclear fission through the observation of inverse β disintegration of protons. This 

work, besides to make Pauli losing his bet, became Reines Nobel Prize in 1995, after 

the death of his colleague in 1974.  

 
Fig 1.1. Scheme of the different messengers that can reach the Earth from 

astrophysical sources and its possible interaction with the medium during 
their travel. 

Today, it is known that the neutrino has a very little mass but is not zero, and there 

exist three kinds of neutrinos according to the three leptonic families( , , )e µ τν ν ν  and 

its corresponding antiparticles( , , )e µ τν ν ν .  

After decades of study and experimentation, some astrophysical sources are known 

for emitting neutrinos (of low energy range, a few tens of MeV). Hydrogen fusion 

produces electron neutrinos as by-products. Solar neutrino astronomy has a 30 years 

long history, the proton-proton chain is the most frequently reaction set that occurs 

in the Sun and converts hydrogen in helium, in this process an amount of energy is 

released in form of photons and neutrinos. The conversion of iron nuclei to neutrons 

when a neutron star is formed in the heart of a supernova produces a burst of neutrinos 

(augmented by the thermal production of neutrino-antineutrino pairs), and one such 

burst was observed by Kamiokande (Hirata et al., 1988) and IMB (Irvine–Michigan–

Brookhaven) (Vander Velde, Personal web) detectors for Supernova 1987A in 1987 
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being the first observation of neutrinos from outside of the Solar System. Cosmology 

predicts a low-energy relic neutrino background similar to the low-energy relic 

photons of the Cosmic Microwave Background, but these would have an effective 

temperature of around 1.9 K and are very difficult to observe. 

 

Fig 1.2. Infographic view of the two different origin of the neutrinos detected on the 
Earth: atmospheric neutrinos and astrophysical neutrinos.  

Furthermore, on the Earth, high energy neutrinos can be detected from two different 

origins (Fig 1.2). The first ones are atmospheric neutrinos that are mainly produced 

in the decay of pions and kaons emerging from reactions of cosmic rays or gamma-

rays in the upper atmosphere. The second ones are astrophysical neutrinos that 

originate from either galactic or extra-galactic astrophysical processes.  

Astrophysical sources of high-energy neutrinos have not been observed directly, but 

their existence can be deduced by the properties of cosmic rays. Moreover, IceCube 

has recently claimed the discovery of high-energy cosmic neutrinos based on the 

excess of events observed with respect to the expected ones due to atmospheric 

neutrinos (IceCube Collaboration, 2013). Primary cosmic rays are protons, with some 

admixture of heavier nuclei; the energy spectrum (Fig 1.3) is a power law which 
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extends to extremely high energies, values exceeding 1020 eV having been observed 

in recent years. Protons themselves have limited use as astrophysical information 

carriers because they are charged, and therefore subject to deflection by cosmic 

magnetic fields: only the very highest energy cosmic rays are likely to retain any 

memory of the source direction. The exact source of the high-energy cosmic rays is 

thus unknown, although supernova remnants and active galactic nuclei have been 

proposed. Whatever the source, it is clear that accelerating protons to such high 

energies is likely to generate a large associated flux of photo-produced pions, which 

decay to yield gamma rays and neutrinos. These will remember the source direction, 

and so the existence of a general flux of very high energy cosmic-ray protons implies 

the existence of sources of high-energy neutrinos. 

 
Fig 1.3. Spectral Flux of Cosmic Rays observed on Earth. Figure adapted from 

(Cronin, Gaisser, & Swordy, 1997). 
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Neutrino astronomy thus offers the possibility of observing sources which correspond 

to the central engines of the most energetic astrophysical phenomena. It also provides 

long baselines for neutrino oscillation studies, and can explore useful regions of 

supersymmetric parameter space in the context of dark matter. The drawback, of 

course, is that the weak interactions of neutrinos imply that a very massive detector 

with extremely good background rejection is required to observe a measurable flux. 

Nowadays the existing neutrino telescopes NT200+ in lake Baikal (Aynutdinov et 

al., 2008; Kuzmichev et al., 2006), IceCube at the South Pole (IceCube Collaboration, 

2014) and ANTARES (Ageron et al., 2011), the first undersea neutrino telescope, in 

the Mediterranean Sea are continuously reconstructing the muon tracks from the 

interactions of atmospheric muon neutrinos. An irrefutable evidence of neutrino 

signature from astrophysical sources would either be a reconstructed energy beyond 

∼1014 eV for a significant number of events or a clustering of reconstructed neutrinos 

from a particular direction. Another determinant evidence would be the coincidence 

of its direction with a potential neutrino source identified through gamma-ray 

detectors by imaging atmospheric Cherenkov telescopes (H.E.S.S (H.E.S.S. 

Collaboration, 2014), MAGIC (MAGIC Collaboration, 2015), VERITAS 

(VERITAS Collaboration, 2014) or by direct observation of the air shower particles 

(MILAGRO (MILAGRO Collaboration, 2007)). It is assumed that only a multi-

messenger approach, combining observation of neutrinos, high energy photons 

(gamma rays) and charged particles (cosmic rays) will deliver a complete picture of 

the fundamental astrophysical processes taking place in the Universe. 

1.2 ANTARES: The first Undersea Neutrino Telescope 

ANTARES detector is located in the Mediterranean Sea, at 40 km of the south coast 

of France at 2475 m depth. Its location makes it sensitive to a large part of the 

southern sky, including the Galactic Centre region. It was completed in May 2008 

making the largest neutrino telescope in the Northern hemisphere and the first 
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operated in deep sea. Data taking started in 2007 with the first deployed detection 

lines.  

The main goal of ANTARES is the observation of astrophysical objects like Active 

Galactic Nuclei (AGN), Gamma Ray Bursts (GRBs), Microquasars, or Supernova 

Remnants. In fact, astrophysical objects that are able to accelerate protons and nuclei 

in a wide range of energy are candidates to be neutrino sources due to a possible 

interaction of these accelerated cosmic rays with matter or radiation located in the 

surroundings of the source. Other interesting studies carried out with ANTARES are 

led to the indirect detection of Dark Matter (DM) looking for neutrinos generated in 

the annihilation of Weakly Interacting Massive Particles (WIMPs) captured by 

celestial bodies like Earth, Sun, Galactic Center, etc. (See Chapter 5). In the field of 

particle physics, studies performed in ANTARES are trying to understand some 

processes concerning to the neutrino, among others, neutrino oscillations (Adrián-

Martínez, Al Samarai et al., 2012) or neutrino interaction cross-sections. In addition, 

and due to the particular location of underwater neutrino telescopes, these 

infrastructures offer the possibility to extend the scientific program beyond the 

astroparticle physics by including in the facility different sensors for Earth and Sea 

sciences. The continuous monitoring of these sensors in real time is a powerful tool 

for environmental studies, and to bring some light in the understanding of different 

multidisciplinary problems such as ocean dynamics, climate change, etc. 

1.2.1 Detection principle 

The telescope is optimized to detect upward going high energy neutrinos by 

observing the Cherenkov light produced in sea water by secondary charged leptons 

originated in charged current interactions of the neutrinos with the matter around the 

instrumented volume. Due to the long range of the muon, neutrino interaction vertices 

tens of kilometers away from the detector can be observed. Other neutrino flavours 

are also detected, though with lower efficiency and worse angular precision because 
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of the shorter range of the corresponding leptons. To detect the Cherenkov light, the 

neutrino telescope comprises a matrix of light detectors, in the form of 

photomultipliers (PMTs) contained in glass spheres, called Optical Modules (OMs). 

These OMs are positioned on flexible lines anchored to the seabed. The muon track 

is reconstructed using the arrival time measurements of the Cherenkov photons on 

the OMs of known positions. With the chosen detector dimensions, the ANTARES 

detector has a low energy threshold of about 20 GeV for well reconstructed muons. 

The incoming neutrino direction, almost collinear with the secondary muon at high 

energy, can be determined with an accuracy better than 0.3º for energies above 10 

TeV. Fig 1.4 illustrates the neutrino detection principle in an undersea telescope. 

 

Fig 1.4. Detection principle of high energy muon neutrinos in an underwater 
neutrino telescope. The incoming neutrino interacts with the material 
around the detector to create a muon. The muon gives Cherenkov light in 
the sea water which is then detected by a matrix of light sensors. The 
original spectrum of light emitted from the muon is attenuated in the water 
such that the dominant wavelength range detected is between 350 and 500 
nm. 
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This detection technique requires discriminating upward going muons against the 

much higher flux of downward atmospheric muons (Fig 1.5). To simplify the 

discrimination, the detector should be installed in a deep site where a layer of water 

or ice would shield it. 

Another detection technique is being tested in ANTARES in order to complement 

the optical detection. This is the acoustic detection based on the thermo-acoustic 

model (See Chapter 2). For this purpose, the AMADEUS (ANTARES Modules for 

the Acoustic DEtection Under the Sea) system was installed in the general 

infrastructure (See Section 1.2.3). 

 
Fig 1.5. Zenith angular distribution of the muon flux above 1 TeV from atmospheric 

muons and atmospheric neutrino induced muons at 2300 m water 
equivalent depth. 

1.2.2 Detector overview 

The detector infrastructure is composed by 12 mooring lines holding the optical 

modules. These are a set of photomultipliers designed for measuring neutrino induced 

charged particles based on the detection of Cherenkov light emitted in water. There 
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are 885 OMs which composes the ANTARES detector. The arrangement of the OMs 

in space was optimized initially by simulation in order to have the best neutrino 

detection efficiency in terms of effective detection volume and angular resolution for 

the tracks. The optimal distances between OMs are correlated with the absorption 

length in water (maximum is about 60 m). Time coincidence conditions between 

close OMs (< 1 m) allows to reduce the optical background in sea water. The Fig 1.6 

shows a schematic view of the detector configuration, composed of OM triplets 

distributed on vertical lines. These lines are flexible structures attached to the sea 

bottom by a heavy anchor and kept in tension by a buoy on the top of each line.  

 

Fig 1.6. Schematic view of the ANTARES detector which consists in 885 
OMs set along 12 lines connected to shore by an electro-optical 
cable. 
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Each line is separated about 65 m between each other. Any line can be deployed 

independently from others and released to the surface for maintenance. This 

simplifies operations at great depth. The lines are connected to the common junction 

box with 40 km cable which connects it to the shore station located in La Seyne-sur-

Mer (France) where the ANTARES control room is located. The lines are divided in 

storeys, a mechanical structure to place three OMs to point downwards at 45º with 

respect to the vertical, each line has 25 except one which has hydrophones instead of 

OMs in the five top storeys (See Section 1.2.3). The downward orientation aim is 

optimizing the upgoing particles detection. Additionally, there are different kinds of 

sensors and instrumentation (LED beacons, hydrophones, compasses/tiltmeters) for 

time and position calibration of the OMs. Storeys in the same line are separated 14.5 

m. The first storey is placed 100 m above the anchor. This distance is the optimized 

distance from the ground where the Cherenkov cone from the up-going particles is 

developed. The disposition of the lines and storeys results in a neutrino telescope that 

spreads over an area of about 0.1 km2 and an active height of about 0.3 km.  

ANTARES achieves very good angular resolution (< 0.3º for muon events above 10 

TeV). The pointing accuracy of the detector is determined largely by the overall 

timing accuracy of each event. This is a quadratic sum of terms due to: a) the precision 

with which the spatial positioning and orientation of the optical modules is known; 

b) the accuracy of the arrival time of photons at the optical modules measurement; c) 

the precision with which local timing of individual optical module signals can be 

synchronized with respect to each other.  

In order to determine accurately these parameters, positioning (Adrián-Martínez et 

al., 2012) and timing calibration (J. A. Aguilar, Samarai, Albert, André et al., 2011) 

systems are needed. The reconstruction of the muon trajectory is based on the 

differences of the arrival times of the photons between optical modules. As such, it 

is sensitive to the distances between the optical modules. In order to avoid degrading 

during the reconstruction, it is necessary to monitor the position of each optical 
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module with a precision of 10 cm (light travels 22 cm per ns in water). The 

reconstruction of the muon trajectory and the determination of its energy also require 

knowledge of the optical module orientation with a precision of a few degrees. The 

precise absolute positioning of the whole detector has to be guaranteed in order to 

point to individual sources. To attain a suitable precision on the overall positioning 

accuracy constant monitoring of relative positions of the various detector elements 

with respect to absolutely positioned acoustic beacons and emitters is necessary 

(Ardid, 2009).  

The relative time resolution between OMs is of utmost importance for the muon 

trajectory reconstruction. It is limited by the transit time spread of the signal in the 

PMTs (about 1.3 ns) and by the scattering and chromatic dispersion of light in sea 

water (about 1.5 ns for a light propagation of 40 m). The electronics of the ANTARES 

detector is designed in order to contribute less than 0.5 ns to the overall time 

resolution. Time calibration should aim at a precision below the nanosecond level. 

To this end, several complementary time calibration systems are implemented in the 

ANTARES detector in order to measure and monitor the relative times between 

different components of the detector due to, e.g. cable lengths and electronics delays 

(J. A. Aguilar, Samarai, Albert, André et al., 2011).  

1.2.3 The AMADEUS system 

The AMADEUS project was carried out for performing a feasibility study for a 

potential future large-scale acoustic neutrino detector (acoustic detection principle 

will be described in Chapter 2). Following this purpose, an array of dedicated acoustic 

sensors was integrated into the ANTARES neutrino telescope. Initially, the purposes 

to follow by this project were:  

a) Performing long-term background investigations (levels of ambient noise, 

spatial and temporal distributions of sources, rate of neutrino-like signals); 



1. Framework of the Thesis: ANTARES Neutrino Telescope 

 

29 

b) Investigation of spatial correlations for transient signals and for persistent 

background on different length scales; 

c) The development and test of data filters and reconstruction algorithms; 

d) The investigation of different types of acoustic sensors and sensing methods; 

e) The study of hybrid (acoustic and optical) detection methods. 

In particular the knowledge of the rate and correlation length of neutrino-like acoustic 

background events in order to have an estimation of the sensitivity of a future acoustic 

neutrino detector. 

1.2.3.1 System overview 

The AMADEUS sensors are integrated in the form of acoustic storeys that are 

modified versions of the ANTARES storeys (Section 1.2.2) in which the OMs have 

been replaced by custom-designed acoustic sensors. These sensors work using 

dedicated electronics for digitization and pre-processing of the analogue signals. In 

particular these acoustic storeys are emplaced in detection line number 12 (L12) and 

in the Instrumentation Line. (IL) (Fig 1.7). IL is equipped with instruments for 

monitoring the environment. It holds six storeys and, in this line, for two pair of 

consecutive storeys the vertical distance is increased to 80 m. The AMADEUS 

system comprises a total of six acoustic storeys (with six acoustic sensors each). 

Three are located in the IL which started to take data in December 2007 and three 

more in L12 which was connected in May 2008. During their deployment, due to 

pressurization two acoustic sensors were damaged, so the AMADEUS fully and 

functional has been taking data with 34 sensors. The acoustic storeys on the IL are 

located at 180 m, 195 m, and 305 m above the sea floor. On Line 12, acoustic storeys 

are positioned at heights of 380 m, 395 m, and 410 m above the sea floor. Initially, 

IL was anchored at a horizontal distance of about 240 m from the L12. With this 

setup, the maximum distance between two acoustic storeys was 340m. AMADEUS 

hence covered three length scales: spacing of the order of 1m between sensors within 
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a storey (i.e. an acoustic cluster); intermediate distances of 14.5m between adjacent 

acoustic storeys within a line; and large scales from about 100m vertical distance on 

the IL up to 340m between storeys on different lines. The sensors within a cluster 

allow for efficient triggering of transient signals and for direction reconstruction. The 

combination of the direction information from different acoustic storeys yields (after 

verifying the consistency of the signal arrival times at the respective storeys) the 

position of an acoustic source.  

 

Fig 1.7. Schematic view of the ANTARES detector. The six acoustic storeys are 
highlighted and their three different setups are shown. This is the 
configuration after the last redeployment of the IL in November 2013. 

Since the beginning of the project to nowadays some changes in the configuration 

have been performed. Some acoustic sensors in the IL have been replaced. Also the 

location of the IL was modified, after the disconnection for recovery in May 2011, 
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and last redeployment in November 2013. The distance between he IL and L12 is 

about 115 m. 

The AMADEUS system includes time synchronization and continuous operating data 

acquisition setup that is scalable to a large-volume detector. 

1.2.3.2 Acoustic Storeys 

The family of sensors tested along the AMADEUS project can be divided in two 

types: hydrophones and Acoustic Modules (AMs). In both cases, the sensing 

principle is based on the piezo-electric effect. For the hydrophones, the piezo 

elements are coated in polyurethane, whereas for the AMs, piezos are glued inside of 

standard glass spheres which are normally used for Optical Modules in ANTARES. 

Fig 1.8 shows the design of a standard acoustic storey with hydrophones. In the IL, 

the acoustic storeys only have hydrophones, whereas the lowermost acoustic storey 

of L12 holds AMs. For more information and details about the whole system refer to 

(J. A. Aguilar, Samarai, Albert, Anghinolfi et al., 2011). 

 

Fig 1.8. Drawing of a standard acoustic storey with hydrophones in the AMADEUS 
system.  



 Design and Development of an Acoustic Calibrator for Deep-Sea ν Telescopes & First Search .for SDM with ANTARES 

 

32

The hydrophones are mounted to point upwards, except for the central acoustic storey 

of L12, where they point downwards. Fig 1.9 shows the three different designs of 

acoustic storeys installed in AMADEUS. The sensitivity of the hydrophones is 

largely reduced at their cable junctions and therefore shows a strong dependence on 

the polar angle. The different configurations allow for investigating the anisotropy of 

ambient noise, which is expected to originate mainly from the sea surface. Initially, 

three of the five storeys holding hydrophones are equipped with commercial models, 

dubbed HTI hydrophones (High Tech. Inc.©), and the other two with dedicated 

hydrophones developed and produced at the Erlangen Centre for Astroparticle 

Physics (ECAP). After the IL recovery in May 2011, in floor 3 the hydrophones 

produced at ECAP were replaced because they had reached end of life time. The new 

ones were developed for KM3Net by UPV (Universitat Politècnica de València) and 

INFN-LNS (Instituto Nazionale di Fisica Nucleare - Laboratori Nazionale del Sud). 

This fact provided a big opportunity to be tested on deep sea. 

 

Fig 1.9. Images of the three different storeys of the AMADEUS system during its deployment. 
On the left a standard storey equipped with hydrophones pointing up is shown. In the 
middle the acoustic storey on L12 with the hydrophones pointing down. On the right the 
lowermost acoustic storey on L12 equipped with Acoustic Modules. 
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1.3  KM3NeT 

The successful construction and operation of the ANTARES detector has 

demonstrated the feasibility of deep-sea neutrino telescopes. The experience acquired 

during the ANTARES operation and the privileged location of the Mediterranean Sea 

for Galactic Center visibility have meant a push to build a new large research 

infrastructure. It will consist of a network of deep-sea neutrino telescopes in the 

Mediterranean Sea, being a multidisciplinary laboratory also for Earth and Sea 

sciences (Lahmann, 2012).  

The main objectives of KM3NeT are the discovery and subsequent observation of 

high-energy neutrino sources in the Universe and the determination of the mass 

hierarchy of neutrinos. Further on, it will be possible to include the acoustic detection 

of neutrinos from interactions of ultra-high energy cosmic rays with the cosmic 

microwave background, whereby is paramount to have a calibrator system able to 

reproduce the acoustic signal induced by neutrino interaction. At the end of the 

deployment, KM3NeT will dispose of a few km3 of detection volume, about 100 

times more than its precursor ANTARES. A cost effective technology for (very) large 

water Cherenkov detectors has been developed based on a new generation of low 

price 3-inch photo-multiplier tubes. Following the successful deployment and 

operation of two prototypes, the construction of the KM3NeT research infrastructure 

has started.  

For the second objective of KM3NeT, ORCA (Oscillation Research with Cosmics in 

the Abyss) (Katz, 2014), a detailed feasibility study addressing the prospects of 

measuring the neutrino mass hierarchy with KM3Net is being performed. With the 

ORCA detector it is possible to determine the mass hierarchy using oscillations of 

atmospheric neutrinos in the Earth. This mass hierarchy is, together with the CP-

violating phase and possible Majorana nature of the neutrino, an outstanding 

unknown of the Standard Model of Particle Physics. Also ORCA presents sensitivity 
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to low-mass dark matter (via annihilation in e.g. the Sun) and possibly also to the 

composition of the Earth interior (via neutrino tomography). 

Concerning to the technology, a new generation of 3-inch photo-multiplier tubes 

(PMTs) has been developed for KM3NeT. These PMTs combine good timing (RMS 

less than 2 ns), relatively high quantum efficiency (around 30%) and low price 

(comparing with 10-inch PMTs). The PMTs and the readout electronics are enclosed 

in pressure-resistant glass spheres. These optical modules are distributed in space 

along flexible strings, one end of which is fixed to the sea floor and the other end is 

held close to vertical by a buoy. An optimal building block consists of 115 such 

strings. The concept of building blocks is modular. Hence, the construction and 

operation of the research infrastructure allows for a phased and distributed 

implementation. 

 

 

 

Fig 1.10. Left: KM3NeT digital optical 
module. Right: Detection Unit of KM3NeT.  
 
 

The innovative Digital Optical Module 
(DOM) is a stand-alone sensor module 
with 31 3-inch PMTs in a 17 inch glass 

sphere. The front part of each PMT is 
surrounded by a light concentrator ring 
to further increase the light collection 
area. The DOM also contains calibration 
sensors like acoustic piezo sensors, 
compass and tiltmeters and a 
nanobeacon. All readout electronics for 
PMTs and calibration sensors are 
confined inside the glass sphere of the 
DOM which has only one penetrator for 
connection to the backbone cable of the 
detection unit. The KM3NeT detection 
unit consists of 18 KM3NeT-DOMs 
supported by two parallel ropes. The 
distance between DOMs is 36 m. The 
lowest DOM is positioned at 120 m 
above the seabed. A backbone cable runs 
the full length of the detection unit and 
connects the DOMs with the seafloor 
network. The total height of the 
KM3NeT detection unit is about 700 m.
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Recently, the collaboration started the first construction phase (Phase-1). During 

2015-2016, 31 strings equipped with 558 optical modules will be assembled and 

deployed at the French and Italian sites.  

The resulting arrays will be different in size, the setup at the Italian site being 

significantly larger and providing the equivalent of about 10% of the size of the 

IceCube detector (and more than 3 times the size of the ANTARES detector). This 

detector configuration is optimal for the discovery of high-energy neutrino sources 

in the Universe. The strings at the French site will be configured according to the 

outcome of the ORCA feasibility study, a densely instrumented detector, and as such 

prove the viability of a detector designed for the measurement of the neutrino mass 

hierarchy.  

The ultimate goal is to fully develop the KM3NeT research infrastructure which 

comprises a distributed installation at three foreseen sites (Italy, France and Greece), 

with almost 700 strings equipped with 12,400 optical modules in total (Phase-2). The 

sensitivity of the Phase-2 neutrino telescope will not only exceed that of the current 

IceCube detector by a substantial factor, but also will bring possible neutrino sources 

in our Galaxy within reach. The neutrino signal reported by IceCube (Aartsen, 

Abbasi, Abdou, Ackermann, Adams, Aguilar, Ahlers. M., Altmann, Auffenberg, & 

Bai, 2013a) has led the collaboration to plan an intermediate step (Phase-1.5). The 

Phase-1.5 detector will allow for an independent measurement of this signal with 

different methodology, better angular resolution and complementary field of view. In 

addition, the predicted angular resolution of cascade events offers the breakthrough 

capability of doing all flavour neutrino astronomy. 
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2 
Part I Introduction: 

Acoustic detection
of Neutrinos

Neutrino detection in the high energy range supposes opening a new window in the 

study of extragalactic sources. Due to the small expected fluxes, neutrino detection 

in that energy range carries a significant challenge in terms of infrastructure and 

detection methods. Following the classical optical method for detecting these 

energetic neutrinos, collecting the Cherenkov light emitted by the muon resulting of 

neutrino interaction, it would be practically impossible in terms of scaling the 

infrastructure. It would be necessary more than 10 km3 of optical instrumented 

volume for detecting a significant rate of Ultra High Energy (UHE) neutrinos 

implying a technically very complex design and a very high cost to develop it. In this 

Chapter the fundamentals of the acoustic detection of neutrinos will be reviewed. The 

underwater conditions for sound propagation of the ANTARES site will be 

summarized. To finalize, the need for a calibrator, in order to improve the acoustic 

neutrino detection in underwater neutrino telescopes, will be introduced together with 

the parametric acoustic sources technique, which has been used in the calibrator 

development.  
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2.1 Acoustic Detection of Ultra-High Energy Neutrinos  

The acoustic detection method was predicted for Askayran (Askaryan, 1957) and is 

based on the thermo-acoustic effect, described in the following section. Broadly 

speaking, when a UHE neutrino interacts with a nuclei in water (or ice) a hadronic 

cascade is generated. The cascade energy is deposed fast and locally in a narrow 

region of the medium which induces a local heating producing a rapid expansion of 

the surrounding water (or ice). As a result of this expansion a pressure wave is 

propagated perpendicularly to the cascade direction. One of the most relevant 

advantages of the acoustic detection over the optical detection is the attenuation 

length which is more than one order of magnitude higher for acoustic signals (~km) 

produced for cascades than for the Cherenkov light (~50 m), comparing the main 

frequency band of each emission. This advantage allows to instrument a huge volume 

using a relative low number of sensors. 

Besides of the AMADEUS project in the ANTARES Neutrino Telescope, for more 

than a decade different test sites have been collecting data in order to clarify the 

acoustic sensitivity for detecting signals from neutrino interactions of a possible 

detector with given environmental conditions. The main activities in this area are 

summarized in Table 2.1. 

The first experiment was started in 2001 near the Bahamas. The SAUND (Study of 

Acoustic Ultra-high Neutrino Detection) (Vandenbroucke, Gratta, & Lehtinen, 2005) 

was composed by seven hydrophones from the military AUTEC (Atlantic Undersea 

Test and Evaluation Center) array located at about 1600 m depth, resulting in a 

detection volume of 15 km3. The first acoustic neutrino flux limit was established by 

the data collected during the first phase of this experiment. In a second phase, the 

number of hydrophones increased to 49 (1500 km3 of detection volume). Detailed 

studies about acoustic background were performed after 130 days of data taking 

(Kurahashi & Gratta, 2008). Two events were compatible with showers from neutrino 
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interaction above 1022 eV after a complex data reduction which contributed to an 

improvement in the neutrino flux limit (Kurahashi, Vandenbroucke, & Gratta, 2010).  

Project  Host  Location Medium Sensors 

AMADEUS ANTARES Mediterranean Sea (Toulon) Sea water 36 

OνDE NEMO Mediterranean Sea (Sicily) Sea water 4 

SPATS IceCube South Pole Ice 80 

Baikal BDUNT Lake Baikal Fresh 
water 

4 

ACORNE RONA military North Sea (Scotland) Sea water 8 

SAUND AUTEC 
military 

Tongue of the Ocean 
(Bahamas) 

Sea water 7/49 

 

Table 2.1. Overview of the acoustic detection test sites. 

Deployed in 2005 at 25 km offshore of Catania, in the Mediterranean Sea, NEMO-

OνDE (Ocean Noise Detection Experiment) was monitoring the underwater noise 

during 5 minutes every hour. The average noise level in the 20-43 kHz frequency 

band was found 5.4 ± 2.2stat ± 0.3syst mPa of pressure level and it was strongly 

correlated with the environmental conditions at the Sea surface (Riccobene, 2009). 

Moreover, almost daily during the approximately two years duration of the 

experiment, the presence of sperm whales was detected when the major 

environmental agencies declared that these species were declining in the area 

(Nosengo, 2009). The analysis of the acoustic signal produced for sperm whales 

allows to derive the age and gender of the animal emitting it.  

Between 2006 and 2008 the ACORNE (Acoustic Cosmic Ray Neutrino Experiment) 

group was taking data using eight hydrophones of the RONA military array in North-

West Scotland. Besides the neutrino flux limit in the same range of SAUND result, 

information about signal attenuation and localization also were collected (S. Bevan, 

2009; Danaher, 2007).  
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In Baikal Deep Underwater Neutrino Telescope (BDUNT) experiment, an antenna 

consisting of four hydrophones in a tetrahedral arrangement with equal interspacing 

between hydrophones (1.5 m) was placed in 2006 at 150 m depth in Lake Baikal 

(Siberia, Russia). In this experiment, the target material is fresh water which has the 

advantage over sea water that the attenuation length is roughly one order of 

magnitude larger in the frequency range of 10 to 100 kHz. However, conditions in 

Lake Baikal are not particularly favourable for acoustic neutrino detection. The 

thermal expansion coefficient is close to zero and the Grüneissen parameter (see next 

section) is low. Extensive environmental studies were done concluding that the 

observed noise level depends mostly on surface conditions. In the frequency range of 

5 to 20 kHz it has a value below 5 mPa. From the analysis, one interesting neutrino-

like event was observed, accepting only signals from the deep lake. In 2011 an 

acoustic string with three acoustic modules was deployed and data taking is ongoing 

(Aynutdinov et al., 2012).  

In the upper empty part of holes drilled for the IceCube neutrino observatory was 

deployed the SPATS (South Pole Acoustic Test Setup) (Karg, 2012). A total of seven 

acoustic stations composed by transmitters and receivers have been positioned 

between 80 m and 500 m distance in the ice of the South Pole. Due to the shortage of 

previous experimental studies for acoustic properties in ice, since data taking started 

at 2007, results have been orientated to describe the environmental conditions of the 

site and its influence in the acoustic signal propagation: speed of sound, pressure and 

shear waves and their refraction versus depth, the acoustic attenuation length and the 

ambient noise level (R. Abbasi et al., 2010; R. Abbasi et al., 2011b; R. Abbasi et al., 

2012). Using data from transient noise measurements, a neutrino flux limit above 

1011 GeV was derived after eight months of observation. 
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2.1.1 The Thermo-Acoustic Model 

The prediction of the hydrodynamic radiation production as ultrasonic pressure 

waves (Askaryan, 1957) prompted the development of the thermo-acoustic model in 

1970s. This model describes the production mechanism of the bipolar acoustic 

signals measured in a proton beam experiment in a fluid media (Askariyan, 

Dolgoshein, Kalinovsky, & Mokhov, 1979; Learned, 1979). According to the model, 

the hadronic particle cascade, originated by UHE particle integrating in water, gives 

rise to a large energy deposition in a small volume in a very short time (instantaneous 

with respect to the hydrodynamic time scale). Due to the temperature change, the 

medium expands or contracts according to its volume expansion coefficient, β, 

causing a pressure pulse which develops orthogonal to the cascade and therefore the 

incident particle direction. The equation that describes the pulse is: 

 
2 2

2
2 2 2

1 ( , ) ( , )
( , )

p

p r t q r t
p r t

c t C t

β∂ ∂∇ − = −
∂ ∂

� �
� �   (2.1) 

where, ( , )p r t
�

 denotes the hydrodynamic pressure at given place and time, c is the 

speed of sound in the medium, Cp is the specific heat capacity and ( , )q r t
�

is the energy 

deposition density of the particles. It is possible to group all dependent parameters of 

water properties (temperature, salinity and hydrostatic pressure), i.e., the 

environmental parameters, in a dimensionless one, the Grüneissen parameter 

2
pc Cγ β= which indicates the conversion efficiency of the thermal energy into 

sound. This allows the comparison of signal strength (acoustic pulse relative 

intensity) for different oceans and seas at different depths. As shown in Fig 2.1, the 

efficiency of the thermo-acoustic conversion mechanism varies over the water 

volume due to the vertical stratified profile where the sound speed is depth depending. 

Also the differences are caused by the temperature and salinity conditions which vary 

from one sea to another. The signal strength, defined by γ, increases with salinity, 

temperature and depth. In the case of Mediterranean Sea the fact of being an ‘old’ 
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and ‘closed’ sea attributes high salinity and warm temperature at large depth, close 

to 13º. This translates into an enhancement by a factor 2 of the acoustic emission 

strength with respect to the oceans. 

 

 

Fig 2.1. Grüneissen parameterγ for different oceans and seas as a function of depth. 
Polar areas (dashed), oceans in tropical (dash-dotted) and tempered (solid, 
bottom line) areas and the Mediterranean Sea (solid upper line). The dotted 
horizontal line indicates the value used by (Askariyan et al., 1979). 

Equation (2.1) can be solved using the Kirchoff integral: 
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As the energy deposition is almost instantaneous, Eq.(2.2) can be simplified 

assuming: 
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being θ(t) and δ(t)  the step and delta function respectively, the simplify equation 

would follow: 

 ( ')
( , )

4 S

q r
p r t d

R R

γ σ
π

∂=
∂ ∫

�
�   (2.4) 

Integration is carried out over spherical shells of radius R=ct centred on r
�
, this means 

that the pressure in r
�
at time t is the sum of all contributions that can reach this point 

propagating at the speed of sound. Using this approach is neglected the pressure 

waves attenuation during the propagation form the source to r
�
, moreover linear 

propagation is assumed. Although the limitations induced by these assumptions this 

solution is very effective at short distances from the source (~100 m). 

2.1.2 Acoustic Neutrino signature 

UHE neutrinos are expected to interact by deep inelastic scattering with the nuclei of 

water molecules. This interaction results in hadronic fragmentation and, in the case 

of a charged current interactions (CC), in a charged lepton which acquires 80% of the 

energy of the primary neutrino (Gandhi, Quigg, Reno, & Sarcevic, 1998). The 

remaining energy is deposed into the water as hadronic shower aligned with the 

direction of the primary neutrino. The local heating resulting of this energy deposition 

causes an expansion of the medium which generates an acoustic pulse propagating 

perpendicular to the shower axis. While νµ and ντ neutrino generates hadronic shower, 

with travel paths of a few tens to a hundred kilometres, νe also generates and 

electromagnetic shower, which is superimposed on the hadronic one. The better event 

observable acoustically would be a νe charged current interaction where all the energy 

of the primary neutrino is dumped into cascades of short extend (~ 10 - 100 m). On 

the other hand, in cases of neutral current interaction (NC) only about 20 % of the 

initial neutrino energy is available for acoustic detection trough hadronic shower.  
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The acoustic signal generated by the neutrino interaction in water is characterized by 

the high anisotropy of the source. The cascade, whose energy deposition is extended 

from a few meters to tens of metres in length with only a few centimetres in diameter, 

can be understood as the acoustic source. This strong anisotropy gives high directivity 

to the acoustic signal whose emission occurs in orthogonal directions of the cascade 

axis (Fig 2.2). Energy deposition is instantaneous, in terms of hydrodynamic scale, 

for this reason the signal has a bipolar shape in time, with a short and prominent 

compression peak followed by a longer, but weaker, rarefaction peak. In frequency 

domain it is a broadband signal whose spectrum differs depending on the distance to 

the source. The high frequency content of the spectrum, which is consequence of the 

instantaneous energy deposition, is suppressed by absorption or by the lateral spread 

of the energy deposition area, depending on the distance to the source.  

 

Fig 2.2. Illustration of the cascade produced by neutrino interaction in water and the 
directive pressure pulse generated. Typical dimensions of the implicated 
parts for acoustic detection are indicated. 
 

Fig 2.3 shows the principal characteristics of the signal which vary depending on the 

cascade extension and the energy range. The parameters considered by several 

authors to describe the signal are the peak to peak duration, Δt, the half peak 
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amplitude, Ap, and the symmetry factor, R/C, which defines the ratio of compression 

and rarefaction peak amplitude.  

Fig 2.3. Sketch of a typical acoustic signal pulse. On the left the time pattern. On 
the right the frequency spectrum. From (Niess & Bertin, 2006)  

The maximum pulse height will be proportional to the deposed energy, to the inverse 

of the square of the radial energy distribution, to the inverse of the distance and to the 

Grüneisen parameter, related with the properties of the medium. As an example, in 

Fig 2.4 the shape and spectrum of a bipolar pulse resulting from the simulation of a 

1020 eV cascade are shown, from (Graf, 2008).  

 
 

Fig 2.4. Simulated acoustic pulse for a 1020 eV shower at 1 km distance from the 
shower centre. Left: the contribution of the radial distribution for up to 1 
cm and 2 cm from the shower core and for the contribution of the whole 
shower are shown, in time domain. Right: Relative power spectrum at 100 
and 1000 m from the shower. 
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2.1.3 Underwater conditions in the Mediterranean Sea.  

Acoustic propagation depends on the environmental characteristics of the 

propagation medium, in this case, seawater. Propagation is connected fundamentally 

to two concepts: sound propagation velocity and wave attenuation. Both depend 

directly to the physical and chemical properties of the medium. In the attenuation 

process there are two different causes: on one hand, attenuation is produced by the 

geometrical spread of the beam. On the other hand, the beam is attenuated due to the 

loss of energy through absorption, which is converted into heat. The absorption 

depends on the temperature of the medium, the salinity and the pressure (depth), also 

sound velocity propagation depends on these environmental parameters. 

2.1.3.1 Attenuation 

As previously advanced, the attenuation of an acoustic beam during its propagation 

is the result of two different mechanism. On one hand, as the wave-fronts travel 

outwards from the transducer they spread over a larger area. The total energy of the 

transmission is fixed, so the intensity (power transmitted through unit area) decreases 

as the beam spreads (Fig 2.5(a)). 

In Fig 2.5 (b) it is distinguished two differentiated zones. It is known as far field the 

range, much larger than the transducer size, where the intensity varies with the range 

R according to the inverse square law: 

 0
2

I
I

R
=   (2.5) 

In the pressure case, this is inversely proportional to the range. 

 0P
P

R
=   (2.6) 
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Fig 2.5. Illustration of acoustic energy propagating away from a transducer. (a) 
Spherical spreading reduces the intensity at large ranges. (b) This causes 
the intensity of a point source to follow the inverse-square law (curve 1) at 
any range. For a finite transducer near-field effect limits the intensity near 
the face of a finite transducer (curve 2). From (Simmonds & MacLennan, 
2005) 
 

Near field is the region immediately in front of the transducer where the range 

dependence of the intensity is more complicated, also called the Fresnel zone. In the 

near field, the intensity varies rapidly with the range in an oscillatory manner. This 

occurs at ranges where the wave-fronts produced by the transducer elements are not 

parallel, a state which alters the phase relationships compared to the far field. Only 

in far field (also known as the Fraunhofer zone), where the element wave-fronts are 

nearly parallel, beam is properly formed and the inverse square law applies. If a is 

the linear distance across the transducer face, the boundary between near and far 

fields in b is approximately at the range: 

 
2

b

a
R

λ
=   (2.7) 

The other mechanism that intervenes into the attenuation process is the sound 

absorption, it is the loss of acoustic energy which converts into heat. This causes 
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exponentially decrease with the distance, r, of the amplitude pressure of a plane wave 

along the propagation path. 

 
0

rP P e α−=   (2.8) 

where α is the absorption coefficient in nepers per meter (Np/m) or in dB/m, 

/ /8.69dB m Np mα α=  . 

Several mechanisms are responsible of the absorption. In both, fresh and saline water 

there are losses due to viscosity, frictional losses. This part of the absorption is 

proportional to the square of the frequency because at higher frequencies the particle 

velocities are faster and thus higher friction losses. In seawater there are additional 

lose due to the molecular relaxation of certain compounds. For relaxation it is 

understood the pressure-induced effect of the reduction of molecules to ions which 

takes a certain time to complete. In this case, as at high frequencies the sound pressure 

cycles too quickly, the reduction does not take place and thus no energy is absorbed 

by this process. In the frequency range of 2 - 500 kHz the magnesium sulphate 

(MgSO4) relaxation dominates the absorption. At lower frequencies there is a further 

loss associated with boric acid B(OH)3.  

Although the frequency is the main variable for the absorption, it also depends on the 

water temperature and salinity. Equations for predicting the absorption coefficient at 

a given frequency, temperature, salinity and depth have been developed by diverse 

authors (Fisher & Simmons, 1977; Schulkin & Marsh, 1963). The most used is the 

one formulated by (Francois & Garrison, 1982a; Francois & Garrison, 1982b) who 

maintain that, assuming the exactly knowledge of the temperature and other 

parameters, the predicted α is within 5% of the true value. A simplified expression of 

the Francois and Garrison formula easier to evaluate is also available (Ainslie & 

McColm, 1998). Previously to these formulations a possible phase shift during the 

propagation was predicted by (Liebermann, 1948). More recently, (Niess & Bertin, 

2006) published a formulae for the complex absorption based on the predictions of 
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Liebermann and the parameterizations for the Mediterranean Sea conditions, through 

the Francois and Garrison results. Also regarding with the complex absorption, from 

the ACORNE collaboration a complex version of the Ainslie & McColm formulation 

where MgSO4 and B(OH)3  contributions are complex was proposed (S. Bevan et al., 

2009) . Fig 2.6 has been extracted from (S. Bevan et al., 2009), it shows a comparative 

study of the absorption coefficient in sea water using different equations, including a 

result in ice.  

 

Fig 2.6. Sound attenuations in sea water for the SAUND/Learned (f2 approximation, 
Niess and Bertin, Francois and Garrison, Ainslie and McColm and the 
ACORNE parameterisations). Since the Ainslie & McColm/ACORNE and 
Francois & Garrison results match very closely they are depicted as the 
same curve in the figure. The attenuation in Antarctic ice is shown for 
comparison. Inset: the phase shifts at 1 km for the two complex attenuation 
models. Plot extracted from (S. Bevan et al., 2009). 
 

In Chapters 3 and 4, results for theoretical propagations will be presented. In these 

results, the small dispersion effects over distances of several hundred of meters 

resulting from complex attenuation have not been taken account. 
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2.1.3.2 Sound speed 

As with the absorption coefficient, the sound speed c depends on the water 

temperature, salinity and depth. Since sound speed should to be determined from 

these variables, the best values are obtained using empirical formulations proposed 

by (Del Grosso, 1974) which have 19 terms, 18 of which have coefficients with 12 

significant figures each, so not much “manageable”. A simplified formula was 

proposed by (Medwin, 1975) with less than 0.2 m/s error compared with Del Grosso’s 

result for 0 < T~ < 32 ºC and 22 < Salinity ‰ < 45 for depths up to 1000 m: 

 
2 31449.2 4.6 0.55 0.00029

(1.34 0.01 )( 35) 0.016

c T T T

T S z

= + − +
+ − − +

  (2.9) 

where c is the sound speed (m/s), T is the water temperature (ºC), S is the salinity (‰, 

parts per thousand) and z is the depth (m). Years after, (Mackenzie, 1981) proposed 

a longer formula with 0.07 m/s error and with no restriction to depths less than 1000 

m: 
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  (2.10) 

These formulas ((2.9),(2.10)) have been used to obtain the sound propagation velocity 

in the ANTARES site for calculations on this work. 

Speed of sound was calculated for the ANTARES site as a function of the depth, 

taking into account the geographic position of the detector (40º 48’N 6º10’E) and the 

salinity and temperature values obtained during sea campaigns carried out in August 

of 2007 and in March of 2010. Around 100 m deep from the surface, water suffers 

seasonal temperature variations of maximally 0.5 ºC. Beyond 700 m depth, 

temperature is quite stable and independent to the season with values between 13.1 

ºC and 13.6 ºC. For this reason, near to the ANTARES site the sound channeling has 
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not significant effect. This is different at ocean situation where typically the 

uppermost kilometer of water suffers temperature decrease with depth. 

Fig 2.7. Left: temperature variation with the depth from sea surface. Right: Sound 
propagation velocity variation with the depth from sea surface. For both plots: 
measurement from the ANTARES site in August 2007 (solid blue line) and 
in March 2010 (dashed red line). Figure from (Lahmann, 2011)  

 
Fig 2.8. Ray tracing of acoustic signals for the speed of sound profile of Fig 2.7 

(summer values). It is assumed open water models with a constant depth 
(2478 m). The shaded area indicates the region from which signals cannot 
reach the receiver located 410 m above sea floor. 
 

Fig 2.7 shows the temperature variation with the depth and, as a consequence of it, 

the variation of sound propagation velocity. The stability of temperature is translated 

into a linear increase of the speed of sound with the depth. Fig 2.8 shows the paths of 
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acoustic signals. The furthest distance from which an acoustic signal originated in the 

surface can reach the AMADEUS device is about 30 km.  

2.1.3.3 Background in acoustic neutrino detection in the Mediterranean Sea 

The background noise in underwater environment can be divided in two main groups: 

ambient noise and transient signals. These, in turn, can be classified by the affected 

frequency band (See Fig 2.9).  

 
Fig 2.9. Summary of the principal background sources and the affected frequency 

band. The orange part is the most relevant one for neutrino detection. 
 

Below 200 Hz, which is not relevant for acoustic detection, the sea current and the 

turbulences are the responsible of the ambient noise. Anthropogenic sources as ship 

noise also contributes in this band. Concerning to the transients, in this frequency 

range signals from seismic activity, ships and also marine life are expected. The more 

relevant band for neutrino detection is 200 Hz to 50 kHz. Fig 2.10 shows the power 

spectral density (PSD) of the ambient noise recorded by a sensor located on the 

topmost storey of the ANTARES IL for year 2008 (Lahmann, 2011). The authors 

have used an algorithm to remove strong transient signals (mostly coming from the 

emitters of the acoustic positioning system). The relics of such signals and electronics 
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noise show up as spikes between 45 and 75 kHz. They confirm that the lowest level 

of recorded noise in situ was confirmed to be consistent with the inherent noise of the 

system recorded in the laboratory prior to deployment. The observed in-situ noise can 

be seen to go below the noise level measured in the laboratory for frequencies 

exceeding 35 kHz. This is due to electronic noise coupling into the system in the 

laboratory that is absent in deep sea.  

 

Fig 2.10. Power spectral density (PSD) of the ambient noise recorded with one HTI 
sensor on the topmost storey of the IL. Occurrence rate in arbitrary units 
(shades of grey), where dark colours indicate higher rates. Median value of 
the in-situ PSD (white dotted line) and the noise level recorded in the 
laboratory prior to deployment (black solid line). 
 

Ambient noise is dependent on the weather conditions on the sea surface, most 

especially wind activity dominates the noise level at this band. Wind activity is 

responsible of motion of the sea surface, turbulences, surface wave interactions, spray 

and cavitation. There are a strong correlation between this noise and the data of the 

weather stations in this range. Fig 2.11 Left shows the qualitatively correlation with 

the weather station at Cap Cépet located at about 35 km north-west of the ANTARES 

detector. Quantitative measurements are affected by the large distance between the 
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weather station and the ANTARES site but it can be observed a large correlation. Fig 

2.11 Right shows the noise values, relative to the mean noise over all samples, as a 

function of the time of the day. The peak observed at about 1 a. m. and 8 to 9 p. m. 

can be related with the shipping traffic in the zone.  

 
 

Fig 2.11. Left: Relative variation of the wind speed and of the ambient noise level at 
ANTARES site over the first half of 2008. Acoustic data measured on the 
topmost acoustic storey of the IL. The plot is the relative variation for better 
comparison. The values represent the daily averages divided by the yearly 
average. Right: Ambien noise in the 1-50 kHz frequency range as a function of 
the time of the day. It is shown the noise relative to the mean noise recorded 
during about two years. 

At this band (200 Hz - 50 kHz) the transient signals are generated by marine life and 

also have an anthropogenic or technical origin. Marine mammals (and other 

environmental sources) are responsible of the transient signals which constitutes an 

important background for neutrino detection. In particular dolphins whistles which 

pulse shape is very similar to the bipolar neutrino pulse. The multidisciplinary 

character of the underwater neutrinos telescopes in the Mediterranean Sea allows 

work in parallel using the acoustic data from two different optics and generating 

synergies. The acoustic monitoring of the deep sea has a large potential for 

interdisciplinary research. Marine scientist are using the acoustic data for the study 

of marine mammals (Nosengo, 2009) whose knowledge helps to understand and 

reduce this kind of background. Above 50 kHz the noise spectrum are dominated by 

the thermal motion of water molecules colliding with the sensors. 
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2.2 Calibrator for Acoustic Detection of Ultra High Energy 
Neutrinos in Underwater Telescope 

Searching for UHE neutrinos in presence of strong background of transient signals is 

a challenging task. Due the presence of this background it is necessary an efficient 

signal classification able to distinguish between transient background signals and the 

expected acoustic signals from neutrino interaction in water. During the last years, 

some works have focussed on the search of possible ways to classify acoustic signals 

produced by a neutrino interaction in presence of acoustic background (Neff, 2013). 

Simulation studies were performed to reproduce the acoustic signature of neutrino 

interaction and their propagation to the sensors within the detector. Also the transient 

background were studied. In this work, it was proposed a pre-selection scheme for 

neutrino-like signals based on matched filtering. An analysis chain consisting of 

reconstruction techniques for the arrival time, the incident direction of the pressure 

wave, and the source position of an acoustic signal was developed. In addition, a 

signal classification strategy, based on machine learning algorithms was 

implemented in the same work.  

In spite of all sensors that conform the AMADEUS system have been calibrated in 

the lab it would be desirable to dispose of a compact calibrator that “in situ” may be 

able to monitor the detection system, to train the system and tuning it in order to 

improve its performance for testing and validating the technique and also for 

determining its reliability (Ardid, 2009). Moreover, the possibility of performing in 

situ measurements of neutrino-like signals generated from a known source (a 

calibrator) during sea campaigns or even integrating the source in the neutrino 

telescope, would permit to verify the simulation results and also to improve the signal 

classification.  

An eight-hydrophone linear array (about 8 m length) has been developed by the 

Northumbria University group for the generation of emulated UHE neutrino-induced 
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pulses (Ooppakaew, Danaher, & Saldana, 2011). By means of this acoustic array, 

they pretend simulate the acoustic pulse created from a neutrino interaction in water 

generating a coherently emitted acoustic bipolar pulse. The calibrator was developed 

using signal processing methods. An eight channel PIC hydrophone array module 

was built for processing and control. A linear array simulation for the neutrino pulses 

production was performed in order to predict the shape and directivity. The 

Northumbria’s device was tested during a sea campaign in September 2011 but, due 

to technical problems, results were not conclusive (Danaher, 2012). 

In this work a different approach will be presented for a prototype calibrator for in 

situ evaluation of the acoustic detection technique. The main goal will be the 

development of an autonomous and optimized system able to reproduce the acoustic 

signal (shape and directivity) produced by neutrino interaction using the parametric 

acoustic sources technique.  

2.3 Parametric Acoustic Sources 

Parametric acoustic sources have been subject of considerable research since their 

introduction by (Westervelt, 1963) due to the rise of interest for applications in 

underwater communications. Parametric transduction offers a potential solution to 

several of the problems concerned with transmission to long range at low acoustic 

frequencies. The parametric effect occurs when two high intensity primary signals 

co-exist in the water. The nonlinear behaviour of the water results in the generation 

of sum and difference frequency components of these primary signals. The difference 

frequency component is of particular interest in underwater acoustics. This low 

frequency beam may be considered to be radiated from a virtual array of acoustic 

sources, distributed continuously throughout the water interaction region (Fig 2.12). 

In the process of conversion of the primary frequency waves to the difference 

frequency wave the source seems to be shaded exponentially, with increasing 
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distance from the transmitter. This is because of the attenuation produced by viscous 

friction and other effects in the water.  

 

Fig 2.12. Illustration of the virtual array in the water interaction region of the two 
primary beams where the parametric effect takes place. 
 

The resulting polar response is of narrow beam width, due to the aperture of the 

virtual array comprises many thousands of wavelengths. It also has the unusual but 

sometimes useful characteristic of being free of side lobes. Furthermore, the 

parametric conversion process provides great frequency agility. This is because, even 

though at the primary frequency the transducer may have only a modest proportional 

bandwidth, the parametric down-mixing process makes all this bandwidth available 

at the lower secondary frequency. In principle, this should enable parametric 

transduction to be used for high data rate communication, or for wide-band signal 

processing techniques.  
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Fig 2.13. Directivity pattern of a parametric source. (a) Primary 418 kHz, (b) Primary 

482 kHz, (c) Beam pattern of difference frequency, 64 kHz. 

The parametric generation is a cumulative process. The difference frequency wave 

grows in the source volume made of the primary waves. The Westervelt model 

exemplifies this principle by considering perfectly collimated primary beams: the 

source volume is in fine interpreted as a virtual array whose length is only limited by 

the linear absorption of the primary waves. The parametric directivity is thus 

proportional to the square root of the array length. In addition, the beam pattern is 

devoid of side-lobe. 

Since the Westervelt proposal many other models have been proposed for handling 

more realistic source distributions (Moffett & Mellen, 1977; Moffett, Mellen, & 

Konrad, 1978; Muir & Willette, 1972; Tjötta & Tjötta, 1980), i.e., by taking into 

account altogether diffraction, attenuation and saturation phenomena. In most 

applications, the width of the beams is relatively narrow all around the main axis 

(e.g., sub-bottom profilers). The paraxial approximation is thus convenient to model 

such transmitters. In the underwater domain, a classical application of parametric 

transmission is sub-bottom profiling: due to the large attenuation, only low frequency 

waves can penetrate the sediments; but narrow beams are also required to improve 
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the profile resolution. Recent projects have studied the feasibility to detect buried 

objects by means of high resolution imaging. The idea is to combine the parametric 

transmission and the synthetic aperture sonar techniques. The parametric beam must 

be narrow in one direction to achieve the required resolution in elevation, and 

sufficiently large in the perpendicular direction to perform the synthetic aperture 

process. The paraxial approximation is then no longer sufficient to model the 

parametric projector.  

Most of the work cited till here has been directed toward what may be called the 

steady-state, or narrow-band, version of parametric source wherein two discrete 

primary-frequency components of equal amplitude interact in a nonlinear acoustic 

medium to form a difference-frequency component. Parametric generation can also 

be reached using transient, or broad-band, signals (Moffett & Mello, 1979). In this 

reference authors discuss the transient parametric source in which a modulated 

primary beam generates a transient signal related to the modulation envelope. For 

example, a primary beam consisting of a single high-amplitude pulse generates a 

secondary transient signal that can be associated with the up and down parts of the 

primary pulse. The transient version of the parametric array is sometimes referred to 

as self-demodulation because the result is similar to the demodulation of the original 

signal. The transient parametric array is a generalized form of the steady-state array. 

The latter is the result of a typical modulated waveform: 

 ( )0 0 0cos cos 2sin sin
2 2 2

t
t t t

ω ω ωω ω ω     − − + =     
     

  (2.11) 

Where ω0 is the primary frequency and ω is the parametric desired signal. Which is 

the same of a carrier frequency ω0 modulated by an envelope of the form: 

 ( ) sin
2

t
E t

ω =  
 

  (2.12) 
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Theory for parametric transient sources is based on the Westervelt formulations. 

Following (Moffett & Mello, 1979) the pressure distribution along the axis for a 

secondary beam generated parametrically emitting transient signals follows: 

 
22 2

4 2
( , ) 1

2 16

B P S x
p x t f t

A c x t cπρ α
∂     = + −    ∂    

  (2.13) 

In this equation ( )1 2B A+  is the non-linear parameter of the medium, the values A 

and B are the coefficients of the first and second order terms of the Taylor series 

expansion of the equation relating the pressure and the density of the medium. For 

seawater is about 5.25 at 20º temperature and 35 ‰ salinity conditions (Hamilton & 

Blackstock, 1998). Where S is the area of the transducer surface, ρ, c are the density 

and the sound velocity in the medium respectively, α is the absorption coefficient of 

the medium. P is the pressure amplitude of the primary signal and ( )f t x c−  is the 

envelope of the primary transient signal which modulates the primary frequency. It 

is remarkable the temporal dependence of the parametric signal with the second time 

derivative of the square of the envelope function. This could be useful in order to 

design primary transient signals which generate parametric signals with a pre-

determined characteristics. The pressure distribution out of the axis can be described 

by the next equation, in this case it follows the first time derivative and takes into 

account the angular distance to the axis: 

 
222

2
( , , ) 1 sin

2 16 2

B P S x
p x t f t

A c x t c

θθ
πρ α

− ∂       = + −      ∂      
  (2.14) 

In both situations, steady-state and transients, the main disadvantage of parametric 

transduction is its low-power conversion efficiency, which is usually less than 1%; 

that is, equivalent to at least 20 dB of power loss. The low-power conversion 

efficiency may be offset, for long distance transmission, by the lower attenuation at 

the secondary frequency. Despite this, parametric acoustic source technique has some 
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properties that result very interesting to be exploited for the development of an 

acoustic calibrator for neutrino detection: 

a. It is possible to obtain narrow directional patterns at small overall 

dimensions of primary transducer. 

b. Absence or low level of side lobes in a directional pattern on a difference 

frequency. 

c. Provides broad band of operating frequencies of radiated signals. 

d. Since the signal has to travel long distances, primary high-frequency signal 

will be absorbed. 

For all these reasons, and some more detailed in the next section, this technique could 

be interesting for the development of an acoustic compact calibrator. 
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3 
Evaluation of the 

Parametric Technique for the 
Compact Acoustic Calibrator

In this Chapter a set of different experiments performed in order to validate and 

evaluate the parametric technique is described. These experiments follow an 

ascending trajectory, in terms of application of the technique and adaptation to the 

final goal: to apply it in the design of a compact calibrator able to mimic the acoustic 

signature generated for the UHE neutrino interaction in water. For this, as first 

approximation, a simple experiment using planar transducers was the starting point. 

The next step was the incorporation of the cylindrical symmetry in emission and the 

study of the ability to control the shape of the parametrically generated signal. To 

finish these first steps, a possible array configuration of cylindrical transducers was 

evaluated. The results and conclusions of these primary tests are detailed in this 

Chapter.  

3.1 Planar Transducers 

Initially, drawing on the work of (Ardid et al., 2009), studies and experiments were 

done with the aim of understanding the parametric generation and evaluating the 

feasibility of this technique in the generation of the particular acoustic neutrino 
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signature. In this first stage a simple configuration using planar transducers as 

emitters in a controlled laboratory environment was chosen. The aim of this study 

was to evaluate the technique and setting the basis for a first design of the calibrator 

using parametric generation. 

3.1.1 Experimental Setup 

First test was performed in the Ultrasonic’s Laboratory of Escola Politècnica Superior 

de Gandia (EPSG). The experimental setup follows the classical scheme of 

confronted emitter and receiver transducers into a water tank of 1.10 x 0.85 x 0.80 

m3 volume. Two fixed planar transducers TC3027 and TC3021 (Teledyne 

RESON©), with resonance frequencies of 1 MHz and 2 MHz respectively, were used 

as emitters. It was used a digital function generator PCI-5412 (14 bits, 100MS/s, 

National Instruments©) and a linear 55 dB RF amplifier ENI 1040L (ENI, 

Rochester©) to fed the emitter.  As a receiver a TC4014 (Teledyne RESON©) 

hydrophone mounted on a micropositioning system LF-5-DC (MICOS GmbH©) with 

a precision better than 0.1 mm was used. This transducer is an omni-directional, 

broad-band spherical hydrophone with flat frequency response below 400 kHz and 

sensitivity around -186 dB (ref. 1V/µPa). Above 400 kHz the sensitivity decreases 

with the frequency but it is still enough sensitive to detect primary beams at 1 and 2 

MHz. For parametric studies this sensitivity pattern results very convenient by the 

fact that it is enough sensitive to primary frequencies, allowing an easy and fast 

alignment of the system, and, on the other hand, it is more sensitive and has a flat 

range in the region where the parametric signal is expected. For the digitalization of 

the received signals NI PCI 5102 (8 bits, 20 MS/s, National Instruments©) was used. 

Fig 3.1 shows a schematic view of the experimental setup and the instrumentation 

that comprises it. 



3. Evaluation of the Parametric Technique for the Compact Acoustic Calibrator 

 

67 

 
Fig 3.1. Experimental set-up 

3.1.2 Methods, Analysis and Results 

The goal of this study was to prove that it is possible to reproduce acoustic neutrino-

like signals through the parametric effect. For this purpose the main characteristics 

of the acoustic neutrino signal, shape in time and directivity, were evaluated as well 

as the non-linear behaviour of the parametrically generated signal.  

Applying the knowledge in transient parametric sources (Moffett & Mellen, 1977) 

the signal shape for emission which parametrically generates a bipolar pulse was 

calculated following the Eq.(2.13). Following this equation, it is concluded that the 

waveform of the secondary parametric beam is related with the second time 

derivative of the primary beam envelope. As the objective is generating a bipolar 

pulse, is easy to conclude that the envelope of the primary beam could be the integral 

of a Gaussian function, which will be parametrized by the Error Function. 
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Fig 3.2. Top: Signal used for emission (1 

MHz emitter). Bottom: Received 
signal (black line) and bipolar signal 
obtained after applying the low-pass 
filter (blue line) 

For instance, Fig 3.2 top, shows the 

waveform used to feed the 1 MHz 

emitter before amplification (after 

amplification the peak amplitude used 

was around 120 V). On the bottom figure 

the received signal is shown, the primary 

signal is clearly visible at first sight 

(solid line). To distinguish better the 

parametric signal a low-pass 

Butterworth filter (200 kHz, 10th-order) 

was applied. Filtered signal is shown by 

the dashed line, where the bipolar signal 

is clearly seen. Considering that the 

sensitivity of the receiver at 1 MHz was 

29 dB lower than the sensitivity for low 

frequency, the pressure amplitude of the 

bipolar signal in the water tank would be 

in the [0.1-1%] range of the amplitude of 

the received signal (primary beam). As 

expected, the shape of the bipolar signal 

was following approximately the second 

time derivative of the envelope of the 1 

MHz modulated signal.

 

In order to make sure that the secondary beam has a non-linear behaviour, the 

amplitude of the parametric signal, as a function of the voltage applied to the 

transducer, was measured. Fig 3.3 shows the amplitude behaviour of the received 

signal, without filtering (main component is the 1 MHz, primary beam) and with the 

low-pass filtering (basically the parametric bipolar signal, secondary beam). Linear 

behaviour is observable for the amplitude of the primary beam. Whereas, for the 

secondary received signal (parametric bipolar signal) the amplitude behaviour is 
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proportional to the square of the amplitude of the input signal, showing the non-

linearity of the effect. 

 
Fig 3.3. Amplitude of the received (primary beam) and filtered (bipolar, secondary 

beam) vs amplitude of the input signal. 
 

The directivity of the parametric generation was measured and compared with the 

directivity of the transducer emitting the primary beam. The directivity patterns were 

measured in a perpendicular plane to the emission axis with a distance between 

emitter and receiver of about 80 cm, see Fig 3.4 (left). In order to compare both 

directivities (primary and secondary beams) data have been normalized to the 

maximum value in each case. In absolute numbers, the amplitude of primary beam is 

approximately 300 times larger than the amplitude of the secondary beam. Notice 

that, although the spectral content of the parametric signal (<200 kHz) is completely 

different to the primary one (1 MHz), both beams have a similar directivity pattern. 

To complete the tests with planar transducers, the amplitude dependence of the 

primary and secondary beams with the distance between the emitter and the receiver 

was measured along the radiation axis (Fig 3.4 right). As expected, pressure 

amplitude of primary beam decreases with the inverse of the distance. However, there 

is a softer decrease in the case of the parametric signal. These measurements are 

compatible with a decrease with the inverse of the square root of the distance. 
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Fig 3.4. Directivity patterns (left) and distance dependence (right) of the primary and 

secondary (parametric) beams. 
 

According to the results obtained in the study of the parametric generation technique 

using planar transducers it seems, a priori, possible to generate neutrino-like acoustic 

signals using this method. Following the bases on parametric generation and taking 

into account these results, as first approximation, it is possible to obtain directive low 

frequency beams with small transducers (high frequency transducers), which could 

be very convenient to reproduce the pancake directivity with few sources in a 

compact design. 

3.2 Cylindrical Transducers. 

Next step was an extension of the previous studies (Planar Transducers). In this case, 

evaluating the parametric acoustic source technique dealing with the cylindrical 

symmetry and studying the capability to control the shape of the parametrically 

generated signal (Ardid et al., 2012). Although the theory behind it is the same, to 

achieve the cylindrical symmetry is, in practise, a challenge due to the larger 

geometric attenuation, the scarcity of transducers available for it, and the lack of 

experiences and literature in the use of the parametric acoustic sources effect for 

transient signals by cylindrical transducers. In the next sections the experimental 

setup, the different studies performed and the analysis results are described. 
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3.2.1 Experimental Setup 

As previously indicated, one of the novelties in these tests was the use of cylindrical 

emitter. A commercial Free Flooded Ring (FFR) transducer SX83 (Sensortech©) was 

selected as emitter.  

 
Fig 3.5. a) Transmitting voltage response. b) FFR SX83. c) Directivity pattern. d) 

Electrical admittance. 
 

The FFR transducers have ring geometrical form maintaining the same hydrostatic 

pressure inside and outside the ring so reducing the change of properties of the 

piezoelectric ceramic under high hydrostatic pressure. For these reasons they are a 

good solution to the deep submergence problem (Sherman & Butler, 2007). The FFR-

SX83 is an efficient transducer that provides reasonable power levels over wide range 
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of frequencies, and deep ocean capability. Its radiation pattern is omni-directional in 

the perpendicular plane to the ring axis, while the directivity in the other planes 

depends on the cylinder height, 5 cm (11.5 cm diameter). It presents a main resonance 

peak at 10 kHz and a secondary one at 380 kHz (Fig 3.5 d). The versatility in the 

frequency work range of this transducer allows designing a device able to carry out 

several acoustic-related tasks in an underwater neutrino telescope, this point will be 

extended in Chapter 4, section 4.2. 

 

The experiment was carried out in the same Laboratory, confronting emitter and 

receiver transducers in a water tank (1.10 x 0.85 x 0.80 m3). The transducer was fed 

using a function generator PCI-5412 (National Instruments©) and a linear RF 

amplifier 1040L (55 dB, ENI©). To measure the acoustic waveforms a spherical 

omni-directional hydrophone ITC-1042 (International Transducer Corporation©) 

connected to a conditioning charge amplifier CCA 1000 (Teledyne RESON©) and a 

digitizer card PCI-5102 (National Instruments©) were used as receiver system. With 

this configuration the receiver presents an almost flat frequency response below 100 

kHz with a sensitivity of about -180 dB, whereas it is 38 dB less sensitive than at 380 

kHz. The election of the receiver system was motivated to be much more sensitive to 

the bipolar pulse (<100 kHz), generated parametrically, than to the primary beam 

(380 kHz). A three-axis micro-positioning system LF-5-DC (MICOS GmbH©) was 

used to move the receiver in three orthogonal directions with a nominal accuracy of 

10 μm. All the signal generation and acquisition process was conducted by a National 

Instruments PCI-Technology controller NI8176, which also controls the micro-

positioning system.  
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Fig 3.6. Left: Receiving voltage response (sensitivity) of the ITC-1042 + CCA1000 
set using the measurement configuration (10 kHz, 10 nF, 20dB). Right top: 
CCA1000, bottom: ITC-1042. 

3.2.2 Methods, Analysis and Results 

With the aim to analyse the capability of controlling the shape of the parametric signal 

generated in the medium, measurements using different emitted signals were 

performed. Starting from the default bipolar signal given by the integral of a Gaussian 

function with a sigma of 5 µs, the envelope function f(t-x/c) was calculated by 

integrating twice the expression. The shape of this signal was modified either using 

a different sigma (in the Gaussian function): 2.5, 5, 10 or 20 µs, or by separating the 

positive and negative parts of the bipolar pulse adding a constant amplitude cycles in 

the middle of the signal with lengths: 0, 5, 10, 20 or 50 µs. Fig 3.7 shows some of the 

signals used for emission.  
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Fig 3.7. Examples of different signals used for emission to study the shape 

dependences of the secondary parametric bipolar pulse. Left: the default 
signal with 5 μs sigma. Centre: signal with 10 μs sigma. Right: signal with 
5 μs sigma and with 50 μs length of constant amplitude in the middle. 

 

The received signals were, in general, a mix of the primary beam at 380 kHz (main 

component) and the secondary signal produced by parametric effect. In order to 

distinguish these components, a band pass filter ([250 - 450] kHz) was applied for 

the primary beam, whereas a band pass ([5 - 100] kHz) filter was used for the 

secondary parametric beam. Fig 3.8 shows some examples of received signals, 

primary and secondary beams. An interesting parameter for this study is the time 

separation between the maximum and minimum of the signals, δt. As expected, δt 

increases with the sigma used, from 7-8 µs (for 2.5 and 5.0 µs sigma) to 10-11 µs (for 

10 and 20 µs sigma). With respect to the constant amplitude added in the middle of 

the signal, for small lengths it results in a moderate increase of δt, but no clear 

separation between positive and negative parts is observed. However if the length is 
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very large (50 µs), this separation is clearly observed, as shown in Fig 3.8 (right). 

Therefore, from this study can be concluded that the shape of the parametric signal 

is, approximately, the second time derivate of the primary signal envelope, so there 

are some different possibilities to control the parametric signal generated. 

 
Fig 3.8. Received signals (gray), primary beam (black) and parametric secondary 

beam, i.e. bipolar signal (blue) for the emitted signals shown in Fig 3.7. 
Bipolar signal (blue) has been multiplied by a factor of three for a better 
visual comparison. The maximum and minimum of the bipolar signal used 
to calculate δt and δV are highlighted (orange). Notice that for the last 
signal, the constant amplitude between the rise and fall of the primary beam 
results in a separation of the positive and negative parts of the bipolar pulse.  

 

As in previous section using planar transducers, the parametric generation in function 

of the emitted amplitude has been studied comparing the amplitude (peak-to-peak, 

δV) of the primary and secondary beams. From theory, a linear relationship for the 

primary beam and a nonlinear behaviour of the secondary beam (proportional to the 

square of the amplitude of the input signal) is expected. Fig 3.9 (left) shows the results 

of this study using the default signal, that is, the short signal with 5 µs sigma. Fitting 

the data to potential functions shown that the exponent for the secondary beam is 

twice the exponent of the primary beam, which agrees with theory. However, the 

exponent for the primary beam is slightly below one. The reason for this deviation is 

probably due to saturation effects in the transducer part.  
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Fig 3.9. Left: Normalized amplitude of the received primary beam and the secondary 
(bipolar) signal as function of the input amplitude to fed the transducer. Right: 
Amplitude dependence with the distance of the primary and secondary 
(parametric) beams. The results of the data fits are also shown in both plots. 

 

The dependence of the parametric signal with the distance from the transducer has 

been studied evaluating the decreasing amplitude of the primary and secondary 

beams in function of the distance (at 0 degrees, that is, aligned emitter and receiver). 

Results of this study using the default signal can be observed in Fig 3.9 (right). 

Potential functions have been fitted to the data with good agreement. For the primary 

beam, it is expected an exponent of -1 for an omni-directional (spherical) transducer, 

and -0.5 for an ideal non-diverging cylindrical transducer. Since the FFR SX83 

transducer is cylindrical, but it is clearly diverging, the value of -0.84 seems 

reasonable. For the secondary beam it was expected a significantly smaller exponent 

since parametric generation is being produced in the medium, at least for small 

distances. At distances of about 1 m, the amplitude of the bipolar pulse is two orders 

of magnitude lower than the amplitude of the primary beam. However, considering 

the attenuation and the higher absorption at high frequency, at distances larger than a 

few hundred meters the bipolar pulse will be dominant. Therefore, for the application 

in underwater neutrino telescopes, it can be considered a ‘clean’ technique.  

As it has already been highlighted in previous sections, the main advantage of using 

the parametric technique is the possibility of having broadband low-frequency 
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directive beams, which is an essential aspect to have bipolar signals with ‘pancake’ 

directivity. To finalize these tests the directivities obtained for primary and secondary 

beams have been compared. The results using the default signal are shown in Fig 

3.10. It can be observed that, despite the differences in the spectral content, both, 

primary and secondary beams have similar directivity patterns. 

 
Fig 3.10. Directivity pattern of the primary beam and the secondary beam measured 

in the water tank at 60 cm distance between emitter and receiver. 
 

The laboratory tests performed to understand the control of the bipolar shape 

(secondary parametric beam), the studies about amplitude dependence of secondary 

beam with the voltage applied to feed the transducer, also its dependence with the 

distance to the emitter, as well as, the measurement of the directivity pattern show 

that the acoustic parametric sources technique is a promising tool that could be used 

to generate neutrino like signals with good directivity using a cylindrical transducer 

(or a compact array with a few of them).  

To verify the previous studies over longer distances, a new study using the same 

emission-reception systems but now submerged in a larger pool (6.3 x 3.6 x 1.5 m3) 

was performed in order to obtain the dependence of the pressure level as a function 

of the distance. It was also compared the directivity patterns with 2.3 m distance 

between emitter and receiver. Fig 3.11 summarizes the results of these studies. On 
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the left (distance dependence amplitude plot) a different behavior is observed 

between both, being a clear evidence of the generation of the secondary bipolar pulse 

by the parametric acoustic effect. Again, despite the differences in the spectral 

content, both, primary and secondary beams present similar directivity patterns. 

Fig 3.11. Amplitude of the primary and secondary signals as a function of the 
distance and directivity pattern for both beams. Normalization values (a) 
Primary beam: 166 kPa, Secondary beam: 200 Pa; (b) Primary beam: 27 
kPa, Secondary beam: 80 Pa. 

 

Finally, to estimate the effect of the propagation on the bipolar parametric signal, the 

received signals of the experimental measurements, performed using single 

cylindrical transducer in the pool, have been extrapolated to longer distances (on the 

km range). For this purpose, an algorithm that works in the frequency domain and 

propagates each spectral component considering the geometric spread of the pressure 

beams as 1/r and its absorption coefficient (S. Bevan et al., 2009; Francois & 

Garrison, 1982b) has been developed (Fig 3.12). The propagation code starts from 

the registered signal (Rx) (by the receiver ITC-1042+CCA-100) in time domain. 

From the received signal in frequency domain, and knowing the receiver sensitivity, 

the pressure amplitude of each spectral component is obtained and also the pressure 

amplitude at 1 m from the source. From there, each spectral component is propagated 

considering its absorption coefficient in the propagation medium. For this study, the 
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propagation was simulated for the sea conditions in the ANTARES site, Table 3.1 

and Fig 3.13 contains the values of the different parameters used for the propagation 

simulation. 

 

Fig 3.12. Schematic view of the propagation algorithm 

 

Fig 3.14 shows the results of propagating the received signal (registered at 2.3 m 

distance E-R) over the propagation axis of the emitter. In this plot, no filter has been 

applied, the propagation medium acts as a natural filter. High frequencies of the 

primary beam are absorbed and, at km range, only low frequencies remain. From the 

theoretical propagation can be extracted that for a single element, it is expected to 

have a bipolar pulse with a 40 mPa amplitude peak-to-peak at 1 km, approximately.  
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Sea conditions ANTARES site 

Depth (m) 2200 

Sound Speed (m/s) 1541.7 

Salinity (o/oo) 38.5 

Temperature(ºC) 13.2 

pH 8.15 
 

 
Table 3.1. See conditions 

in the ANTARES site used 
for the signal propagation. 

Fig 3.13. Sound absorption coefficient in 
the ANTARES site. 

 

 
Fig 3.14. Signal obtained by the propagation of the received signal to distances 

beyond 1 km. Notice that received and propagated signal are shown in 
different units. 

 

A possible drawback of the system is that the parametric generation is not very 

efficient energetically, but since bipolar acoustic pulses from UHE-neutrino 

interactions are weak, they can be afforded having reasonable power levels of 
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primary beams. Considering an array configuration, with three elements fed in phase, 

it is expected to have 0.13 Pa amplitude peak-to-peak, which is a good pressure 

reference for neutrino interaction calibration of the 1020 eV energy range (S. Bevan 

et al., 2009). Therefore, with the goal of reproducing the ‘pancake’ directivity, to 

cover long distances and improving the signal level of the non-linear beam generated 

in the medium, a three elements array configuration has been proposed as possible 

solution.  

3.3 Array Configuration Evaluation. 

Once the single cylindrical transducer had been characterized for bipolar pulse 

generation using the parametric technique, all the required inputs, for designing an 

array able to generate neutrino-like signals with ‘pancake’ directivity (with an 

opening angle of about 1°), are available. It is intended to obtain a more energetic 

and directive bipolar pulse by the interaction, at long distances, of the parametric 

beam generated for each element of the array. Fig 3.15 shows an example of the 

results for calculations performed by summing the contributions of different sensors 

for far distances at different angles. In this example, a linear array of 3 elements with 

20 cm separation from each other could be enough to obtain an opening angle of 

about 1°. 

Finally, to prioritize the handling by a compact design, an array composed by 3 FFR-

SX83 transducers with a distance between centers of 7.5 cm, having the active part 

of the array a total height of about 20 cm, was proposed and tested. The three elements 

are maintained in a linear array configuration by using three bars with mechanical 

holders as is shown in Fig 3.16. In a primary stage the bars can also help to hold the 

array and orientate it in the tests. 
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Fig 3.15. Pressure signal obtained at different angles for a three-element array. 

 

Measurements for the array characterization were performed in an emitter-receiver 

configuration using a pool of 6.3 m length, 3.6 m width and 1.5 m depth. The emitter 

array, which was 70 cm depth, was fed using a function generator PCI-5412 (National 

Instruments©) and a linear RF amplifier 1040L (55 dB, ENI©). To measure the 

acoustic waveforms a spherical omni-directional hydrophone ITC-1042 

(International Transducer Corporation©) connected to a conditioning charge 

amplifier CCA 1000 (Teledyne RESON©) and a digitizer card PCI-5102 (National 

Instruments©) were used as receiver system. With this configuration the receiver 

presents an almost flat frequency response below 100 kHz with a sensitivity of about 

-180 dB, whereas it is 38 dB less sensitive at 380 kHz. The larger sensitivity at lower 

frequencies is very helpful to better observe the secondary beam. 
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Fig 3.16. Photography of the array during the initial tests and geometric configuration 
of the array. 
 

For these tests emitter and receiver were aligned and positioned manually with cm 

accuracy, which is enough for these purposes. The results obtained for the array tests 

are summarized in Fig 3.17. An example of a received signal (4.45 m) and the primary 

and secondary beams obtained after applying the bandpass filters (the secondary 

beam has been amplified by a factor of 3 for a better observation) are shown in Fig 

3.17 Left. It is possible to see how the reproduction of the signal shape is achieved 

agreeing the results expected from theory and previous observations for a single 

element. The amplitude of the primary beam is less than in the single element test 

because the same linear RF amplifier 1040L (55 dB, ENI©) was used to feed the 

array of three elements, with the consequent power distribution and impedance 

change, resulting in lower feed tension for each transducer. Fig 3.17 Right shows the 
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directivity pattern measured at a longitudinal line defined by the array axis. The 

directivity measurements were performed with a 2.7 m separation between the array 

and the receiver. It is worth to mention that for the secondary beam the Full Width 

Half Maximum (FWHM) in the array configuration is about 7° (σ=3º) , for a single 

element the FWHM was about 14° (σ=6º). Moreover, the pattern for the array should 

be a little more directive for far distances since the signals of the three elements will 

be better synchronized.  

Fig 3.17. Left: Example of a received signal and the primary and secondary beams 
obtained after applying the band-pass filters (the secondary beam has been 
amplified by a factor 3 for a better observation). Right Directivity patterns 
of primary and secondary beam emitted with the array. 
 

The same propagation exercise (Section 3.2.2) was carried out with the signals 

emitted with the array. Fig 3.18 shows the results of the propagation. It is possible to 

observe that, despite the primary beam is dominant at short distances, the secondary 

beam is larger for long distances due to the lower absorption. 
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Fig 3.18. Signal obtained by the received signal (Fig 3.17a) propagation. Notice that 

the received and the propagated signal have different magnitude orders. 
 

As previously indicated, the amplifier used is not very efficient to feed the three 

elements together due to a mismatch of electrical impedances and, therefore, each 

transducer provides a lower pressure beam. Thus, for the final array system, is it 

essential to work in parallel on electronics and have a dedicated amplifier for each 

transducer.  

 

In the next chapter the work in the compact array design and its specific electronics 

for the feeding and operation will be detailed.
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4 
Prototype of the Versatile 

Compact Array

In this Chapter the design of the compact array calibrator prototype is presented. In 

the following sections the philosophy of the design, construction details and tests 

performed will be described. Finally, the status and some ideas for a possible second 

prototype will be argued. 

4.1 Design philosophy 

The aim of this work is the design of a compact transmitter for the calibration of 

acoustic neutrino detection arrays. The transmitter must be able to generate neutrino-

like signals to check and train the feasibility of the UHE neutrino acoustic detection 

technique. As detailed previously, the use of parametric techniques presents good 

results to generate the bipolar directive pulse. The only drawback could be the low 

efficiency of the technique, but since bipolar acoustic pulses from UHE-neutrino 

interactions are weak, they can be emulated with reasonable power levels of the 

primary beams. For this first prototype, the detection threshold (20 mPap) of the 

AMADEUS system has been adopted as amplitude pulse limit. The positive results 

of the tests performed with the cylindrical transducer FFR-SX83, the fact that it can 
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work in two frequency ranges (Section 4.2) and its great robustness to work at deep 

Sea were determinant to choose it for the prototype. In particular, to deal the 

amplitude and directivity requirements, a set of three FFR-SX83 was proposed. The 

array disposition enhances the parametric beam. At long distances, the result of the 

interaction of the three parametric pulses, will be a more directive and energetic one. 

Moreover, it should be a compact transmitter which facilitates its handling during a 

Sea campaign or, in a future, to be integrated in underwater telescopes.  

In the following sections some aspects that need to be dealt and solved will be 

detailed. Starting with the mechanical design of the array, including the assembly of 

the transducers in array and the required anchors to handle it during a Sea campaign. 

Special attention require the anchors design and the Sea campaign strategy. Due to 

the high directivity of the bipolar pulse is crucial to be able to orientate the emitter to 

the receivers for having a successful Sea campaign. For this reason rotating anchor 

plus a location register system (Section 4.4.2) and a test strategy have been designed 

to handle the transmitter from a vessel. The developed register system helps to 

orientate the emitter to a known receivers location and also generates a log with the 

position of the emitter and the current time of each emission. All of this information 

is essential during the post-processing tasks. 

The versatility of the transducers that compose the array plays an important role in 

the test strategy, being possible tagging the parametric emission of the bipolar pulse 

by the emission of non-directive signals after and before of the bipolar directive pulse, 

and also by emitting long directive parametric signals which are easier to detect.  

Dedicated electronics (Section 4.4.1) to drive the array of acoustic sensors, able to 

generate and amplify the signals in both different frequency ranges, is being 

developed to have an optimized system. For parametric generation, due the low 

efficiency of the effect and the little impedance at high frequency, this is very 

challenging.  
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4.2 Transducer versatility 

The characteristics and benefits presented by the FFR-SX83 to be selected for an 

array prototype are listed in the previous Chapter (section 3.2.1). In particular the 

cylindrical geometry of the transducer is sought so that the emissions are as close as 

possible to that produced by the hadronic shower. The versatility in the frequency 

range of the selected transducer (FFR-SX83) opens up the possibility to carry out 

different tasks with the same device. Although the primary application of this 

transmitter is to generate the acoustic signature of a neutrino, the possibility of 

working in two frequency ranges (~5-20 kHz and ~400 kHz) allows the system to 

carry out several acoustic-related tasks in an underwater neutrino telescope: the 

aforementioned acoustic detection calibration, receivers calibration and emitters 

monitoring of an acoustic positioning system and even acting as transceiver for such 

a system. Certainly, this could reduce the overall costs of the necessary calibration 

systems and facilitates the deployment and operation in the deep sea.  

Another benefit to work in the two operation modes is the possibility to tag the bipolar 

pulse emissions when the array is used as acoustic detection calibrator, this could be 

essential during a Sea Campaign. The detection of this weak directive signal, emitted 

from a boat, by the AMADEUS system several kilometres away is very challenging. 

For this reason, a measurement strategy has been developed taking into account the 

array versatility. A three step calibration (Fig 4.1) is foreseen, increasing 

progressively the difficulty. Firstly, a long broadband low frequency non directive 

signal (sweep signal for example) can be emitted. Since it is directly emitted (not by 

parametric generation) it could be of high amplitude. Moreover, as it is a low 

frequency signal, the attenuation will be small and it will be non-directive, so the 

orientation should be easy. In addition it has broadband, so processing techniques (as 

cross-correlation) could be applied. For all of this it should be quite easy to detect it. 

In a second step, a long parametric signal could be emitted. Incorporating the 

directivity challenge and dealing with higher frequencies, i.e., due to the low 
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efficiency of the parametric effect and as absorption consequence, lower amplitudes. 

In this second step and, despite the difficulties due to the amplitude of the received 

signal, it could be still taken the advantage of processing techniques. Finally, the 

parametric bipolar signal, that is transient and directive, could be emitted. The 

emission of the last one might be tagged, that is preceded and followed by signals of 

the previous modes. In this way it will be easier to look for the bipolar signal during 

the post processing, looking at the correlation peaks of the received signal and the 

known expected tag signals. 

 
Fig 4.1. Diagram of the three step calibration strategy.  

The transducer was tested using these long broadband signals. This kind of signals 

can be used in both modes of operation: generated directly at low frequency, or 

generated parametrically at 400 kHz. Fig 4.2 shows some tests with a parametric 

sweep (400 kHz signal modulated by a 10-50 kHz sweep signal). Using this signal it 

is possible to obtain a low frequency sweep signal from parametric generation, which 

is highly directive. On the left side of the figure, it is shown the emitted signal (top) 

and the expected parametric signal (signal to be used for the cross-correlation) 

(bottom). On the right, the received signal (top) and the signal obtained after 
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correlation (bottom) are shown. The main peak in the correlated signal indicates the 

time of detection. Knowing the sound velocity it is easy to determine the emitter-

receiver distance (this will be the reference peak in positioning tasks), the remaining 

peaks are due to reflections on the pool walls and on the surface. The time for the 

different peaks agrees with the geometric dimensions of the setup. The measurements 

were made in a pool of 6.3 m length, 3.6 m width and 1.5 m depth. A FFR-SX83 

transducer was used as emitter, and the receiving hydrophone used to measure the 

acoustic waveforms was a FFR-SX30 (Sensortech©). The distance between emitter 

and receiver was 4.3 m. The following DAQ system was employed for emission and 

reception. To drive the emission, a 14-bits arbitrary waveform generator PXI-5412 

(National Instruments©) was utilized with a sampling frequency of 10 MHz. A linear 

RF amplifier (1040L, 400W, +55 dB, Electronics & Innovation Ltd. ©) was handled 

to amplify the emitted signal. For the reception, an 8-bit digitizer PXI-5102 (National 

Instruments©) was used with a sampling frequency of 20MHz. 

 

Fig 4.2. Emitted and received signal for the parametric sweep test. The correlated 
signal is the result of correlation between parametric expected signal and 
received signal. 

Fig 4.3 shows the result of a comparative directivity study of the different signals 

used: Sweep signal from 5 kHz to 25 kHz (low frequency signal), parametric sweep 
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signal, i.e. 400 kHz signal modulated by a 10-50 kHz sweep signal (the low frequency 

directive signal is generated parametrically in the medium), and a bipolar pulse 

generated parametrically (transient and directive signal). Both parametric signals 

have a clear directive pattern whereas the direct sweep signal is non-directive since 

the transducer is not directive for low frequencies. The results must be taken with 

caution due to the geometric limitations of the tank, especially for the sweep case. 

For this case, since the receiver hydrophone is not a directive transducer and the tests 

were done using long emitted signals, the reflections on the bottom and on the water 

surface might affect the correlation results. The different behavior of parametric and 

non-parametric signals is evident, however. The possibility of having different kinds 

of signals will allow to perform different kind of calibrations and/or to do calibration 

in different steps. 

 
Fig 4.3. Directivity comparison of the three different kind of signals generated with 

the selected transducer. These signals are proposed for the different steps 
of the strategy for a Sea Campaign. 

4.3 Mechanics 

For the prototype, the transducers have been fixed around an axis using flexible 

polyurethane (EL110H, Robnor resins Limited©) as assembly material. This 

polyurethane offers water resistance and electrical insulation for high frequency and 

high voltage applications due to the nature of the cured polymer. EL110H also 
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provides excellent resistance to thermal and mechanical shock and may be used in 

applications to –55°C. Fig 4.4 shows the compact array prototype.  

  

Fig 4.4. Constructional drawings and photo of the array with the holding system. 
Dimensions in mm.  

Its compact design is remarkable, with an active surface length of about 20 cm. A 

holding system was designed with the aim to test the prototype in a Sea campaign, 

therefore, to be operated from a vessel. The perforated ring shown in Fig 4.4 (top-
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left) is the piece that holds the array to a fastening structure which, in turn, acts as a 

rudder and allows to rotate the device around a perpendicular axis to the geometrical 

array axis. The last item is significant due to the high directivity of the bipolar pulse. 

It is very important to be able to orientate the emitter to the receivers. Fig 4.5 shown 

a simulated view of the array operated from a vessel and supported with the fastening 

structure. 

 
Fig 4.5. Artistic view of the array operated from a boat during a Sea campaign 

calibration. 

The designed fastening structure was built by Mediterraneo Señales Marítimas S.L 

and facilitates operating the device from a vessel besides offering control of the 

rotation angle. This structure is composed of two differentiated parts. On the one hand 

the head (Fig 4.6), that ensures the device to the boat and enables the management of 
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the rotation through its rudder. On the other hand the modular arm, that allows 

immerse the device up to 20 m deep. The mechanical arm is modular in steps of 3 m, 

so it is possible select the depth by adding more or less 3 m arms (6 in total) to the 

head of the structure. 

 

 

 

 

Fig 4.6. Constructional drawings of the head of the fastening structure. Real view 
of the rudder is shown in the perspective view. Dimensions in mm. 
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4.4 Electronics 

4.4.1 Electronic Emission Board 

The final goal in the development of the compact calibrator is building an 

autonomous and optimized system. For this reason, it was necessary to work on the 

associated electronics of the acoustic array able to generate and amplify the required 

signals in both frequency ranges. This topic is being developed as a part of a doctoral 

thesis (C. D. LLorens, In process).  

In the initial stage of design process it was decided to follow the same philosophy 

carried out by the IGIC-UPV group in the electronics for the acoustic transceivers 

developed for positioning systems in underwater neutrino telescopes (Ardid et al., 

2012; Larosa et al., 2013; C. D. Llorens et al., 2012). These transceivers are 

integrated, and have been positively tested, in the IL13 of ANTARES and in 

KM3NeT Italy detection tower (NEMO-Phase II) in Capo Passero, Sicily. The main, 

and novel, characteristic in the Electronic Emission Board (EEB) design is the use of 

the Pulse Width Modulation (PWM) technique (Barr, 2001). PWM is a modulation 

technique that generates variable-width pulses to represent the amplitude of the 

desired signal with the desired specifications.  

Some of the advantages offered by this technique are: 

• The system efficiency is improved respect to classical solutions due the use of 

class D amplification, this means that the transistors work in switching mode, 

suffering less power dissipation in terms of heat, and therefore offering a 

superior performance. 

• Simplicity of design. Analog - Digital converters are not needed. It is possible 

to feed directly the amplifier with the digital signals modulated by the PWM 

technique. 

• It is not necessary to install large heat sinks at amplifier transistors, reducing the 

weight and volume of the electronic system and, consequently, of the whole 
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calibrator. Analog systems, such as linear power supplies, tend to generate a lot 

of heat since they are basically variable resistors carrying a lot of current. Digital 

systems do not generally generate as much heat. Almost all the heat generated 

by a switching device is during the transition (which is done quickly).  

• In waiting mode, the power amplifier has a minimum power at idle state that 

allows storing the energy for the next emission in the capacitor very fast and 

efficiently. 

 
Fig 4.7. Conceptual block diagram of the EEB. 

4.4.1.1 Basic block diagram 

In Fig 4.7 the basic block diagram of the EEB is shown. The transducer is located at 

the top of the diagram. The relay block (green) allows the transducer connection to 

the low or to the high frequency amplifier, depending on the operation mode. The 

transducer is connected to the power amplifier through an impedance matching 

Low ESR

FFR SX83



Part I: Design and development of an acoustic calibrator for Deep-Sea Neutrino Telescopes. 

 

98

network with a transformer. Limited power availability to feed the EEB has been 

assumed, in a similar way than in neutrino telescope infrastructures. Since 12 VDC 

power is not enough to excite the transducer to cover long distances and for 

parametric emission, it has been necessary to implement an energy storage block 

(red). In the lower part of the block diagram the signal generator, which drives the 

power amplifier, is shown (blue). It has two inputs, one for the low bitrate 

communication port (RS232) and one for the trigger signal. 

Capacitors are used to store the required transmission energy. This solution allows 

fast charging, consequently, short time delays between successive emissions (in 

calibration or positioning task the usual mode of operation is a high power emission 

of a few ms duration every few seconds). The solution also offers a long life 

expectancy.  

The power amplifier solution adopted is a class D amplifier formed by a full bridge. 

One of the advantages to choose the full bridge power amplifier is that it must be fed 

with squared signals like a MLS (Maximum Length Sequence), which is a signal 

extensively used in electro-acoustic measurements. The main characteristic of this 

signal are the flat spectrum and the non-correlation with any other signal.  For these 

peculiarities it is widely used to obtain the impulse response of an entire emitter-

receiver system and for time of flight measurements used in positioning tasks. 

Moreover, if the desired signals to emit are the standard sinusoidal (or arbitrary) ones, 

it is possible emitting a square signal in the desired band and, due to the transducer 

and the transformer are good band pass filters, all higher frequencies that are out of 

the working band will be removed.  

The best technique, to send arbitrary signals by generating squared signals, is using 

PWM with a modulation frequency outside of the main band. To implement PWM it 

should vary the width of the square signal in direct relation to the amplitude of the 

desired signal (0-100% Pulse width). The classic way to obtain the related square 
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signal is comparing the desired signal with a triangular or sawtooth signal (Fig 4.8). 

After the amplification, the desired signal is integrated (filtered by the transformer 

and the transducer) and the median value of the square signal is obtained. This median 

value is the desired signal. 

 

 

Fig 4.8. A simple method to generate the PWM pulse train corresponding to a given 
signal is the intersective PWM: the signal (here the red sinewave) is 
compared with a sawtooth waveform (blue). When the latter is less than the 
former, the PWM signal (magenta) is in high state (1). Otherwise it is in the 
low state (0). 

For the signal generator it was decided to use a Microchip “Motor Control” function 

inside most of the DSPic microcontroller series. The “Motor Control” function is 

basically a digital counter that works with the main frequency of the microcontroller 

(40MHz). This device disposes of all necessary components to work with full 

MOSFET bridges (symmetric outputs, dead time generators, etc.), and for this reason 

matches perfectly for the purposes.  
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With the aim of test the feasibility of applying the PWM technique to emit the 

necessary signal for parametric bipolar pulse generation, a simulation of the 

electronic board has been done. Pulse width modulated theory, works with the 

envelope of the desired signal used to feed the transducer. This envelope is shown in 

Fig 4.9. After applying PWM modulation it is possible to obtain the square signal 

that parameterize the signal before feeding the amplifier (Fig 4.10). Finally, the result 

of the simulation shows the theoretical signal expected at the amplifier output (Fig 

4.11). 

 

Fig 4.9. Envelope of the signal to be used for emission  

 

Fig 4.10. Square signal after applying PWM modulation. 
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Fig 4.11. Expected signal at the amplifier output. 

Seen the required emitted signals for the calibrator (Section 3.2.2) and the result 

obtained by the simulation of the electronic board design, PWM technique seems to 

be a good candidate in order to be implemented in the electronic board that will 

control the array. Moreover is endorsed by the in situ experience of other acoustic 

devices.  

The proposed design a priori seemed to be the most suitable for the purposes of 

generating and amplifying the signals in both frequency ranges. Unfortunately, in 

practice, it was not trivial to amplify the high frequency signal to generate the 

parametric bipolar signal. Due to the very low impedance of the transducer in the 

high frequency range, the high requirements of current, voltage and frequency, some 

electronic components did not support more than a few emissions. This made very 

difficult building a robust and durable solution required for any device that pretends 

to be integrated into an infrastructure such as underwater neutrino telescope 

ANTARES. New designs are being developed and tested to drive the array for 

parametric generation (C. D. LLorens, In process). There are mainly two lines under 

study: the first one is based in the idea of applying a higher supply voltage in the class 

D amplifier and lower turns ratio in the transformer. The second one is based in the 

possibility of, in addition to the higher supply voltage in the class D amplifier, 
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replacing the transformer with a single inductor to adapt the impedance in a narrow 

band of frequencies. 

4.4.2 Register System 

As advanced in the Section 4.3, in order to facilitate the point to the receivers and to 

provide all related with the set of measurements info, a register system was 

developed. This register system monitors, for each emission, the time of emission, 

the emitted signal, location and orientation information of the array. All this 

information plays an important role during the post-processing tasks. Moreover, it is 

possible to manage and program the emissions through the register system. 

The register system is composed by a smartphone with android© technology which 

is located in the array holding arm and a computer with wireless connection. Through 

an easy free APP called SensorUdp (Takashi SASAKI©) it is possible sending, by 

User Datagram Protocol (UDP), the positioning data of the smartphone to the pc (as 

long as both are connected to the same network).  

     

Fig 4.12. Screenshots of the APP and the register system. 
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An intuitive graphic interface has been designed to visualize, in real time the 

positioning data, and to manage the emissions of the array (Fig 4.12 right). Moreover 

the interface includes, in a graphical way, the compass, pitch and roll info. The red 

marks help to orientate the array to the selected point (where the receivers would be 

located) knowing its GPS coordinates. On the bottom of the graphic interface there 

is the management of the EEB. The MODBUS commands are loaded from a text file 

on the left, to generate the desired signals. The log of the emissions and the port and 

status connection with the EEB are in the middle and right windows respectively.  

A register report is generated automatically for each emission with the time of 

emission, the direction of the emission: PC-EEB (sending the MODBUS commands 

to generate signals) or EEB-PC (with the location info), command sent, location info 

about the array position (longitude, elevation, compass, pitch and roll). In the next 

table an example of a register report is shown. 

TIME DIRECT COMMAND LAT LONG ELEVATION COMPASS PITCH ROLL 

16:30:02.76 EEB->PC EMITTED 0.000000 0.000000 0.000 0.000000 0.000 0.000 

16:57:07.24 PC->EEB sin 10000 0.6 2000 38.994.415 -0.158742 5.000 197.999.985 -7.000 0.000 

16:57:09.75 EEB->PC Gen:s sin 100 0.6 2000 38.994.415 -0.158742 5.000 186.627.808 -2.000 -4.000 

16:57:09.95 EEB->PC OK 38.994.415 -0.158742 5.000 185.515.366 -3.000 -4.000 

17:02:21.91 PC->EEB sin 10000 0.6 2000 38.994.415 -0.158742 5.000 77.150.116 -3.000 -4.000 

17:02:23.94 PC->EEB go1 38.994.415 -0.158742 5.000 77.150.116 -3.000 -4.000 

17:02:24.46 EEB->PC Gen:s sin 10000 0.6 2000 38.994.415 -0.158742 5.000 77.150.116 -3.000 -4.000 

17:02:24.66 EEB->PC OK 38.994.415 -0.158742 5.000 77.150.116 -3.000 -4.000 

17:02:25.26 EEB->PC OK-ready 38.994.415 -0.158742 5.000 77.150.116 -3.000 -4.000 

17:02:25.71 EEB->PC EMITTED 38.994.415 -0.158742 5.000 77.150.116 -3.000 -4.000 

17:02:25.97 PC->EEB go1 38.994.415 -0.158742 5.000 77.150.116 -3.000 -4.000 

17:02:26.698 EEB->PC OK-ready 38.994.415 -0.158742 5.000 77.150.116 -3.000 -4.000 

 

Table 4. 1. Register report example 
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4.5 Tests with the Array 

After the array assembly some test were performed to characterize it. Studies of 

impedance, transmitting voltage response, radiation patterns, etc. were done to know 

the behaviour of the new configuration, also using the EEB. Moreover, as the 

transmitter is able to work in different frequency ranges, it was tested for low 

frequency emission, evaluating the possibility of being used to carry out several tasks 

related to acoustics in underwater neutrino telescopes, in addition to emission of 

neutrino-like signals: calibration of sensor sensitivities and responses, emission of 

signals for positioning, etc. 

4.5.1 Array characterization. 

Transmitting voltage response (TVR) has been measured in both frequency ranges at 

400 kHz it is about 164 dB (ref µPa/V at 1m). For the low frequency range the TRV 

of one element has been compared with the response of the array (three elements 

connected in parallel). The results are presented in Fig 4.13. 

 
Fig 4.13. Transmitting voltage response of the array connected in parallel and for the 

central element for the low frequency range. 
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4.5.2 Low frequency tests 

Besides the studies of acoustic parametric generation, some tests have been made to 

select signals to carry out all the acoustic tasks (See Section 4.2) and also, a signal 

detection method based on cross-correlation technique (Barr, 2001) has been 

evaluated in order to obtain, in an accurate way, the Time of Arrival (ToA) and the 

amplitude of the acoustic received signal (Adrián-Martínez et al., 2015). This 

detection method facilitates to have a good signal to noise ratio so allows improving 

the accuracy in the ToA determination in noisy environments or low signal level 

conditions. Typically, for positioning tasks pure sinusoidal signals are used. Usually, 

a band-pass frequency filter is applied, and the detection time is determined by 

reaching a threshold level (Adrián-Martínez et al., 2012). Doing this properly requires 

a very accurate calibration in order to determine the inertial delay of the hydrophone, 

and even so, it can give bad results in case of high noise or intense reflections nearby 

that can add to the waves constructively. In contrast, the cross-correlation of 

broadband signals is less sensitive to these effects. The inertial delay, which affects 

mainly to the start and end of the signal, is rendered less important by considering 

the whole duration of the signal. The effect of the reflections is reduced by 

distinguishing between different peaks of the cross-correlated signal, the first main 

peak being the one to consider. In cross-correlation techniques the use of signals with 

wide band frequency signals or non-correlated signals such as sine sweep or 

Maximum Length Sequence (MLS) signals, instead of pure sinusoidal signals may 

result in an improvement of the signal-to-noise ratio, and therefore resulting in an 

increase in the detection efficiency, as well as in the accuracy of the time of detection.  

The Correlation between two signals x and y with the same N samples length is 

described by the following expression: 

 
1

{ , }[ ] [ ]· [ ]
N

m

Corr x y n x m y m n
=

= +∑   (4.1) 
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It is worth to note that, in the autocorrelation of one signal with itself, the correlation 

peak amplitude (Vmax,corr) is equal to the half of samples of the signal in question (N). 

Therefore, it can be obtained the peak voltage of the signal (Vp) by Eq (4.2):  

 max,2 corr
p

V
V

N
=   (4.2) 

Furthermore, this ratio does not vary with the amplitude of the signal and is less 

susceptible to the presence of noise. In real applications, it is not trivial to tackle the 

problem because is completely crucial windowing temporarily the direct signal 

avoiding reflections to obtain a reliable value of its amplitude, which is not always 

possible. 

Then, it would be important to obtain the corresponding relation between the 

maximum of the cross-correlation between received and emitted signal with the 

amplitude of the received signal avoiding reflections. This issue has been studied 

(Adrián-Martínez et al., 2015) and has been found that knowing the amplitude of the 

sent signal (Vp,env), its number of samples (nenv) and the maximum correlation value 

(Vmax,corr), corresponding to the detection of this signal, it is possible to obtain the 

peak-amplitude voltage of the received signal applying the following expression: 

 max,
,

,

2corr
p rec

p env env

V
V

V n
=   (4.3) 

Obtaining this amplitude information could be very useful for in situ calibration of 

receivers and monitoring emitters of an acoustic positioning system. 

4.5.2.1 Laboratory tests  

The low frequency tests were done in a progressive way, starting in a controlled 

environment using a pool and finalizing taking measurements in Gandia’s Harbour. 

For the first test, a set of measurements were made in a pool of 6.3 m length, 3.6 m 

width and 1.5 m depth. The compact array was used as emitter, EEB was used to 
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generate and amplify the different emitted signals. The receiver hydrophone used to 

record the acoustic waveforms was a FFR-SX30 (Sensortech©) with a NI PXI 5102 

(8 bits, 20MS/s, National Instruments©) as a digitizer system.  

 

Fig 4.14. Experimental setup (left), emitter (middle) and receiver (right) transducers. 

In this study the results obtained using pure tones and broadband signals (sweep and 

MLS) to obtain the emitter-receiver distance have been compared.  

Fig 4.15. Pure tone emitted: 20 kHz, 0.3 ms duration signal (left). Received signal 
(middle).Emitted-received signal correlation (right). 

Fig 4.16. Sine sweep emitted: 10 kHz – 40 kHz, 2 ms duration (left). Received 
signal (middle).Emitted-received signal correlation (right). 
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Fig 4.17. MLS emitted: 2.5 ms duration (left). Received signal (middle).Emitted-
received signal correlation (right). 

The plots of Fig 4.18 show the results obtained by comparing the voltages (left) and 

the S/N ratios (right) both in cross-correlation method and time-domain method. 

Fig 4.18. Left: Comparison of the received amplitude in time domain and using the 
cross-correlation method. Right: Comparison of the S/N ratio. 

Looking at the waveforms can be concluded that sine of 40 kHz was clearly affected 

by a reflection. One of the reasons for the relatively large variation in the 30 kHz and 

40 kHz measurements might be the interference between the three emitters of the 

array, which depends on the frequency. The use of broadband signals with the cross-

correlation method may help to mitigate this problem since it will average the 

response of the different frequencies. Excepting these cases, as before, using the 

Equation (4.3) very similar results to the usual techniques are obtained. On the other 

hand, the S/N ratio increases considerably (at least 20 dB) for the set of signals used 

0.5 1 1.5 2 2.5
-200

-100

0

100

200

Time [ms]

A
m

pl
itu

de
 [

V
]

Emitted Signal

2.5 3 3.5 4 4.5 5 5.5
-0.05

0

0.05

Time [ms]

A
m

pl
itu

de
 [

V
]

Received Signal

2.5 3 3.5 4

-50

0

50

Time [ms]C
or

re
la

tio
n 

A
m

pl
itu

de
 [

V
]

Correlated Signal

10kHz 20kHz 30kHz 40kHz

0.02

0.03

0.04

0.05

0.06

Pure tone signal

A
m

p
lit

u
d

e
 [

V
p

p
]

Received voltage

 

 

Threshold

Correlation

20

40

60

Emitted signal

S
/N

 [
d

B
]

Signal to Noise Ratio

 

 
1

0
kH

z

2
0

kH
z

3
0

kH
z

4
0

kH
z

S
w

e
e

p
 [

1
0

-6
0

]k
H

z

M
LS

Threshold
Correlation



4. Prototype of the Versatile Compact Array 

 

109 

using correlation method, in this case the main correlation peak has been compared 

to the noise level of the correlated signal. This improvement is crucial for a correct 

detection of the signals, especially in noisy environments or weak signals. 

In order to know the reach of the device in low frequency range, the received signals 

have been extrapolated up to 3 km using the propagation algorithm (Section 3.2.2) 

Fig 4.19 shows the evolution of the amplitude during the propagation for the different 

studied signals. It shown that, excepting 40 kHz sine signal, all signals a priori could 

be detected up to 3 km distance of the AMADEUS receivers which have an amplitude 

threshold of about 20 mPap for this frequency range. The 40 kHz sine signal could be 

detected up to 2.5 km. 

 
Fig 4.19. Evolution of the amplitude of the different received signals during 

propagation up to 3 km. 

Signals could be masked by background noise. To study its effect, environmental 

background noise background, in situ measured, has been added to the propagated 

signals in order to know if these signals could be detected during a Sea Campaign. 

As receiver has been used the HTI-08 receptor located in the second floor of the IL13 

in the AMADEUS system. The background noise added was registered by HTI-08 

during its operation. Fig 4.20 shows the sensitivity of the HTI-08 and an example of 

background noise registered in the ANTARES site. 
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Fig 4.20. Left: HTI-08 Receiving Voltage Response. Right: Example of 
background registered by the same receiver. 

The propagated signals have been added to different noise registers in different (up 

to 100) positions inside the same noise file. The objective of this work was, on one 

hand, to determine a possible deviation of the correlation method in the determination 

of the time of arrival. The results show that this is a robust method. No deviations 

were obtained in almost all cases. On the other hand, it was studied the signal to noise 

ratio of the received signals in order to compare it with their equivalent using the 

correlated signals. 

Fig 4.21. Signal to noise ratio of the received signals in time domain (left) and signal 
to noise ratio of the received signal after correlation (right). 

Fig 4.21 shows the results for both cases, it can be seen that using the correlated signal 

the signal to noise ratio increases up to 10 dB in 20 kHz, 30 kHz sine signals and 
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sweep signal. This improvement achieved by the use of correlation techniques could 

be crucial for signal detection in noisy environments or low signal level conditions 

4.5.2.2 Field tests 

The more complex environment in which this study has been performed is the 

Gandias’s Harbour. In this case, the distance between emitter and receiver was about 

110 m and the S/N ratio was quite low. Fig 4.22 shows the location of the 

experimental setup. As emitter the array with its elements connected in parallel was 

used and by the dedicated electronics for low frequency mode it was fed. The receiver 

hydrophone used to record the acoustic signals was a FFR-SX30 (Sensortech©) 

connected to a conditioning charge amplifier CCA 1000 (Teledyne RESON©) and 

with a NI PXI 5102 (8 bits, 20MS/s, National Instruments©) as a digitizer system. In 

order to synchronize the emission with the reception a wireless trigger was used. For 

the Time of Arrival the delay introduced for the wireless trigger, which is of 8.23 ms, 

was considered. Pure tones and broadband signals (sweep and MLS) were evaluated 

using correlation technique. 

Due to the activity of the harbour, the registered signals were totally masked by noise. 

Fig 4.23 shows an example of a waveform registered when a tone of 30 kHz and 4 

ms duration was emitted. In Fig 4.23 (right) the result of the correlation between the 

emitted and the received signal is shown. It is remarkable the improvement in the 

signal to noise ratio using the correlation method. 
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Fig 4.22. Aerial view of the experimental setup disposition. 

 

Fig 4.23. Left: Registered signal when the array had emitted a pure tone of 30 kHz 
and 4 ms duration. In grey is represented the registered signal (masked by 
noise), Band-pass filtered signal has been plotted in orange, also has been 
magnified for better visualization. Right: Result of the correlation between 
the emitted and the received signal. 
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environment, corroborate the potential of the use of this correlation method to obtain 

the time of arrival and the amplitude of the received signals, last one very useful for 

in situ sensor calibration purposes. Different MLS were used: MLS 22 (10.2 ms 

duration), MLS 32 (20.4 ms duration), MLS 42 (40.9 ms duration). 

Fig 4.24. Left: Emitter-Receiver distance obtained with correlation method for each 
emitted signal tested. Dot-dashed line indicates the mean value and dashed 
lines indicates the deviation of the results obtained with all emitted signals. 
Error bars indicates the measurement uncertainty of each particular signal. 
Right: Signal to noise ratio of the correlated signal for each emitted signal 
tested. 

4.5.3 High frequency tests 

A set of tests were performed with the array emitting high frequency for parametric 

generation. Firstly, for signal amplification, was used a commercial RF amplifier 

(1040L, 400W, +55 dB, Electronics & Innovation Ltd. ©) until the dedicated 

electronics was available. Using this amplifier it was decided connecting the three 

elements in series in order to have maximum power transfer since the serial 

impedance (50.64 Ω) was near to 50 Ω, the output impedance of the amplifier. On 

the other hand, the serial connection, offered less synchronization between emissions 

and less symmetry, but the power requirements for parametric generation was a more 

critical factor when choosing. The best solution would be to feed in phase each 

element by one amplifier, but, not having enough amplifiers, the aforementioned 

solution was decided in a first term. Numerous tests were performed using this 
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configuration, unfortunately parametric generation was not observed during the array 

emission, mainly for two remarkable reasons. One of them is related with the way of 

feeding the transducers. In the best case (identical transducers), each transducer is fed 

with 1/3 of the total power which, been higher than when a single element was fed 

(due the better impedance matching of the array), is not enough to reach the non-

linear regime separately. Despite this, it was expected that the parametric generation 

takes place, as was observed in similar conditions in the works with the preliminary 

array (see Section 3.3). As in the previous results, it was expected, by the interaction 

of the three parametric beams, to have enough bipolar pulse amplitude to be detected. 

The test results presaged some kind of misalignment of the transducers during 

assembly, as was lately confirmed in a specific test. Radiation patterns of the array, 

and each element separately, were evaluated emitting at 400 kHz (primary beam in 

parametric generation) for the 360º of the emission surface in steps of 45º (See Fig 

4.25). The best alignment would be one in which the three beams travel parallel. For 

this prototype, the best radiation surfaces are located at 315º so, the proposal is to use 

this orientation for the calibration tests with the new electronics.  
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Fig 4.25. Left: Normalized pressure amplitude measured along a parallel plane to the 
array axis. Right: Extrapolation with the distance of the pressure maximum 
evolution offered by each element of the array. 

 

4.6 Current state and future steps 

To describe the current state of the device it is necessary to describe the status of the 

array in two blocks. On the one hand the status of the array to be used in low 

frequency applications and, on the other hand, to be used, as a parametric source, in 

the high frequency range. 

The device (array + electronics) has been tested in positively way in different 

scenarios, working in laboratory environments and in noisy real environments as in 

Gandia’s Harbour. It has been reported that, the device is able to generate, amplify 

and reproduce different low frequency signals (pure tones between 10 and 60 kHz, 

sweep signals and MLS) working on a wide range of distances and in very different 

environmental conditions. Acoustic detection through the technique of cross-

correlation between the emitted and received signals has also been evaluated. This 

technique is more favourable for broadband signals (sweeps and MLS) because they 

have a narrower correlation peak and consequently they are easier to discern than 

others peaks. Furthermore, this technique is powerful in measurement conditions 

with a reduced S/N ratio, as in the case of marine environments over long distances 
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where the recorded signal is weak, or in environments with high background noise. 

All of these signals and processing techniques are very useful in order to carry out 

the designed strategy for a Sea Campaign described in Section 4.2. 

Regarding to the high frequency application some aspects must be taken in caution. 

The assembly of the transducers is a critical aspect. Due to the low efficiency of the 

parametric generation, at long distances, the interaction of the parametric beams is 

crucial in order to reach enough amplitude levels. For better interaction of the three 

beams, all of them should travel parallel. This aspect forces the selection of the most 

favourable radiation surface or, in a future prototype, the elements re-assembly in 

order to have the same radiation behaviour along the entire cylindrical surface array. 

Taking into account the low impedance of this transducer at 400 kHz and, due to this, 

the high requirements of intensity to reach the desired power levels to bring on the 

parametric effect, the proposed electronic solution to amplify high frequency signals 

has been quite challenging and it is still being under development (C. D. LLorens, In 

process). 
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5 
Part II Introduction:

Dark Matter and 
Secluded Dark Matter

In this section the evidences of the Dark Matter presence in the Universe and the 

direct and indirect techniques for its detection will be reviewed. Furthermore, the 

searches of dark matter with ANTARES will be summarized. To finalize, the 

particularities of the models which describe the mechanisms of Secluded Dark Matter 

and the effects on the Sun, as DM source, will be detailed. 

5.1 Dark Matter 

Since the 1930s in large astrophysical systems, with sizes ranging from galactic to 

cosmological scales, some “anomalies”, that can only be explained either by 

assuming the existence of a large amount of unseen matter or by assuming a deviation 

from the known laws of gravitation and the theory of general relativity, have been 

observed. After decades of slow accumulation of evidence, in the 1970s and 1980s 

were laid the basis of the existence of a kind of Dark Matter (DM), which does not 

interact with light (and ordinary matter), making it invisible, but its existence is 

attributed for the gravitational effects. Since then, the main goal for the scientific 

community in this topic is the knowledge of what DM is made of. Most astronomers, 
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cosmologists and particle physicists are convinced that at least 95% of the 

composition of the Universe is due to this non-luminous matter and its constitution 

today remains one of the most relevant and fascinating enigmas in modern physics. 

The relative abundances of the major components of the Universe are illustrated in 

Fig 5.1. Baryons, the commonly known matter, lightly sprinkle the Universe, as they 

constitute only about 4.6% of the total mass-energy density. Dark energy makes up 

the bulk of the Universe at the present epoch, about ∼ 72%. Dark matter comprises 

∼ 23% of the Universe. Dark matter holds baryons together to form galaxies, galaxy 

groups, and galaxy clusters. 

 
Fig 5.1. Estimated composition of the Energy-Matter of the Universe. 
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5.1.1 Indirect Evidences 

5.1.1.1 Galactic Rotation Curves 

The most convincing and direct evidence for dark matter on galactic scales comes 

from the observations of the rotation curves of galaxies, i.e., the graph of circular 

velocities of stars and gas as a function of their distance from the galactic centre. In 

1933 Fritz Zwicky provided evidence that the mass of the luminous matter (stars) in 

the Coma cluster, which consists of about 1000 galaxies, was much smaller than its 

total mass implied by the motion of cluster member galaxies.  Also, in 1959 a study 

on the radial velocity of the spiral galaxy M33 showed that the rotation curve of the 

galaxy does not agree with the mass density of visible matter (Volders, 1959). It was 

not until 1970’s when the existence of dark matter began to be considered seriously 

and its presence in spiral galaxies was the most plausible explanation for the 

anomalous rotation curves of these galaxies. The rotation of stars in Andromeda 

galaxy were measured using more precise spectroscopy methods and shown that the 

rotation speed of the stars in spiral galaxies is roughly constant beyond the galactic 

bulge at the centre instead of decreasing at large radius (see Fig 5.2) (Rubin V.C. & 

Ford Jr., 1970). A complete study using twenty one spiral galaxies evidenced that the 

best way to explain the rotation curve of the stars was by means of assuming that the 

majority of the mass of the galaxy had to be in a form of an invisible matter in the 

galactic halo (Rubin, Thonnard, & Ford, 1980). Fig 5.2 shows the rotation curve for 

a nearby dwarf spiral galaxy M33, superimposed on the optical image. If there were 

no galactic matter outside the visible disk, the rotation velocity curve would have 

decreased as 1 r  . Instead it continues to rise towards a constant value, way beyond 

the visible disk, suggesting that there is a lot of invisible matter in and around the 

galaxy. Similar rotation curves have been observed for about a thousand galaxies, 

including our own. And they suggest the mass of the invisible matter to be over one 

order of magnitude larger than the mass of visible matter. 
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Fig 5.2. Observed rotation curve of the nearby dwarf spiral galaxy M33, 

superimposed on its optical image (from (Roy, 2000)). 

5.1.1.2 Galaxy Clusters 

Galaxy clusters are a large number of galaxies (up to 1000) confined by their 

gravitational effect. Typically they have a mass of 14 1510 10M M
⊙ ⊙
∼

1 and stretching 

from 2Mpc 2 to 10Mpc. More proofs on the existence of DM have been provided by 

the study of these galaxy clusters. Chandra X-ray Observatory study of the Abell 

2029 cluster (Vikhlinin et al., 2006) showed that about 1410 M
⊙
cluster mass is 

contained in a form of invisible matter exerting gravitational forces on the galaxies. 

5.1.1.3 Gravitational Lensing 

Gravitational lensing is the phenomena in which the light from a very distant source 

is bent around a massive object (such as a black hole or a galaxy) between the source 

 

1 M
⊙

 is the solar mass, about 1.9·1030kg 
2 One parsec (pc) is about 3·1016m or 3.2 light-years 
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and the observer (Fig 5.3). This effect was first predicted in 1930’s and its first 

observation, in 1979, occurred by studying the twin quasars SBS 0957+561 A & SBS 

0957+561 B (Walsh, Carswell, & Weymann, 1979). In 1998 took place the first 

evidence from gravitational lensing hinting at invisible mass from the study of the 

galaxy cluster Abell 1689 (Taylor, Dye, Broadhurst, Benitez, & van Kampen, 1998). 

The development of new detection techniques in gravitational lensing (Refregier, 

2003) contributed to obtain stronger evidences of the DM presence. In the study of 

two merging galactic clusters while the baryonic matter still separated it was shown, 

independently of any assumption on the laws of gravity, that the gravitational 

potential of the cluster traced the overall shape of the merging clusters and not that 

of the baryonic component (D. Clowe et al., 2006; D. Clowe, Gonzalez, & 

Markevitch, 2004). This proved that the mass peak was not located with the baryonic 

mass but with a dark halo combining the two clusters. Additionally, about 87.5% of 

the mass is invisible and the remaining 12.5% is baryonic. These two studies served 

to reinforce the existence of a particle component of dark matter versus the opposite 

theories which advocated to a deviation from the known laws of gravitation and the 

theory of general relativity as a solution to the missing mass (Milgrom, 1983). 
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Fig 5.3. Gravitational Lensing phenomena diagram. Light coming from a faraway galaxy 

is deflected due the dark matter located in its travel path. Dark matter gravity acts 
as a lens and at the observer point (Earth) is appreciated various images of the 
same galaxy. (Figure adapted from ©Infn-Asimmetrie).  

5.1.1.4 Velocity Dispersions of Galaxies and Mass to Light Ratio 

The velocity dispersion is the statistical deviation (about the mean) of the velocities 

of objects bounded gravitationally, such as stars in a galaxy or galaxies in a galaxies 

cluster. It is defined as mass to light ratio the ratio between the mass of a specific 

volume and its luminosity. This is a well-known observable characteristic for objects 

such as stars and other astrophysical objects. For the measurements of entire galaxies, 

it is expected that the ratio should be approximately the average of individual ratios 

of the diverse luminous objects located inside. However, experimental measurements 

of these parameters in spiral and elliptical galaxies (Faber & Jackson, 1976) evidence 

a large missing mass component (Faber & Jackson, 1976; Faber & Dressler.A, 1977). 
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These studies showed that visible mass distribution found in galaxy clusters is not 

enough to determine the velocity dispersion revealing that a dark halo surrounding 

the clusters would have to contain the equivalent of more than five times the visible 

mass. Moreover, the measurement of the mass to light ratio showed that the value is 

much larger than the average of the individual components, indicating again that there 

is, at least, three times more invisible matter than visible. 

5.1.1.5 Cosmic Microwave Background 

The cosmic microwave background (CMB) is the thermal radiation assumed to be 

left over from the "Big Bang" of cosmology. The CMB is a cosmic background 

radiation that is fundamental to observational cosmology because it is the oldest light 

in the Universe, dating to the epoch of recombination (Fig 5.4). It was predicted by 

George Gamow Ralph Alpher y Robert Hermann  in 1948 and accidentally 

discovered by Arno Penzias and Robert Wilson in 1965 when they observed a 

background temperature excess of   3.5º K in its radiograph built to radioastronomy 

and satellite communications experimentation. Penzias and Wilson were awarded 

with the Physics Nobel Prize in 1978 when they determined that the antenna 

temperature was induced by the cosmic microwave background. Since then, several 

experiments were built to measure the CMB radiation such as COBE experiment 

(National Aeronautics and Space Administration, 2008), WMAP (Wright.E.L et al., 

2003), and PLANCK (European Space Agency, 2014). The CMB cannot be 

considered as an evidence of the existence of DM but its importance is due to the fact 

that it validates the ΛCDM model (Lambda-Cold Dark Matter). The ΛCDM model 

is a parameterization of the Big Bang cosmological model in which the Universe 

contains a cosmological constant, denoted by Lambda (Λ), associated with dark 

energy, and cold dark matter (CDM), a form of matter introduced in order to account 

for gravitational effects observed in very large-scale structures (rotation curves of 

galaxies; the gravitational lensing of light by galaxy clusters; and enhanced clustering 

of galaxies). It is frequently referred to as the standard model of Big Bang cosmology, 
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since it is the simplest model that provides a reasonably good explanation of the 

following properties of the cosmos: 

• the existence and structure of the cosmic microwave background (CMB) 

• the large-scale structure in the distribution of galaxies 

• the abundances of hydrogen (including deuterium), helium, and lithium 

• the accelerating expansion of the Universe observed in the light from distant 

galaxies and supernovas 

 
Fig 5.4. Schematic view of Universe evolution following the Standard Model in 

cosmology. On the bottom the temporal scale of the events since the Big 
Bang until now is shown. On the top flap the estimated DM distribution is 
represented. (Figure adapted from ©Infn-Asimmetrie) 

The model assumes that general relativity is the correct theory of gravity on 

cosmological scales. The period when emerged this model (in the late 1990s) was 

marked by appearing of disparate properties of the Universe and mutually 

inconsistent, and there was no consensus on the composition of the energy density of 

the Universe. Model descriptions and also the fact that the model has been validated 
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by other measurement such as the Baryon acoustic oscillations (Percival et al., 2007), 

distance measurements by type Ia Supernovae (Kowalski et al., 2008), and the 

Lymann-alpha forest measurements (Viel, Bolton, & Haehnelt, 2009) have tipped the 

balance in favour of the existence of a particle component of dark matter versus the 

opposite theories which advocated to a deviation from the known laws of gravitation. 

5.1.2 WIMP as the Dark Matter Candidate 

Even though there are tens of DM candidates proposed in the bibliography 

(Bergstrom, 2000; Bertone, Hooper, & Silk, 2005), the most widely studied and often 

most likely DM candidates are WIMPs (Weakly Interacting Massive Particles). 

Following the idea that DM particles would be thermal relics from the Early 

Universe, they can remain from the earliest moments of the Universe in sufficient 

number to account for a significant fraction of relic dark matter density. In the 

simplest WIMP models, during the early Universe dark matter particles were in 

thermal and chemical equilibrium with the Standard Model particles, they were as 

abundant as photons in the beginning, being freely created and destructed in pairs 

when the temperature of the hot plasma was larger than their mass. However, after 

the temperature dropped below the mass of the WIMP, its density rapidly decreases 

as the Universe expands, until it becomes so low that WIMPs cannot self-annihilate 

anymore and they freeze-out from equilibrium, having the same density since then. 

Under some simplifying assumptions and following these arguments, the relic 

abundance of WIMPs in the Universe (that is, the number density of WIMPs in the 

local Universe in units of the critical density) can be simply computed in terms of the 

self-annihilation cross-section:  

 
27 3 17 10

WIMP
ann

cm s

vσ

− −⋅Ω ≃   (5.1) 
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where annσ  is the cross section for annihilation of a WIMPs pair into Standard Model 

particles, ν is the relative velocity between two WIMPs, ...  denotes thermal 

averaging and the value in the numerator is obtained using the value of the 

temperature of the cosmic background radiation, the Newton’s constant, etc. (Bertone 

et al., 2005). The self-annihilation cross-section required in order to achieve the 

appropriate relic density is 26 3 13 10ann cm sσ − −= ⋅ , this is a value remarkably close to the 

cross-section typical of weak interactions in the Standard Model, hence the name of 

WIMPs. This is the hint that physics at the weak scale could provide a reliable 

solution to the dark matter problem. Moreover, since WIMPs interact with ordinary 

matter with roughly weak strength, their presence in galactic scales, and in particular 

in our galaxy, raises the hope of detecting relic WIMPs directly in a detector by 

observing their scattering on target nuclei through nuclear recoils.  

5.2 Dark Matter Detection Methods 

If WIMPs compose most of the DM not only will be present as background density 

in the Universe but also will be gravitationally accumulated in the galactic halos. Of 

course they will be present in the Milky Way, so it may be possible either detecting 

them directly in experiments located in the Earth or indirectly looking for their 

annihilation products in astrophysical sources.  

5.2.1 Direct Detection 

Direct DM detection is based on the energy detection of nuclei recoils struck by DM 

particles travelling through a detector, either through the measurement of the light 

(scintillation), the charge (ionization), through the phonons produced in the target 

material by the scattering event or in nucleation of superheated liquids. Fig 5.5 shows 

a summary of the different direct detection experiments classified by their detection 

mechanism. These different techniques exploited in direct experiments are performed 

using diverse target materials: Ge, Si, NaI, Xenon, C3FI, C3F8. The physics in dark 
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matter nucleus interaction involves elastic scattering on nucleus. The elastic 

scattering of a WIMP off of a nucleus in a detector is simply the interaction of the 

WIMP with a nucleus as a whole, causing it to recoil, ideally often enough to measure 

the recoil energy spectrum in the target. WIMP scattering off nuclei is commonly 

discussed in the context of two classes of couplings, the different experiments of 

direct detection can be classified in base of these couplings: 

• Scalar or spin-independent (SI): The SI experiments are designed to detect 

the coherent recoil of the nucleus caused by the DM scattering. For a heavy 

nuclear target, the coherent scattering increases the cross-section by the 

square of the Atomic Number. Experiments using heavy nuclei as target 

material, as Iodine, Germanium or Xenon like DAMA (Bernabei et al., 

2013), Edelweiss (EDELWEISS Collaboration, 2011), SuperCDMS (Sander 

et al., 2013) and XENON (Aprile et al., 2012), LUX (Akerib et al., 2013) 

among others, are more sensitive to scalar interactions and their limits are 

mainly constrained by the spin-independent WIMP-nucleon cross-section. 

• Axial or spin-dependent scattering (SD): The SD cross-section occurs 

through the axial vector coupling to the spin content of the nucleus; there is 

a J(J + 1) enhancement from the nuclear spin J. Until recently, the SD cross 

section limits had been about 6 orders of magnitude weaker than for SI. 

Experiments which use target materials of light nuclei are more sensitive to 

spin-dependent WIMP-nucleon cross-section such as COUPP (Behnke et al., 

2012), SIMPLE (Felizardo et al., 2014) or PICO (Amole et al., 2015; Bou-

Cabo, RICAP). 
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Fig 5.5. Summary of the direct detection experiments classified by their detection 

mechanism. 

It is crucial for these experiments having a good background discrimination since 

cosmic rays with energies about keV to MeV range bombard the Earth’s surface 

producing in most cases nuclear recoils similar to those expected from WIMPs at a 

rate of about 103 events kg-1 per day-1. This is the reason to carry the experiments out 

in the deep underground in order to minimize the background by orders of magnitude 

compared with the sea level intensity. Moreover, it must be extremely demanding 

with the protection against the natural radioactivity from the surroundings and the 

material of the detector itself.  

5.2.2 Indirect Detection 

Indirect detection is based in the fact that the DM passing through massive objects 

like the Galactic Centre, the Sun or the Earth may decrease its velocity under the 

scape velocity, due to the elastic scattering with the nuclei of the object, and 

consequently keeping trapped. DM Indirect detection experiments aim to detect the 

annihilation products of DM particles as products of Standard Model particles: 

charged particles (electrons and positrons, protons and antiprotons, deuterium and 
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antideuterium), photons (gamma rays, Xrays, synchrotron radiations) and neutrinos. 

As these particles are present for different processes, not only DM annihilation, the 

indirect searches focus on looking for channels and energy ranges where it is possible 

distinguish from the background due to ordinary astrophysical processes. For this 

reason, searches for charged particles focus on fluxes of antiparticles (positrons, 

antiprotons and antideuterons) which are much less abundant in the Universe than 

the corresponding particles. Also, for photons and neutrinos it is usual to look at areas 

where the DM-signal to background ratio can be maximized. For a complete review 

on indirect DM searches see (Cirelli, 2012). The flux of such radiation is proportional 

to the annihilation rate, which in turn depends on the square of the dark matter 

density. 

The study of electron and positron fluxes in different experiments (AMSII (Accardo 

et al., 2014; M. Aguilar et al., 2014), PAMELA (Adriani et al., 2010), Fermi (Abdo 

et al., 2009), ATIC-2 (Chang et al., 2008), PPB-BETS (Torii et al., 2008), HESS 

(Aharonian et al., 2008)) have offered various results which could indicate a rising in 

the positron-electron ratio at the TeV and sub-TeV scale. These signal excess are 

striking because they imply the existence of a source of ‘primary’ e+ (and e-) other 

than the ordinary astrophysical ones. This unknown new source can well be itself of 

astrophysical nature (Serpico, 2012) but also it could be understood as a signature of 

DM. 

Gamma rays fluxes have been studied by other experiments such as Fermi (Tempel, 

Hektor, & Raidal, 2012; Weniger, 2012) HESS (Aharonian et al., 2008), MAGIC 

(Elsaesser & Mannheim, 2005), and VERITAS (Vivier, 2011), emphasising on the 

Galactic Centre, dwarf galaxies and galaxy clusters that have a high mass to light 

ratio. Findings with Fermi are indicating a possible dark matter signal (4.5 σ of 

significance level) for a WIMP with a mass of 130 GeV (Bergström, Edsö, & 

Zaharijas, 2009). Nowadays, the origin of this excess has not been confirmed. In 
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addition to a possible DM signal, there are several interpretations of the Fermi results 

based either on a single large scale Galactic cosmic-ray electrons-plus-positrons 

component or by invoking additional electron-positron primary sources, e.g. nearby 

pulsars (Grasso et al., 2009).  

Finally, in addition to e+/e- and gamma rays, neutrinos are an indirect messenger of 

DM presence. Neutrinos are produced in DM annihilations together with all the other 

particles. Neutrinos have the advantage of proceeding straight and essentially 

unabsorbed through the Galaxy. As detailed in Chapter 1 they can cross a long path 

with dense matter with little interaction. ANTARES (Ageron et al., 2011), ICECUBE 

(IceCube Collaboration, 2014), and Super-Kamiokande (SuperKamiokande 

Collaboration, 2013) search for dark matter through neutrinos coming from the Sun, 

Earth, Galactic-Centre (GC), Galactic-Halo(GH), and dwarf galaxies. The 

experiments, in order to minimize the background of cosmic muons coming from the 

atmosphere above the detector, must select only upgoing tracks, i.e., neutrinos which 

have crossed the Earth and interact near of the instrumented volume. These 

experiments look for neutrinos with different origins. From the GC or the GH, 

neutrino telescopes located at the South Pole have difficulties to ‘see’ the GC, which 

is essentially above horizon for them. The DeepCore extension of ICECUBE, 

however, avoids this limitation by using the outer portion of the experiment as an 

active veto. From galaxy clusters, in this case the sensitivities are not competitive 

with gamma rays (unless one considers very large DM masses). From the centre of 

the Sun (or even the Earth) as DM particles may become gravitationally captured by 

a massive body, lose energy via repeated scatterings with its nuclei and thus 

accumulate at its centre. The annihilations occurring there give origin to fluxes of 

high energy neutrinos. The detection of these high-energy neutrinos from the Sun 

would constitute a definitive evidence for DM, as there are no known astrophysical 

processes able to mimic it. 
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Due to lack of signal evidence, constraints have been imposed for the searches in 

each object. From the GC constraints in DM annihilation cross section in 

SuperKamiokande (Desai et al., 2004; Desai et al., 2008) have been imposed. 

ICECUBE have imposed constrains in DM annihilation cross section from the GH 

(R. Abbasi et al., 2011a), from the GC (R. Abbasi et al., 2012) and finally from dwarf 

galaxies and clusters of galaxies (Aartsen, Abbasi, Abdou, Ackermann, Adams, 

Aguilar, Ahlers. M., Altmann, Auffenberg, & Bai, 2013b). Also ANTARES has put 

constraints for the GC (ANTARES Collaboration, In preparation). For the Sun 

different experiments have imposed constraints on the scattering cross section of DM 

particles with nuclei, in SuperKamiokande (Tanaka et al., 2011), ICECUBE (IceCube 

Collaboration, 2012) and ANTARES (Adrián-Martínez et al., 2013). The neutrino 

flux due to WIMP annihilation in the Sun is highly dependent on the capture rate of 

WIMPs in the centre of the Sun which, in turn, is dominated by the SD WIMP-proton 

cross section. This is the reason why these indirect searches have better limits 

compared to direct search experiments (COUPP, SIMPLE). Contrary to the case of 

SI WIMP-nucleon cross section where, thanks to their target material, direct search 

experiments have better limits (XENON100, LUX). 

5.3 Dark Matter Searches with ANTARES Neutrino Telescope 

Together with the observation of astrophysical sources, the indirect detection of DM 

is one of the main goals of the ANTARES neutrino telescope. There are five 

potentially interesting DM sources to be explored with ANTARES: the Sun, the 

Galactic Centre, the Earth, dwarf galaxies and galaxy clusters. Each one presents 

advantages and disadvantages. Assuming that DM is made of WIMPs, like 

neutralinos, they can scatter in astrophysical objects like the Sun or the Earth and 

became gravitationally trapped. In this way their self-annihilation would produce 

directly or commonly indirectly high energy neutrinos. DM which form part of the 



 Part II: First Search for Secluded Dark Matter with ANTARES 

 

136

Galactic Halo could also annihilate and produce signal, in particular coming from the 

Galactic Centre direction, where is more abundant.  

5.3.1 The Galactic Centre 

A promising DM source for neutrino telescopes is the Galactic Centre. The apparent 

drawback due the large distance between the Earth and the GC is offset by the large 

mass involved. The main advantage of this source, contrary to what happens, for 

example, in the Sun, is that there is no absorption of neutrinos, which is relevant for 

high energy/mass and improves the effective area and angular resolution.  

 

Fig 5.6. Preliminary limits on vσ  for the Galactic Centre for the τ – τ + channel (red 
solid line) with IceCube40 for the GC (brown solid line), IceCube59 for dwarf 
galaxies (dashed black line), IceCube79 for the Galactic Halo (magenta solid 
line), IceCube59 for the VIRGO cluster (black solid line), DeepCore+IceCube79 
for the GC (blue solid line) and Fermi for dwarf galaxies (green solid line). The 
grey/green area represent leptophilic dark matter models which would explain the 
PAMELA (grey) and AMSII+Fermi+PAMELA+HESS (green) excess in the 
Galactic Centre. The grey band indicates the natural scale for which all the dark 
matter particles are considered as WIMPs only. Adapted from ((ANTARES 
Collaboration, In process)). 

During the 2007-2012 analysed data period no significant excess was observed so 

limits were set in mean cross-section velocity product for dark matter vσ  (See Fig 
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5.6) for Navarro–Frenk–White (NFW)3 halo profile and the τ– τ+ channel (ANTARES 

Collaboration, In preparation). These limits exclude leptophilic DM interpretation of 

the Fermi-PAMELA-HESS excess. It is remarkable that above 150GeV∼  the best 

limits from neutrino telescopes are provided by ANTARES due to the fact that the 

visibility of the GC and the angular resolution is better in ANTARES than in Ice 

Cube.  

5.3.2 The Earth 

DM would accumulate within the Earth after scattering. The scattering is produced 

mainly on the heavy elements at the Earth core. For this reason, the limits are set on 

the spin-independent cross section of WIMP scattering. Limits (Fig 5.7) are 

particularly interesting for WIMP masses close to the masses of scattering nuclei 

(iron and nickel). 

 

Fig 5.7. Preliminary Spin-independent cross section sensitivity (90% CL) for the 
Earth analysis, assuming 26 3 1

3 10v cm sσ − − −⋅∼  for three different channels: 

τ-τ+ (dash, blue), W+W- (dot, green) and bb  (dash-dot, magenta). This 
sensitivity is also compared with the results of XENON-100 (solid, red). 
Plot from (Zornoza, 2014). 

 

3 The Navarro–Frenk–White profile or NFW profile is a spatial mass distribution of dark matter 
fitted to dark matter haloes identified in N-body simulations by Julio Navarro, Carlos Frenk and 
Simon White (Navarro, Frenk, & White, 1996). The NFW profile is one of the most commonly 
used model profiles for dark matter halos 



 Part II: First Search for Secluded Dark Matter with ANTARES 

 

138

5.3.3 The Sun 

DM searches in the Sun are very interesting since a potential signal would be free of 

astrophysical background and this is a big advantage over other indirect searches. 

The neutrinos produced through nuclear reactions in the Sun are of much lower 

energies. The background produced for cosmic rays interaction on the Sun corona is 

very low and the atmospheric one can be estimated from scrambled data with high 

accuracy. In this section two kind of DM searches coming from the Sun with 

ANTARES are described. On the one hand, the standard DM search in which 

WIMPs trapped in the Sun core self-annihilate into Standard Model particles. These 

particles could decay give rise to the production of energetic neutrinos which can 

escape from the Sun and be detected by ANTARES. The main disadvantage of this 

search is the absorption suffered by neutrinos over 100 GeV because they can interact 

with Sun nuclei and be absorbed before escaping the Sun. On the other hand the 

search of Secluded Dark Matter, which is one of the objects of this thesis.  

5.3.3.1 Standard Dark Matter search 

As related in previous sections, possibilities of DM detection have been motivated by 

its gravitational capture, in massive objects like the Sun, and subsequent annihilation. 

If as expected DM self-annihilates, the capture is balanced by the annihilation of DM 

particles. The intensity of the annihilation signal would be a probe of the DM 

scattering cross-section on nuclei. Neutrinos could be produced in the annihilations, 

also SM particles which interact strongly with the interior of the Sun being largely 

absorbed but, during this process, producing high-energy neutrinos which could 

scape and can be potentially seen by neutrino detectors as ANTARES.  

Latest results on search for DM in the Sun were obtained after the analysis of 2007-

2012 data (Zornoza, 2014). In this analysis no excess over the expected background 

was observed and limits on the neutrino flux limit and on the WIMP-nucleon cross 

section were set. Fig 5.8 shows the preliminary limits for spin-dependent and spin-
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independent WIMP-proton scattering cross-section. Neutrino telescopes offer the 

best limits for spin-dependent cross-section compared to direct searches, since the 

Sun is made basically of protons. (Previous (2007-2008) official results in (Adrián-

Martínez et al., 2013)). 

  
Fig 5.8. Preliminary Spin-dependent (left) and Spin-independent (right) cross-section 

limits for the search on the Sun: ANTARES 2007-2012 (thick solid) lines): τ- τ+ 

(red), W+W- (blue), bb  (green), IceCube-79 (dashed lines), SuperKamiokande 
(colored dash-dotted lines), SIMPLE (black short dash-dotted line), COUPP (black 
long dash-dotted line) and XENON-100 (black long dashed line). The results are 
compared with a scan in MSSM-7. (Figure from (Zornoza, 2014). 

5.3.3.2 Search for Secluded Dark Matter in the Sun 

Another possibility is based on the idea that DM annihilates first into metastable 

mediators (ϕ), some new gauge bosons, which subsequently decay into SM states, 

(Arkani-Hamed, Finkbeiner, Slatyer, & Weiner, 2009; Chen, Cline, & Frey, 2009; 

Pospelov, Ritz, & Voloshin, 2008; Pospelov & Ritz, 2009; Rothstein, Schwetz, & 

Zupan, 2009). In all of these models, the thermal relic WIMP DM scenario is 

considered as usual, while there is also the possibility to explain some astrophysical 

observations such as the rising in the positron-electron ratio observed by PAMELA 

(Adriani et al., 2010), Fermi (Abdo et al., 2009) and recently measured with high 

precision in AMS-II (Alpha Magnetic Spectrometer) (Accardo et al., 2014; M. 

Aguilar et al., 2014). These models try to describe the Secluded Dark Matter (SDM) 

scenario in which the presence of mediators, also called neutral long lived particles 
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(LOLIPs) in some references, as a communication way between DM and SM, can 

dramatically change the annihilation signature of DM captured in the Sun. This idea 

is based in the fact that if the mediators are long-lived enough to escape the Sun 

before decaying, they could produce detectable charged-particle or γ-ray fluxes 

(Batell, Pospelov, Ritz, & Shang, 2010; Schuster, Toro, Weiner, & Yavin, 2010) and 

also neutrinos that could reach the Earth and be detected. In many of the secluded 

dark matter models, ϕ can decay into leptons near the Earth. Some differences appear 

in the leptons created by the neutrino interaction and the leptons arising from ϕ 

decays. In the latter case, for kinematics, as the DM mass is greater than the ϕ mass 

the leptons may be boosted and parallel. If these leptons are muons the signature in 

the vicinity of the detector would be two muon tracks almost parallel. The di-muon 

signature could be interpreted as a single muon and it could be discriminated (or at 

least the cut selection could be optimized for these cases) from the atmospheric 

neutrino signal by its energy deposition topology. Even being short-lived and 

decaying inside the Sun energetic neutrinos would remain the only signature. Also in 

these situations the neutrino signal could be enhanced compared to the standard 

scenario where high energy neutrinos can interact with nuclei and be absorbed before 

escaping the Sun. The fact that the solar density decreases exponentially with radius 

facilitates that the neutrinos injected by ϕ at larger radii could propagate out of the 

Sun because they are subjected to much less absorption. As will be detailed in 

following sections, the experimental results in the search for SDM depend on the 

decay length and the production rate. There are several models that can accommodate 

the lifetimes required for the mediators to enhance the final signal in neutrino 

telescopes, which have been summarized in reference (Meade, Nussinov, Papucci, & 

Volansky, 2010). In this work some examples that contain LOLIPs which can have 

decay lengths in the 1 km to 1015 km range, providing the relevant formulae, are 

detailed. 

In the following subsections the processes involved in the possibility of SDM 

detection will be described starting with the mediator production rate from DM 
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capture and annihilation in the Sun. To finalize the different scenarios of SDM, in 

terms of the mediator decay products which have been evaluated with ANTARES 

(Chapters 6 and 7) will be introduced. 

5.3.3.2.1 DM annihilation in the Sun.  

In the Sun, during the gravitational capture, DM particles suffer multiple scatterings 

and become trapped within a small region of size 0.01 100 /R GeV mχ⊙
∼  around the 

Sun’s centre, where R
⊙

 is the solar radius. As the finite size of this region has a 

negligible effect on the neutrino spectra (Cirelli et al., 2005; A. Gould, 1987; Press 

& Spergel, 1985), DM annihilation can be assumed to take place in the centre of the 

Sun. The capture rate,C
⊙

, depends on whether the DM interacts elastically with the 

nucleus (A. Gould, 1987; Jungman, Kamionkowski, & Griest, 1996) or, whether 

there are more complicated interactions, in inelastic scattering (Menon, Morris, 

Pierce, & Weiner, 2010; Nussinov, Wang, & Yavin, 2009). In this work only the 

elastic scattering for the capture rate has been considered, as assumed in many direct 

detection searches. The capture rate can be calculated from the scattering cross 

section, both spin-independent,SIσ , and spin-dependent,SDσ  of the process dark 

matter-nucleon. Both types of processes are constrained by direct detection 

experiments, but the latter much less so. It is worth to mention that the capture rate 

relies on assumptions on the density and velocity distributions of dark matter particles 

in the Solar System, as well as on the composition and density distribution of the 

interior of the Sun. In this work the capture rate proposed by (Ibarra, Totzauer, & 

Wild, 2014) has been followed, approximately given by: 
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In equilibrium, the DM annihilation rate is exactly half of its capture, generally given 

by ((Jungman et al., 1996)): 

 ( )21
tanh

2ann eqC t τΓ =
⊙   (5.3) 

where eqτ  is the equilibrium time and 1710t s≈  is the dynamical time of the system. 

DM can typically scatter in the Sun on a much shorter timescale than it annihilates, 

in elastic scattering case. Hence, it thermalizes with the rest of the matter in the Sun 

and concentrates in the inner core as it approaches its equilibrium configuration.  

5.3.3.2.2  Mediator decay products and bounds from neutrino detection. 

As long as the mediator lifetime is long enough such that they can escape the Sun it 

will produce decay products between the Sun and the Earth. Depending on the 

mediator decay products different experiments may be able to detect them. For 

instance, mediator could decay into charged particles which will radiate photons on 

their way from the Sun to the Earth that could be detected by gamma ray experiments 

as Fermi (Abdo et al., 2009) or Milagro (Atkins et al., 2004). The decay products able 

to be detected by neutrino telescopes have been the studied in this work. If the 

mediator decays into di-muons anywhere between the Sun’s surface and the earth, 

these muons can be observed in neutrino telescopes (ANTARES, IceCube) and also 

in underground neutrino detectors (Superkamiokande, BAKSAN). When the 

mediator decay product is a di-muon, the mediator lifetime, or its decay length, is 

crucial to know what is expecting in the detector. If the decay length of the mediator 

is long enough to reach the Earth before decaying, i.e., the mediator decays in the 

vicinity of the detector (≤ km) (See Fig 5.9) this muon pair may be observed directly 

through their Cherenkov radiation as nearby tracks. 
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Fig 5.9. Secluded scenario diagram where the mediator decays in the vicinity of the 
Earth as two co-linear muons which could be detected by neutrino 
telescopes. 

In practice, these muons will not be separated enough to be identified as two 

individual muons, about few meters at most for the energy range explored, which 

translates into about 10 ns relative time delay for the emitted Cherenkov light. This 

time is comparable to the readout of the PMTs. These di-muons would be recognized 

as a single muon but the Cherenkov light yield along the track of a di-muon is higher 

(factor 2) than a single sub-TeV muon (Fig 5.10). Initially a di-muon event (Fig 5.10 

black) could be recognised as an energetic single muon (Fig 5.10 blue) looking at its 

light emitted on top of the Cherenkov emission, but with the monitoring of the energy 

deposition along the track, which is mostly energy independent for di-muons, it could 

be possible to discriminate between single muons and di-muons.  

 
Fig 5.10. Energy deposited for stopping a di-muon event (black), a single muon (red) 

and a more energetic single muon (blue). 



 Part II: First Search for Secluded Dark Matter with ANTARES 

 

144

In this work a good discrimination between di-muons and single muon is not the 

priority, but to obtain the best efficiency to detect di-muons from secluded dark 

matter in the Sun.  

On the other hand, if the mediator decays into di-muons far from the detector then 

the muons would yield high-energy neutrinos and anti-neutrinos, typically

( ), ( )e e ν ν− + , which can be detected, like in standard neutrino detection, as they 

convert back into a muon in the rock or water (ice) near the detector (Fig 5.11).  

 

 

Fig 5.11. Secluded scenario diagram where the mediator decays far from the detector 
as two co-linear muons which, in turn, decay into neutrinos and could be 
detected by neutrino telescopes. 

While a great deal of the parameter space for neutral LOLIPs is unexplored, some 

constraints already exist. The strongest bounds on the flux of upward going muons 

come from Super-Kamiokande (Desai et al., 2004). Fig 5.12 shows the bound on 

annihilation rate of DM into mediators that subsequently decay into muons which in 

turn yield high-energy neutrinos and the expected improvement in sensitivity with 

ANTARES and Ice-Cube. 



5. Part II Introduction: Dark Matter and Secluded Dark Matter 

 

145 

 

Fig 5.12. The purple curves show the current bounds from SuperKamiokande on the 
annihilation rate of DM in the Sun into mediators assuming 100% 
branching ratio and decaying into di-muons. The red (orange) curves are 
the expected bounds from ANTARES (Ice-Cube). (Plot adapted from 
(Schuster et al., 2010)). 

Another possible scenario is composed by short-lived mediators that decay in the 

interior of the Sun or near its surface directly into neutrino (and antineutrino) (see Fig 

5.13). In the standard scenario, in which neutrinos are produced at the center of the 

Sun, the neutrino energy spectrum is damped as Ee ν ε− , with a critical energy of 

100GeVε ∼ . This is because high energy neutrinos can interact with nuclei and be 

absorbed before escaping the Sun. However, as the solar density decreases 

exponentially with radius, if neutrinos are injected (by a mediator) at larger radii they 

suffer much less absorption and finally can propagate out of the Sun. Even for φ 

decay inside the Sun, the neutrino signal can be dramatically enhanced compared to 

the standard scenario. It is expected that the critical energy scale for absorption 

increases exponentially with the neutrino injection radius, increasing rapidly once the 

injection point is moved outside the dense core. In this work, it has been studied the 

neutrino signal at the Earth from annihilation of secluded DM in the Sun, for a range 

of DM masses and considering mediator lifetimes γτ≥10 s. For this case the 

spectrum of neutrinos is flat with energies from 0 to the DM mass (Bell & Petraki, 

2011). It is usually also assumed that the mediators decay with equal branching ratio 
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to the three neutrino flavors. They will reach the Earth with ratios 1:1:1. For the last 

two scenarios a detailed oscillations study has not been performed for the propagation 

of neutrinos, in this work the more conservative assumption has been taking into 

account in which, after oscillations, all neutrino flavours arrive to the Earth with the 

same ratio 1:1:1. 

 
Fig 5.13. Secluded scenario diagram where the mediator decays inside or near the 

Sun’s surface into neutrinos which could be detected by neutrino 
telescopes. 

5.3.3.2.3 Decay probabilities 

If the mediator product decay is a di-muon pair, the probability of a mediator with 

decay lengthL cγ τ= , to decay inside a detector of size d (considering the size of the 

detector and the typical traveled range by the particles being detected, muons in this 

case) is given by (Meade et al., 2010): 

 ( )
/

/1
D L

D L d L
decay

L De
P e e

L Dd L

−
= −  ≥

≪
≃   (5.4) 

D is the distance between the detector and the source. In the second equality above, 

has been considered two important limits, demonstrating that if the decay length is 

comparable to or larger than the distance to the source, the probability to observe the 

particle increases linearly with the size of the detector. This makes the neutrino 

telescopes very competitive in these searches because these are the largest volume 

detectors currently available. Conversely, if the mediator is short lived (compared to 

D), the probability for decaying inside the detector is exponentially small. Pdecay is 

maximized when D = L. As a consequence, mediators can only be detected if 
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produced at relatively nearby sources, such as the LHC, the Earth or the Sun. Looking 

for LOLIPs from DM annihilation in the Galactic center suffer a suppression of at 

least 1710 /GC
decayP d km∼ , which converts this source unusable for detection or for 

setting limits. Besides Pdecay the other dependence on d, D comes in from the usual 

solid angle suppression 2/effA D∆Ω = , so that when Pdecay, is maximized the total 

suppression is approximately 3
det /V L  where Vdet is the detector volume. 

In the cases which the final detected product is the neutrino the situation changes and, 

to increase the probability to be detected, the mediator should decay between the 

source and the detector, not around it. This will be detailed in Section 7.3. 

In Chapters 6 and 7, an indirect search for SDM using the 2007-2012 data recorded 

by the ANTARES neutrino telescope is reported by looking at the different mediator 

decay products: a) di-muons (a good discrimination between di-muons and single 

muon is not the priority, but to obtain the best efficiency to detect di-muons from 

secluded dark matter in the Sun), b) di-muons which in turn, decay into neutrinos and 

c) neutrinos.
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6 
Tools and 
Methods

In this work, a search for SDM in the Sun has been performed using the data recorded 

by the ANTARES neutrino telescope during 2007 to 2012 period. In this analysis a 

blinding policy, in order to avoid biases in the event selection, has been followed. 

The values of some cuts have been selected before looking at the region where the 

signal is expected. This selection criteria have been chosen to maximize the selection 

of possible signals (di-muons and neutrinos) produced by mediator (from DM 

annihilation in the Sun) decay with respect to the atmospheric background. First step 

on the selection is the estimation, by simulation, of the expected flux on the detector. 

Once the flux is estimated and taking into account the background in the detector, 

which will be obtained through scrambled data, the pair of cuts which provides the 

best flux sensitivity will be selected. The final part of the analysis is the data 

unblinding, i.e., uncover the ANTARES registered data looking to this region where 

is expected the best flux sensitivity in order to ensure if there are some significant 

signal excess over the background (Chapter 7). In this chapter tools and methods for 

the search of SDM coming from the Sun will be detailed. For the signal expectation, 
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a new tool developed for simulating the di-muon flux will be described. Moreover, 

the different background sources implied and the ways to minimize their effects will 

be discussed. To finalize, the expressions to estimate the ANTARES, di-muon and 

neutrino flux sensitivities will be discussed. 

6.1 Signal expectations 

In order to know the di-muon flux (ϕdi-µ), generated by mediators (mϕ=1 GeV) decay, 

at the Earth surface (Fig 6.1) as a function of the energy of the annihilated WIMP, a 

new tool called DiMuGen has been developed. DiMuGen generates and propagates 

di-muons coming from decay of mediators resulting of dark matter annihilation. The 

output of this code follows the ANTARES .evt format (see Section 6.1.1.1) and acts 

as input for the Monte Carlo (MC) chain used to obtain the expected number of 

detected events (ns).  

 

Fig 6.1. Secluded scenario diagram where the mediator decays in the vicinity of the 
Earth as two co-linear muons. These could be detected by neutrino 
telescopes. 

In this analysis, the mediators arrive from Sun direction following the zenith and 

azimuth info of the Sun during the period under study with respect to the ANTARES 

position. The different detector configurations and periods used in the analysis are 

presented in Table 6.1. Optimal data runs were selected after Data Quality selection 

based on external conditions (bioluminescence rates, sea current, etc.), the 

configuration and behavior of the detector during a given run (number of active units, 

thresholds, alignment, etc.), and the properties of the run itself (duration, number of 
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slices, trigger rates, etc.). After that, a total number of 13063 runs were selected which 

were performed during about 1321 days.  Same periods and data of the standard dark 

matter search in the Sun analysis have been used (Ardid, 2014; Lambard, Zornoza, 

& Hernandez-Rey, 2013), so the same criteria of data selection and background from 

scrambled data have been taking into account.  

Different background and detector trigger conditions have been applied. Usually one 

registered detector run condition for each month is used for the di-muon simulation. 

The number of detected events ns obtained after each simulation (each year and 

detection configuration) are weighted taking into account the lifetime of each period.  

 
Year Direction Geometry 

Nº Lines Runs Days 

2007 Sun 5 1466 192.3 

2008 Sun 10 301 36.2 

2008 Sun 9 346 45.3 

2008 Sun 10 21 1.9 

2008 Sun 12 1318 96.6 

2009 Sun 12 36 2.4 

2009 Sun 11 504 45.5 

2009 Sun 10 392 48.05 

2009 Sun 9 516 87.3 

2009 Sun 8 49 8.5 

2009 Sun 10 166 18.3 

2010 Sun 10 1399 147 

2010 Sun 9 399 41.9 

2010 Sun 12 614 51.1 

2011 Sun 12 3118 275.4 

2012 Sun 12 2418 223.7 

Total days 1321 

 
Table 6.1. Different configuration periods used in the simulation and for 

background estimation using scrambled data 
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For track reconstruction the algorithm called BBFit (J. A. Aguilar et al., 2011) was 

used. BBFit provides a fast and robust reconstruction of neutrino induced upward-

going muons and a discrimination of these events from downward-going atmospheric 

muon background in the data collected by the ANTARES neutrino telescope (See 

Section 6.2). From the position and time of the hits of the Cherenkov photons in the 

OMs a muon track is reconstructed. This reconstruction algorithm is based on the 

minimization of a χ2-like quality parameter, Q, which uses the differences between 

the expected and measured times of the detected photons plus a correction term that 

takes into account the effect of light absorption: 

 
2

2
1 0

( ) ( ) ( )hitN
i i

i i

t t A a D d
Q

a d
γ γ

σ=

 −
= + 

  
∑   (6.1) 

where tγ and ti are respectively the expected and recorded arrival time of the photons 

from the track, and 2
iσ  is the timing variance. The second term takes into account 

the accumulation of high charges in storeys close to the track. This term uses the 

measured hit charge, ai, the average hit charge calculated from all hits which have 

been selected for the  fit, < a >, and the calculated photon travel distance, dγ, together 

with a normalization value, d0. The functions A(ai) and D(dγ) are detailed in (J. A. 

Aguilar et al., 2011).  

Depending on the configuration of the detector (number of active lines) and the muon 

(anti-)neutrino energy, this algorithm yields an angular resolution on the upgoing 

neutrino direction between 1º and 8º. 

Basic cuts are applied to the data previously to the χ2-like quality parameter 

minimization: 

• Number of hits (storeys) used in the track fit nhit > 5. Before starting any fit, 

the list of selected hits is examined. If the analog PMT signal crosses a preset 
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threshold, typically 1/3 photoelectron (p.e.), its arrival time is measured 

together with its charge. The latter is obtained by integrating the analog PMT 

signal within a time window of 40 ns. Each such pair of time and charge is 

called a hit and the corresponding data for each hit are collected. Only events 

with more than 5 hits are accepted. If all selected hits are on a single detector 

line, a procedure for a single-line fit is started, otherwise a multi-line fit 

procedure is performed.  

• Number of lines used in the track fit:  nline > 1 for MultiLine (ML) analysis 

(nline=1 for SingleLine (SL) analysis).  

• |tcosth| < 0.9998, it refers to cosine of the zenith angle of the fitted track. 

This cut excludes events for which the fit stopped at the boundary condition 

for the elevation angle. 

• Q < Qb. In the BBFit-like reconstruction two types of fits could be 

performed. The first one corresponds to the quality parameter of the track 

fit, Eq.(6.1), aimed at the reconstruction of a particle track and the second 

one to the bright-point fit defined for the search of point-like light sources. 

For each one a quality function is built based on the time differences between 

the hit times and the expected arrival times of photons from the track or 

bright-point, as in a standard χ² fit. The terms that depend on the measured 

hit charges and calculated photon travel distances are equally injected. From 

these, two so-called quality functions, Q and Qb respectively, are available 

normalized by the number of degrees of freedom of the fit. As the Q is by 

definition more efficient for hadronic and electromagnetic showers produced 

by the downward going muons bundles this will be the fourth element in the 

basic quality cuts used for this analysis.  

In this analysis for each year 105 di-muon events generated from mχ = 0.03, 0.05, 

0.1, 0.2, 0.5, 1, 2, 5 and 10 TeV, and mφ= 1 GeV, arriving from Sun direction at 

random time have been simulated. For the higher DM masses (mχ = 0.2 to 10 TeV) 
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mediator decay outside of the spherical can (Section 6.1.1) have been considered as 

well adding simulated events in this region following the same approach. To compare 

and to sum up the outside and inside decay expected signal, the considered volumes 

(Fig 6.2) should be taken into account in order to weight the number of events of each 

decay zone.  

 

Fig 6.2. Schematic view of the different considered volumes for inside and outside 
decays. 
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where: 

 2 out Sph maxV R dπ=   (6.3) 

 34
  

3in SphV Rπ=   (6.4) 

and RSph is the radius of the spherical can, dmax  is the maximum travelled distance 

used in DiMuGen for a muon of Mχ /2 energy before reaching the sphere to be 

detected. For example, the value for the case Mχ = 1 TeV, mϕ = 1 GeV (being 

RSph=394.4m and dmax=1749 m) is / 3.33out inV V = .  
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6.1.1 Di-Muon Generator (DiMuGen) 

In this section the di-muon signal generator code is described. For simplicity, 

DiMuGen uses a spherical can that contains the typical cylindrical ANTARES 

detection volume, which surrounds the instrumented detector volume, and defines the 

limit of simple muon propagation plus Cherenkov light generation and propagation. 

The detection volume extends typically 3 attenuation lengths beyond the 

instrumented volume. Fig 6.3 illustrates the relevant numbers of these volumes. 

 

Fig 6.3. Relations between instrumented volume, detection volume and spherical 
detection can used in DiMuGen. 

DiMuGen code has two main differentiated parts regarding whether decay occurs 

inside or outside of the spherical can. Both parts will be explained separately in the 

following sections. In order to visualize the whole process Fig 6.4 shows a block 

diagram of the code.  
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Fig 6.4. Block diagram of the DiMuGen main program 

6.1.1.1 Inputs and outputs 

The DiMuGen inputs are six. 1) The number of events to simulate, 2) the WIMP mass 

(Mχ). 3) The mediator mass (mϕ), for this analysis typically set to 1 GeV. 4) The 

decay zone, inside or outside of the spherical can. 5) The main arrival direction, i.e., 

if the mediators arrive from the Sun or from all incoming directions, the last option 

useful for diverse physics, systematics, etc.... In next releases could be included the 

option for mediator coming from the Earth center, this could be an interesting SDM 

case too. 6) The output directory where the .evt output file will be saved. 

The output of this code follows the ANTARES .evt format. A file containing the list 

of di-muon tracks. This file consists of a general header, which contains info about 

INPUTS

PRIMARY 

DIRECTION

OUTSIDE DECAY

Impact Sphere 

Point

µ Traveled 

Distance and 

Energy

Di-muon 

separation

True impact 

points on the 

sphere

write Output 

(.evt)

INSIDE DECAY

Decay point 

inside the sphere

µ Energy

True muon 

direction

write Output 

(.evt)
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the simulation performed, followed by the list of physics events (Monte Carlo tracks). 

Each track entry contains the following information: 

start_event: 1   1  
track_primary:  1  x  y  z  vx vy  vz  5( / 1 )M dχ +    tdelay  zone   

track_in:  1  x1  y1  z1  vx1  vy1  vz1  E1  tdelay  P_id  
track_in: 2  x2  y2  z2  vx2  vy2  vz2  E2  tdelay  P_id  
end_event: 
 
start_event: indicates the begining of an event and provides an event number. 

track primary: includes the information of the primary track which corresponds to 

the mediator. x,y,z indicates the hypothetical impact point over the spherical can of 

the mediator vx,vy,vz are the director cosines which indicate the mediator direction. 

5( / 1 )M dχ +  is a control value that indicates de DM mass and distance traveled by the 

di-muon. tdelay indicates whether it has been introduced some delay time. zone 

indicates if the mediator decays inside or outside of the spherical can.  

track_in contains the information of each muon with the track number identification. 

x1  y1  z1 are the coordinates of the impact point over the spherical can. The director 

cosines are indicated by vx1  vy1  vz1. E1 is the muon energy. P_id is the particle 

identification, in this case 5 for muons. 

Three additional outputs are also available in form of single muon events: muon1, 

which contains only the single muon1 tracks but acquiring the primary direction; 

muon2, which contains only the single muon2 tracks; and sum, which contains single 

tracks with the primary direction and impact points but with energy sum of E1+ E2. 

6.1.1.2 Code description 

In the following sections the DiMuGen operation is illustrated with 105 simulated 

events of 1M TeVχ =  and 1m GeVφ = . This will be the reference case.  
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6.1.1.2.1 Primary (mediator) direction 0 ( , , )x y zV v v v=   

The first step, common for inside and outside decays, is the assignment of the 

mediator direction. If the mediator arrives to the detector from all incoming 

directions: 

 0 ( , , ) (sin cos ,sin sin ,cos )x y zV v v v θ φ θ φ θ= =  (6.5) 

where θ will be random between 0 and  π weighted as ( ) sin( )f θ θ= , and ϕ will be 

random between 0 y  2π (See Fig 6.5). 

Fig 6.5. ϴ and ϕ distributions to assign the mediator direction arriving from all 
incoming directions. 

Instead, if the mediator arrives from Sun direction, zenith and azimuth information 

about the Sun position, with respect to the ANTARES position are obtained in order 

to assign the Sun direction to the mediators. The matlab© function called 

sun_position.m is used for this purpose. This function computes the Sun position 

(zenith and azimuth angle) as a function of the observer local time and position. This 

function follows an algorithm based on numerical approximation of the exact 

equations. The authors of the original paper (Reda & Andreas, 2008) state that this 

algorithm should be precise at ± 0.0003 degrees. In DiMuGen, if mediator arrives 
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from Sun direction, it is considered zenithθ =  and convazimuth UTMφ = − − ,(

1.9264 180convUTM π=  is the convergence angle of the UTM coordinates at the 

ANTARES site in rad) (Fig 6.6). Finally the direction cosines will be: 

 0 ( , , ) (sin cos ,sin sin ,cos )x y zV v v v θ φ θ φ θ= = −   (6.6) 

Fig 6.6. ϴ and ϕ distributions to assign the mediator direction arriving from Sun 
direction 

From this point the code is different if the decay occurs inside or outside the sphere. 

6.1.1.2.2 Inside decay 

I. Decay point inside the sphere ( , , )x y z   

After the mediator direction assignment, a decay point inside the spherical should be 

assigned too (See Fig 6.7). Random values between -1 and 1 are generated for the 

, ,x y z coordinates of the inside decay point. Accepting only internal points, of a sphere 

of radius 1 a.u., 
2 2 2 1x y z+ + ≤ . The decay point coordinates will be then multiplied 

by the sphere radius.  
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Fig 6.7. Random mediator’s decay points inside the sphere. 

 

II.  Muon Energy �E1, E2� 

Once the mediator direction and mediator decay point have been stablished, muon 

energy to the di-muon is assigned. In this case, where the decay occurs in the vicinity 

of the detector, no energy loses are taking into account, so each muon has the same 

energy, / 2M χ . 

III.  Muon direction �V01, V02� 

Due to the boost during the mediator decay, the two resulting muons suffer a little 

deviation with respect to the mediator trajectory. To determine the deviation angle 

with respect to the mediator direction, longitudinal (pL) and transverse (pT) momenta 

are calculated. As DM mass is much greater than mediator mass it is possible to 

considerertan /T Lp pϕ = , where 0Lp E=  (in GeV) and / 2T Tp a mφ=  (in GeV), being

2 2 2 21T m m m ma x x y z= − + + , where xm, ym and zm (ramdom values between -1 and 1) will 
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indicate the random direction of a muon in the mediator’s rest frame. Finally, by 

means of two orthonormal vectors, V1 and V2, to the mediator direction V0: 

 

0 0
1 2 2

0 0

2 0 1

( , ,0)y x

y x

V V
V

V V

V V V

−
=

+

= ×
  (6.7) 

the final directions of the two muons will be assigned as:  

 
01 0 1 1 2 2

02 0 1 1 2 2

tan ( )

tan ( )

V V aV a V

V V aV a V

ϕ

ϕ

= + +

= − +
  (6.8) 

where 1a  is a random value between -1 and 1, and 2 1/ 2
2 1(1 )a a= − .  

 
Fig 6.8. Mediator decay point (red) after the direction assignment. Blue and green 

points show the trajectory deviation of the two muons. In the detailed view, 
a 500X zoom has been applied. 
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Fig 6.8 shows the decay point into the sphere (red) and the hypothetical location of 

the two muons taking into account the deviated trajectory respect to the mediator 

direction. At this point it is available all the information to complete the output file: 

mediator’s direction, mediator’s decay point, muon energies and muon directions. 

 

6.1.1.2.3 Outside decay 

If the decay occurs outside of the spherical can, the process is a little bit more 

complex because of the muon propagation from the decay point to the can. 

 
Fig 6.9. Schematic view of the outside decay case. 

 

I. Muon direction �Vo1, Vo2� 

In the outside decay case, this occurs far away of the detector. The deviation due to 

the boost versus the travelled distance is negligible, for this reason, it is considered 

that the two co-linear muons arrive to the detector maintaining the mediator direction, 

0 01 02V V V= = . 

II.  Di-muon impact point over the sphere (Po) 

In order to know where the di-muons impact over the spherical can, first it is obtained 

the hypothetical impact point reached by the mediator (Fig 6.9). 

#$� 
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 [ ]0 sin cos sin sin cosr SphP R α β α β α=   (6.9) 

being α random between 0 and π/2, weighted as ( ) sinf α α= , and β random between 

0 and 2π. �ψ=0� �See Fig 6.10�. 

Fig 6.10. α and β distributions to assign the hypothetical mediator impact point over 
the sphere 

This hypothetical impact point is defined with the z axis direction. In order to define 

it with the mediator direction it is necessary doing the corresponding rotation using 

the R matrix (Eq.(6.10)). After that, it is obtained the impact point in a perpendicular 

plane of the mediator direction taking into account the travelled distance and the 

deviation. 

 
sin cos 0 1 0 0 cos sin 0

cos sin 0 0 cos sin sin cos 0

0 0 1 0 sin cos 0 0 1

R

φ φ ψ ψ
φ φ θ θ ψ ψ

θ θ

− − −     
     = − − − − −     
     − − −     

 (6.10) 

III.  Traveled distance and energy (d, E1, E2) 

The traveled distance of the di-muon is a random number between 0 (that corresponds 

to mediator decay over the spherical can surface) and dmax, maximum distance 

allowed, usually related to the muon range, calculated by: 
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log(1 ( / ))o critE E

Rg
b

+=   (6.11) 

where 0 / 2E M χ= , 1029critE = , that is the muon critical energy in GeV, and 

( ) ( )4 1b (0.3092 log 0.8189)·10oE m− −= + . 

At this point, knowing the traveled distance between the mediator’s decay point and 

the sphere impact point, the muon energy is calculated. Fluka®4 simulations have 

been performed for muons (0.1, 0.5 and 2.5 TeV) in order to parameterize the energy 

spectrum vs distance and the suffered scattering along the path. Using the simulation 

results for these masses a parameterization, based on the muon mass and the 

maximum traveled distance, is proposed for the rest of muon energy cases.  

i. Parametrization of energy spectrum and angle scattering vs distance 

DiMuGen generates di-muons with a fixed muon mass (0.5 TeV) as reference, which 

corresponds to the simulation case of Mχ=1TeV. For other masses under study some 

corrections are applied to the results of the reference case for obtaining the scattering 

angle, the muon energies and the travelled distance to reach the detector: 

 

1
1

max max

2
2

max max

/

/

ref

ref

ref

ref

d d

d d

σ
σ

σ
σ

=

=

  (6.12) 

 

4 Fluka© is a general purpose tool for calculations of particle transport and interactions with matter. 
Fluka©  can simulate with high accuracy the interaction and propagation in matter of about 60 
different particles, including photons and electrons from 1 keV to thousands of TeV, neutrinos, 
muons of any energy, hadrons of energies up to 20 TeV  and all the corresponding antiparticles, 
neutrons down to thermal energies and heavy ions. 
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 max

max
ref

ref

d
d d

d

 
=   

 
  (6.13) 
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ref
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χ

χ

χ

χ

 
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 
 

 
 =  
 
 

  (6.14) 

where the terms named **_ref are the results for the reference case di-muons (0.5 

TeV), dmaxref is the maximum travelled distance, for muons of 0.5 TeV, before 

reaching the spherical can and Mχref =1TeV, is the reference DM mass. In the 

following plots (Fig 6.11 and Fig 6.12) the results using Fluka© simulations and the 

new parameterization are compared. 104 events of Mχ=200 GeV and Mχ=5 TeV have 

been simulated and compared with Fluka simulations of muons of 100 GeV and 2.5 

TeV respectively. These comparisons show good agreement between Fluka© 

simulations results and the results obtained with the parameterization. 

 

Fig 6.11. Fluka vs parameterization comparison for 0.1 TeV muons. Energy spectra 
comparison (left) and scattering angle (right). 
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Fig 6.12. Fluka vs parameterization comparison for 2.5 TeV muons. Energy spectra 
comparison (left) and scattering angle (right). 

Assuming that in the decay point each muon has an enegy Eo=M χ/2, the energy loses 

and the scattering suffered in the path to reach the sphere can be obtained using these 

parameterizations. This affects the di-muon separation, which is most notably with 

the distance and consequently to the final impact point over the spherical can. 

All of these parameterizations have been done simulating muon propagation in 

seawater but, if the arrival direction is upgoing, part of the propagation occurs in rock 

(See Fig 6.13). For these upgoing events an “equivalent water distance”, longer 

distance, is calculated in order to take into account the larger losses occurring during 

the rock propagation.  
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Fig 6.13. Propagation distances used in DiMuGen. 

 

First of all, for all the upgoing events, it is calculated the portion of rock and sea water 

of the whole propagation distance as: 

 min

2 max
cos

H O

z
dθ =   (6.15) 

as 0 ( , , ) (sin cos ,sin sin ,cos )x y zV v v v θ φ θ φ θ= = − : 

 min
2H O Sph

z

z
d R

v
= −   (6.16) 

and therefore 2rock H Od d d= − . The equivalent water propagation distance to the rock 

propagation distance is calculated as: 

 2eq H O rockd d Fd= +   (6.17) 
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where F�2.2 is the average relation factor between water and rock propagations used. 

This value of muons has been set according to the range given by PGD (Olive et al., 

2014). Fig 6.14 shows the propagation distance distribution for the example case. 

 
Fig 6.14. Dimuon travelled distance distributions considering only water propagation 

or the equivalent water distance (water+rock propagation). 
 

After redefining the distances for the upgoing muons it is necessary to re-calculate 

their energy according to 123. This is performed using again the energy spectrum. 

These new energy values calculated for 123  already consider losses including the 

propagation in rock, therefore, lowering energy values. For this reason more cases 

with energy equal to zero appear (meaning that the muon, finally, has not reached the 

can) (See Fig 6.15). 
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Fig 6.15. Di-muon energy distributions considering only water propagation or 

water+rock propagation.  
 

IV. True impact points on the spherical can (P1,P2) 

Finally, the true di-muon impact points over the sphere are calculated. For this 

purpose it is necessary knowing the di-muon separation at reaching the spherical can. 

This separation will be determined by the di-muon deviation at the decay point (tanϕ  

following the same procedure as in the inside case (See Section 6.1.1.2.2.III), the 

traveled distance to reach the sphere (d) and the scattering suffered for each muon 

( )1 2tan , tans sθ θ (Fig 6.16). 

 tanr dδ ϕ=   (6.18) 

 
1 1

¨ 2 2

tan

tan

r s

r s

d

d

δ θ

δ θ

=

=
  (6.19) 

where δr represents the di-muon separation caused by boost during the mediator 

decay and δr1 and δr2 encompass the separation caused by scattering during the di-
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muon propagation. d is the travelled distance, tan T Lp pϕ = , ϴs1 and ϴs2 are the 

scattering angle suffered for each muon respectively. 

 
Fig 6.16. Distribution of the di-muon deviation at the decay point (δr) and the 

scattering suffered for each muon (δr1, δr2). 
 

These separation distances would be in a perpendicular plane to the arrival direction

0 ( , , )x y zV v v v= . To calculate the impact points on the sphere (Fig 6.17) the two 

orthonormal unitary vectors of the plane are calculated as: 

 
1 2 2 1/ 2

( , ,0)

( )
y x

y x

V V
V

V V

−
=

+
  (6.20) 

As their scalar product is null and no one of them is a null vector: 

 ( ) ( )0 1V·V , , · , ,0 0 0x y z y x x y y xV V V V V VV V V= − = − + =   (6.21) 

The second vector is obtained by the vector product2 0 1V V V= × :  

 ( )
( )

( )

2 2

2 0 1 1/2 12 2
2 2 2

, ,1

0

x z y z y x

x y z

y x
y xy x

i j k
V V V V V V

V V V V V V
V V V VV V

− −
= × = =

+ +−
  (6.22) 
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To obtain the real impact point of each muon: 

 ( ) ( )1 1 1 2 2 1 1 1 2 2o r rP P a V a V bV b Vδ δ= + + + +   (6.23) 

 ( ) ( )2 1 1 2 2 2 1 1 2 2o r rP P a V a V c V c Vδ δ= + + + +   (6.24) 

Being a1 (and b1, c1 ) random numbers between 0 and 2π weighted as 1 1( ) cos( )f a a=   

and a2 (and b2, c2 ) between 0 and 2π weighted as 2 2( ) sin( )f a a= . 

 

Fig 6.17. Mediator hypothetical impact point (red), blue and green points show the 
impact points over the sphere of the two muons (Only have been plotted 103 
events for better visualization. In the detailed view 500X zoom has been 
applied. 

At this point it is available all the information to complete the output file: mediator’s 

direction, di-muon’s impact points and muon’s energy. 

6.2 Background obtained using the scrambled data 

There are two sources of muon background in ANTARES, both produced in the 

interactions of cosmic rays with the Earth's atmosphere: 
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i. Down-going atmospheric muons resulting from the interaction of cosmic 
rays in the atmosphere. Almost all of this is reduced by the Deep sea location 
and by the reconstruction algorithms that are tuned to upgoing events. Cuts 
on the quality of the tracks are also applied to reject downgoing muons 
wrongly reconstructed as upgoing. 
 

ii.  Atmospheric neutrinos produced by cosmic rays. These neutrinos can 
traverse the Earth, so they can be detected as upgoing tracks. This is an 
irreducible background. 
 

Fig 6.18 shows a comparison between data and Monte Carlo (MC) simulations of: 

a) Miss-reconstructed atmospheric muons performed with the MUPAGE 
(Atmospheric MUons from PArametric formulas: a fast GEnerator for 
neutrino telescopes) package (Carminati, Margiotta, & Spurio, 2008).  
 

b) Upgoing atmosferic neutrinos performed with GENHEN (GENerator of 
High Energy Neutrinos) (Labbate, Montaruli, & Sokalski, 2004,) which is 
the ANTARES software package to simulate neutrino interaction events in 
the proximity of the detector.  

Fig 6.18 shows the good agreement between the data-MC comparisons. However, for 

the background estimation scrambled data (randomizing the time) during the period 

under study was used. This allows to reduce the effect of systematic uncertainties 

(efficiency of the detector, assumed flux, etc.) from the simulation. The data used 

correspond to the period from 2007-2012. During almost all 2007 only 5 lines were 

installed. The number of operative lines was increasing until arriving to 12 in 2008. 
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Fig 6.18. Data_MC comparisons for some of the basic cuts. Data (black), MC: miss-
reconstructed atmospheric muons (red), upgoing neutrinos of energies 
comprises between [5-20·103] GeV (blue), upgoing neutrinos of energies 
comprises between [20·103 – 18] GeV (pink), all (green). The represented 
variables have been described in Section 6.1. tchi2 refers to the quality 
parameter (Q).(plots from the standard dark matter Sun analysis (Lambard et 
al., 2013)) 

6.3 Optimization of the event selection criteria 

A binned method is used in order to minimize the sensitivity of ANTARES to the di-

muon flux. In this sense, the Model Rejection Factor (MRF) (Hill & Rawlins, 2003) 

is used to optimize the angular distance to the sources, ψcut, defined as the angular 

separation between tracks and the Sun’s direction, and the track quality cut 

parameters, Qcut (Ec.�6.1�). The sensitivity for a di-muon flux can be written as: 

 ( ) ( ) ( )90 ,

90%
Φ , Φ , obs b

s

n n
E E

n

µ
θ θ=   (6.25) 
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where Φ(E,θ) 90% indicates the upper limit on the source flux calculated scaling the 

simulated flux Φ(E,θ) by the ratio of the upper limit, µ90(nobs,nb), and the signal 

expectation, ns. The confidence interval at 90%, µ90(nobs,nb), is defined as a function 

of the number of events observed, nobs , and the expected background, nb. Although 

it is not possible knowing the upper limit that will result from an experiment until 

looking at the data, it is possible using the MC predictions to calculate an average 

upper limit, ( )90 bnµ , that would be observed after hypothetical repetition of the 

experiment with expected background, nb, and no true signal (ns=0) (Feldman & 

Cousins, 1998).  The average upper limit, is the sum of these expected upper limits 

weighted by their Poissson probability of occurrence: 

 ( ) ( ) ( )
( )90 90 ,

0 !

obs

b

obs

n

nb
b obs b

n obs

n
n n n e

n
µ µ

∞
−

=

= ∑   (6.26) 

The strongest constrain on the expected signal flux Φ�E,θ� corresponds to the set of 

cuts that minimizes the Model Rejection Factor, 90 snµ  which, consequently, 

minimizes the average flux upper limit that would be obtained over the hypothetical 

repetition of the experiment. 

 ( ) ( ) 90
90

Φ , Φ ,
s

E E
n

µθ θ=   (6.27) 

In the secluded dark matter analysis, decay of mediators in the volumes inside and 

outside the spherical can have been simulated. To convert this into a flux, the 

simulated number of events in the inside case has been taken as reference, in this 

way, the sensitivity to di-muon flux would be given by: 
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where liveT   corresponds to the live time (total number of data taking days: 1321), 

simN  is the number of events simulated inside the can (1·105) and S phR   is the radius 

of the spherical detection can. Notice that the events of the outside case are also 

considered through ns, see Eq. (6.2).  

6.4 Other interesting cases in Secluded Dark Matter 

In the SDM model there are some other interesting cases that have been studied. In 

all cases DM is annihilated into a mediator which escapes of the dense solar core. 

The difference lies in the product of the mediator’s decay. 

6.4.1 Di-muon decay into neutrino 

If the mediator decay into di-muons occurs far away to the Earth, the di-muons in 

turn may also decay, typically into ( ), ( )e e ν ν− + , the neutrino and antineutrino are 

muonic and electronic (or vice versa) in each decay. As the products of these decays 

are three particles it is not trivial knowing the spectrum of neutrinos. For this reason, 

Michel’s spectra have been used (Divari, Galanopoulos, & Souliotis, 2012), in the 

muon at rest reference frame. Moreover, their boost, taking into account the muon 

energy (i.e., the DM mass), has been calculated. A detailed oscillation study has not 

been done for neutrino propagation. The more conservative assumption in which, 

after oscillations, all neutrino flavours arrive to the Earth with the same ratio 1:1:1 

has been considered. As an example, the final spectra of muonic and electronic 

neutrino, for di-muon decay from Mχ=1 TeV mϕ=1 GeV is shown in Fig 6.19. 
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Fig 6.19. Neutrino spectra, from the initial muonic and electronic neutrino, for di-
muon decay from Mχ=1 TeV mϕ=1 GeV. 

For the Di-muon decay into neutrino case, the process of optimization and 

minimization of sensitivities was done working with the ANTARES Effective Areas 

(EffArea) for neutrinos and antineutrinos. The EffArea was calculated by the authors 

of the Dark Matter Sun analysis 2007-2012 using the standard ANTARES simulation 

tools (Lambard et al., 2013). In the SDM analysis, the only change respect to the 

Standard Sun Analysis, is the final energy distribution of these particles. 

6.4.2 Mediator decay into neutrino 

When the mediator, ϕ, escapes of the Sun core, they could decay directly into 

neutrinos and antineutrinos, φ νν→ (Fig 6.20). In the standard scenario, in which 

neutrinos are produced at the center of the Sun, absorption is relevant for 100E GeV≥

, resulting in a significant suppression of the neutrino spectrum beyond1E TeV∼ . The 

neutrino energy spectrum is damped as/Ee ν ε− , with a critical energy of 100GeVε ∼ . 

This occurs because high energy neutrinos can interact with nuclei and be absorbed 

before escaping the Sun. However, as the solar density decreases exponentially with 
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radius, if neutrinos are injected (by a mediator) at larger radii they are subject to much 

less absorption and finally can propagate out of the Sun. Even for ϕ decay inside the 

Sun, the neutrino signal can be dramatically enhanced compared to the standard 

scenario. It is expected that the critical energy scale for absorption increases 

exponentially with the neutrino injection radius, increasing rapidly once the injection 

point is moved outside the dense core. 

 
Fig 6.20. Secluded scenario diagram where the mediator escapes the solar dense core 

and decays into neutrino. 

In the mediator decay into ν case, the neutrino signal at the Earth from annihilation 

of secluded DM in the Sun, for a range of DM masses and considering mediator 

lifetimes 10sγτ ≥  has been analyzed. For this case the spectrum of neutrinos is flat 

with energies from 0 to the DM mass (Bell & Petraki, 2011). It is usually also 

assumed that the mediators decay with equal branching ratio to each of the three 

neutrino flavors and will reach the Earth with ratios 1:1:1. 

For the optimization of the last SDM cases: Di-muon decay into ν and mediator decay 

into ν the sensitivity to neutrino flux would be given by: 
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T
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υ υ

µ
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+ =   (6.29) 

where liveT   corresponds to the live time (total number of data taking days: 1321), 90µ  

is the average upper limit of the background at 90% CL computed using a Poisson 
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distribution in the Feldman-Cousins approach (Feldman & Cousins, 1998).Aeffυ υ+  is 

the effective area averaged over the neutrino energy defined as:  
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  (6.30) 

where 10thE GeVν =  is the energy threshold for neutrino detection in ANTARES, Mχ  

is the WIMP mass, , ,dN dEν ν ν ν  is the energy spectrum of the (anti-)neutrinos at the 

surface of the Earth, and is the effective area of ANTARES as a function of the (anti-

) neutrino energy for tracks coming from the direction of the Sun below the horizon. 

Due to their different cross-sections, the effective areas for neutrinos and anti-

neutrinos are slightly different and therefore are considered separately. In addition, 

the fluxes of muon neutrinos and anti-neutrinos from the Sun and are convoluted with 

their respective efficiencies. (i index denotes the periods with different detector 

configurations (5, 9, 10 and 12 detection lines) 
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7 
Analysis and 

Results

The last part of the search of SDM with ANTARES is the data unblinding, i.e., 

uncover the registered data for looking to the region where the best flux is expected. 

In order to know what is this region, simulations have been performed using the tools 

and following the methods described in the previous chapter. In this chapter will be 

presented the flux sensitivities obtained after simulation of the different scenarios. 

Moreover the strategy to unblind the data, fixing the angular separation between 

tracks and the Sun’s direction (ψcut) and the track quality parameter (Qcut), will be 

described. To finalize, the ANTARES limits for the SDM model in the Sun will be 

shown. 

7.1 Flux sensitivities  

In this analysis a blinding policy, in order to avoid biases in the event selection, has 

been followed. The values of the cuts (Qcut and ψcut) have been chosen before looking 

at the region where the signal is expected. For this reason, the simulation of the 

different scenarios provides valuable information about the expected flux of di-

muons and neutrinos coming from mediator decay or coming from di-muon decay. 
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Following the minimization process described in Chapter 6 section 6.3, the 

ANTARES flux sensitivity was obtained for the different scenarios. In the first case, 

di-muons as product of mediators’ decay in the vicinity of the detector have been 

simulated. Both mediator’s decay cases, inside and outside of the spherical can, have 

been simulated. The ANTARES sensitivity to di-muon flux (Eq.(6.27)) was obtained 

minimizing the MRF, 90( )snµ , considering the number of obtained events (ns) in the 

simulation. An example of the number of events distribution is shown in Fig 7.1. In 

the other SDM cases (Sections 6.4.1 and 6.4.2), the sensitivity to neutrino flux 

(Eq.(6.28)) was obtained minimizing the MRF,90( )Aeffυ υµ + , considering the 

effective area )(Aeffυ υ+  for (anti-)neutrinos. An example of the effective area for (anti-

)neutrinos is shown in Fig 7.2. The average upper limit in the half-cone angle 

parameters space used to optimize the flux sensitivity for all cases is shown in Fig 

7.3. 

Fig 7.1. Number of detected events, ns,  amount in the Q, half-cone angle 
parameter space for SingleLine (left) and MultiLine (right) anlalysis 
according to simulations corresponding to mχ=1 TeV mϕ=1 GeV. The 
colorbar indicates the number of events. 

Fig 7.2. Effective area (m2) in the Q, half-cone angle (zenith band width) 
parameters space for SL (left) and ML (right) analysis for the simulation 
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corresponding to mχ=1 TeV, mφ=1 GeV. The colorbar indicates the 
Effective area (m2). 

Fig 7.3. Average upper limit ( )90 bnµ  (Eq. 6.28) in the Q, half-cone angle 

parameters space for SingleLine (left) and MultiLine (right) analysis. The 
colorbar indicates the number of events. 

The best flux sensitivity, for each DM mass and each strategy, is expected for the pair 

of cuts, track fit quality (Qcut) and half-cone (bandwidth) angle (ψcut), which minimize 

the MRF. Fig 7.4 shows the di-muon flux sensitivity obtained with the two 

reconstruction strategies. Usually, SingleLine strategy is used for low energy events. 

Likewise, Fig 7.5 and Fig 7.6 show the neutrino flux sensitivities of the two other 

SDM scenarios.  

 

Fig 7.4. Di-muon flux sensitivities using the optimum cuts 
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Fig 7.5. Sensitivities toν ν+ flux coming 
from di-muon decay using the 
optimum cuts 

Fig 7.6.   Sensitivities toν ν+ flux  
coming from mediator decay 
using the optimum cuts 

The values of the optimum cuts for each dark matter mass, strategy and SDM scenario 

are presented in Annex A. The values of the MRF minimization and the di-muon (or 

neutrino) fluxes are also shown. 

7.2 Unblinding Strategy 

Optimizing for each mass, strategy (MultiLine and SingleLine) and SDM scenario 

results in many observation trials. Taking into account that the differences in flux 

sensitivities using different cuts is not large, the number of cuts to be used for the 

unblinding has been set to six (Table 7. 1) since they were representative enough, for 

simplicity, inasmuch as the losses in discovery potential were small, and in order not 

to increase the trial factor. The six cuts (4 for MultiLine (ML) and 2 for SingleLine 

(SL) ) are sufficient to deal with the different energy ranges, strategy and scenario.  

To enhance the sensitivity to the di-muon case, three different cases were proposed 

to use for ML analysis: for masses lower than Mχ=0.2 TeV the optimum cuts for Mχ 

=0.1 TeV (Cut 3: Qcut=1.6, ψcut =2) are used; for masses between 0.2 TeV up to 5 

TeV, the optimum cuts for Mχ =1 TeV (Cut 2: Qcut =1.6, ψcut =1.4) are selected and 

finally, for higher masses the optimum cut for Mχ =10 TeV (Cut 1: Qcut =1.8, 
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ψcut=1.3) are used. For SL analysis, the optimum cuts for Mχ =0.05 TeV (Qcut =1, 

ψcut=12.8) are used for all Mχ.  

In order to enhance sensitivity for both neutrino cases a ML Cut 4: Qcut=1.4 ψcut=2.6 

are used for lower masses whereas the previous Cut 1: Qcut=1.8 ψcut =1.3 are selected 

at the highest masses studied. For SL analysis, it has been used Qcut =0.7 ψcut =11.3 

for all masses. Table 7.1. summarizes the final selected cuts for the correspondent 

energy ranges and scenarios. 

 

Reconstruction Ncut Qcut ψcut (º) Di-µ Di-µ into ν ϕ into ν 

MultiLine 1 1.8 1.3 5M TeVχ >  5M TeVχ >  2M TeVχ ≥  

MultiLine 2 1.6 1.4 0.2 5TeV M TeVχ≤ ≤  - - 

MultiLine 3 1.6 2 0.2M TeVχ <  - - 

MultiLine 4 1.4 2.6 - 5M TeVχ ≤  2M TeVχ <  

SingleLine 1 1 12.8 All M χ  - - 

SingleLine 2 0.7 11.3 - All M χ  All M χ  

 

Table 7. 1. Summary of the proposed cuts for the unblinding data evaluation. 

Fig 7.7 shows the ratio between the flux sensitivity obtained using the optimum cuts 

(Annex A) and the flux sensitivity obtained using the proposed ones (Table 7. 1) for 

the Di-muon case. This factor represents the worsening in sensitivity when the 

proposed cuts are used with respect to optimum ones. For most of the masses values 

close to 1 are obtained, with some specific cuts, so it can be concluded that the effect 

will not be large.  
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Fig 7.7. Ratio between the sensitivity obtained using the optimum cuts and the 

sensitivity obtained using the proposed ones. On top for ML analysis, on the 
bottom for SL analysis. 

For each DM mass the cut which ratio value is nearest to one was selected for 

estimating the final flux. The comparison of flux sensitivity using the proposed cuts 

with the optimal ones are presented in Fig 7.8, Fig 7.9 and Fig 7.10. In these figures 

it is also appreciated that the effect of using these proposed ones in the final flux is 

small. 
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Fig 7.8. Di-muon flux sensitivities using the proposed cuts (red) and the optimum 
cuts (gray). 

Fig 7.9. Sensitivities to ν ν+  flux coming 
from di-muon decay using the 
proposed cuts (blue) and the optimum 
cuts (gray). Gray lines are difficult to 
appreciate because the fluxes using 
the proposed cuts are almost the same 

Fig 7.10. Sensitivities to ν ν+  flux coming 
from mediator decay using the 
proposed cuts (green) and the 
optimum cuts (gray).  

7.3 Sensitivity in terms of annihilation rates 

The probability of a mediator, with a decay lengthL cγ τ= , of decaying in the vicinity 

of a detector of size d is given by Equation (7.1) (Meade et al., 2010). 
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• ann hidR BRµΓ = Γ × × : annΓ  is the product of the annihilation rate, 

( )hid totalR DMDMσ φ σ= → is the fraction of annihilations that produces 

mediators, and BRµ , which is the branching ratio of mediators ( )φ  into 

muons ( )µ . For simplicity, branching ratios 1 for the channel considered 

are assumed ( 1hidR =  and 1BRµ = ), given this the use of Γ and annΓ  is 

equivalent. 

• d: is the detector size. For simplicity, fluxes are referred to mediators 
which decay occurs inside of a sphere, with a characteristic distance

( )1/3

ind V= . 

• D : Is the distance between the Sun and the Earth. 

• L cγ τ=  is the mediator`s decay length. γis the relativistic factor, in this 

case M mχ φγ = . 

In the first term of Eq.(7.1), two times the annihilation factor is because two 

mediators are produced in each annihilation of DM. In the second term the solid angle 

suppression is taken into account. The third one takes into account the probability of 

decaying before reaching the detector and in the last one the probability of decaying 

inside the reference detector is considered. decayP  can be related with the average flux 

upper limit (Eq.(6.27)) for each ,M mχ φ  simulated pair through the expression 

(Eq.(7.2)). 
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Grouping the terms, the sensitivity can be defined in terms of annihilation rate as:  
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Fig 7.11. ANTARES reach for detecting mediators produced in the Sun and 
decaying into di-muons as a function of the DM annihilation rate and 
mediator decay length. Results for different DM mass and mϕ= 1 GeV using 
BBfit Singleline (dashed) and Multiline (solid) reconstruction strategies are 
shown. Results of sensitivities obtained using the proposed cuts. 
 

Fig 7.11 shows the reach of the ANTARES neutrino telescope to detect mediators 

coming from DM annihilation and decaying into di-muons, as a function of the DM 

annihilation rate and the decay length of the mediator. It is easily discernible that the 

reach of ANTARES to di-muons is limited by the solar radius (~7·105 km). Mediators 

which do not escape of the Sun are not detected. The detection rate is maximized 

when the mediator decays at or in the vicinity of the detector, i.e., when the lifetime 

of the mediator is enough to reach the Earth surface. Above this lifetime value, the 

detection probability decreases linearly with the decay length. 

Similarly, sensitivity in terms of annihilation rates can be defined for the other two 

SDM scenarios. Equation (7.4) describes the sensitivity in terms of annihilation rates 

for detecting mediators which decay into di-muons between the Sun and the Earth 

and they, in turn, decay into neutrinos. Likewise, equation (7.5) describes the 
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sensitivity in terms of annihilation rates for detecting mediators which decay directly 

into neutrinos. The differences between the three expressions (equations: (7.3), (7.4) 

and (7.5)) lie in the different decay products. 
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Fig 7.12 shows the reach of the ANTARES neutrino telescope to detect mediators 

coming from DM annihilation which decay into di-muons and finally decay into 

neutrinos, as a function of the DM annihilation rate and the decay length of the 

mediator. Three different regions can be observed in the plot: Best sensitivity is 

obtained when the mediator decays in the vicinity of the Earth. The sensitivity 

remains almost constant while the decay length is enough to escape out of the Sun. If 

the decay length of the mediator is longer than the Sun Earth distance, the sensitivity 

decreases linearly with the decay length. 
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Fig 7.12. ANTARES reach for detecting mediators produced in the Sun and decaying 

into di-muons and finally into neutrinos (before reaching the Earth) as a 
function of the annihilation rate and decay length. Results for different DM 
mass and mϕ= 1 GeV using BBfit Singleline (dashed) and Multiline (solid) 
reconstruction strategies are shown. Results of sensitivities obtained using 
the proposed cuts. 

Fig 7.13 shows the ANTARES reach for detecting mediators produced in the Sun and 

decaying into neutrinos as a function of the annihilation rate and decay length. In this 

case, mediators with lifetime higher than 10 seconds have been studied, so it is 

assumed that the mediator escapes of the Sun. Here again, the best sensitivity is 

obtained when the mediator decays between the Sun and the Earth, decreasing 

linearly when the decay length exceed the Sun-Earth distance. 
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Fig 7.13. ANTARES reach for detecting mediators produced in the Sun and decaying 

into neutrinos as a function of the annihilation rate and decay length. 
Results for different DM mass and mϕ= 1 GeV using BBfit Singleline 
(dashed) and Multiline (solid) reconstruction strategies are shown. 

7.4 Cross Section Sensitivities 

For the study of the SDM model, the assumption whereby the annihilation balances 

the DM capture in the Sun has been taken into account, / 2ann CΓ =
⊙

. The capture can 

be approximately obtained by Eq.(5.2), where, scσ  and SIσ  are the spin-dependent 

(SD) and spin-independent (SI) cross sections respectively. The limits on the SD and 

SI WIMP-proton scattering cross-sections are derived for the case in which one or 

the other is dominant. Following these assumptions, the spin-dependent cross-section 

will be: 
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Likewise, the spin-independent cross-section will be: 
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Authors, in this reference (Ibarra et al., 2014), relies on assumptions on the density 

and velocity distributions of dark matter particles in the Solar System, as well as on 

the composition and density distribution of the interior of the Sun (A. Gould, 1987). 

These assumptions along with the model considered are the cause of little differences 

between the expressions obtained by different authors. For example, SDσ  calculated 

by the (Kamionkowski, 1991) proposal differs a factor about 3 to 5 (depending on 

theMχ ) with the (Ibarra et al., 2014) one. The case of SIσ is a little bit more complex 

due the Mχ dependence used for diverse authors in the bibliography. Ibarra et al. 

consider a quadratic dependence while (Bell & Petraki, 2011) consider a lineal 

dependence and (Meade et al., 2010) consider ( )3/ 2
M χ   

The results of this work have been obtained following the capture rate proposed by 

(Ibarra et al., 2014). 

As was presented in the previous sections, the sensitivity in terms of the annihilation 

rates depends on the lifetime of the mediator. For the cross-section evaluation it will 

be convenient to set a value of the lifetime of the mediator. To see the maximum 

potential for these models, lifetime values for which the sensitivities are the best have 

been assumed. For the di-muon case, the lifetime has to be long enough to assure that 

the mediator reach the vicinity of the Earth (see Fig 7.11). Following this, the best 

sensitivity is obtained for mediators with decay length 81.5 10L c kmγ τ= = ⋅  (distance 

between the Sun and the Earth). In both neutrino cases the lifetime of the mediator 

for best sensitivity has to be long enough to assure that the mediator escapes of the 

solar dense nucleus, but not too long so that it decays before reaching the Earth. It 

can be demonstrated, by minimization of the equation (7.1) that the lifetime of the 
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mediator for the best sensitivity must be forty times the solar radius 

7( 2.7 10 )L c kmγ τ= = ⋅ , approximately. 

Fig 7.14. ANTARES proton-WIMP cross section sensitivities for the three 
Secluded DM studied cases, USING BBfit Singleline and Multiline 
reconstruction strategies. Results for favorable lifetime of mediators. 

Fig 7.14 shows the ANTARES proton-WIMP cross section sensitivities for the 

different SDM scenarios (products of DM annihilation in the Sun through mediators 

decaying into: di-muons (red), di-muons which in turn decay into neutrinos (blue) 

and directly into neutrinos (Green)) for favourable mediator life time values. It is 

worth to mention that, for favorable lifetime of mediators, this ANTARES analysis 

search has better sensitivities for spin-dependent interaction than those of direct 

detection experiments. For SI, this is only the case for largeMχ . 

7.5 Final Results after unblinding the data 

After a detailed study of three different secluded dark matter scenarios and the cut 

optimization procedure a total of 6 cuts (on quality parameter (Qcut) and angular 

distance to the source (ψcut) have been selected for the evaluation of all considered 

masses and scenarios. The proposed cuts have been summarized in Table 7. 1. After 

the proposed cuts were fixed, the data sample was unblinded and events coming from 

Sun direction during the evaluated period were studied.  
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7.5.1 Unblinding results following MultiLine reconstruction strategy 

Table 7. 2 shows the unblinding results for the MultiLine analysis. In this table the 

obtained events in the selected cuts (Nobs) and the number of events expected for 

background, scrambled data (Nback), are presented. No statistical significant excess 

has been observed above the background in the Sun’s direction for any cut.  

Reconstruction Ncut Qcut 
ψcut 

(º) Nobs Nback 
µ90% 

UpperLimit 
µ90%  

LowerLimit 

MultiLine 1 1.8 1.3 2 1,25 4,665 0 

MultiLine 2 1.6 1.4 2 0,892 5,02 0 

MultiLine 3 1.6 2 3 1,82 5,605 0 

MultiLine 4 1.4 2.6 3 2,037 5,39 0 

 

Table 7. 2. Results of the unblinded data evaluation with the proposed cuts for 
MultiLine reconstruction. 
 

As the significance level is not enough to evidence signal, it has been proceed to put 

limits for the models. Using the values obtained for the proposed cuts, 90% 

Confidence Level (CL) limits on the di-muon flux, (Φdi-µ) and also neutrino flux

(Φ )υ υ+ , can be computed from the data according to Eq.(6.28) and Eq.(6.29) 

respectively, where the90µ  average 90% CL upper limit is replaced by the upper limit 

at 90% CL, 90µ , on the number of observed events. Taking into account the number 

of events observed and the expected background, the upper limit can be obtained as 

the 90% confidence interval following the Feldman-Cousins approach (Feldman & 

Cousins, 1998).  



 Part II: First Search for Secluded Dark Matter with ANTARES 

 

194

 

90

2/3

3

Φ
4
3

sim

live s
di

sph

N

T n

R
µ

µ

π
−

 
 
 =

  
  
  

  (7.8) 

 
90

Φ
live

Aeff

T
υ υ

υ υ

µ
+

+ =   (7.9) 

 

Fig 7.15. Differential distribution of the angular separation ψ of the event tracks with 
respect to the Sun’s direction for the expected background (red line) 
compared to the data (black asterisk). Results for the four cuts of BBFit 
MultiLine reconstruction. 

Fig 7.15 shows the distribution of the angular separation between the events and the 

Sun’s direction obtained after applying the selection criteria on the zenith angle, the 
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minimum number of hits and lines, and the different cutQ  of the Table 7. 2. As 

remarked previously, in any cut has been observed a statistical significant excess. 

7.5.2 Unblinding results following SingleLine reconstruction strategy. 

Table 7. 3 shows the unblinding results for the SingleLine analysis. In this table the 

data events for the selected cuts (Nobs) and the number of events expected by the 

scrambled data (Nback) are presented. No excess has been observed above the 

background in the Sun’s direction for any cut. Following the same procedure than in 

the previous section (7.5.1) it has been proceed to put limits for this model.  

 

Reconstruction Ncut Qcut 
ψcut 

(º) Nobs Nback 
µ90% 

UpperLimit 
µ90%  

LowerLimit 

SingleLine 1 1 12.8 190 202,9 12,95 0 

SingleLine 2 0.7 11.3 23 24,4 7,7 0 

 
Table 7. 3. Results of the unblinded data evaluation with the proposed cuts for 

SingleLine reconstruction. 
 

0 shows the distribution of the zenith angular separation between the events and the 

Sun’s direction obtained after applying the selection criteria on the zenith angle, the 

minimum number of hits and lines, and the different cutQ  of the Table 7. 3. As 

remarked previously, in no cut has been observed signal excess using SingleLine 

reconstruction strategy. 
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Fig 7.16. Differential distribution of the zenith angular separation ψ of the event 

tracks with respect to the Sun’s direction for the expected background 
(red line) compared to the data (black asterisk). Results for BBFit 
SingleLine reconstruction. 

 

7.6 Limits obtained for Secluded Dark Matter models 

This section includes the plots of the ANTARES limits for the SDM model in terms 

of DM annihilation rates and cross-sections for the two final products, di-muon and 

neutrino. The plots show the differences between the flux ((Φ )di µ−  and(Φ )υ υ+ ) limits, 

calculated after unblinding the data. They are compared to the sensitivities. Notice 

that the limits are above sensitivities in the case of MultiLine since the number of 

events observed is larger than the expected ones. For SingleLine, occurs the opposite. 
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Fig 7.17. Flux limits for di-muons (top) and neutrinos coming from di-muon decay 
(bottom-left) and coming from mediator decay (bottom-right). In gray 
color the correspondent flux sensitivities. 

7.6.1 Annihilation Rates 

Limits of annihilation rates have been obtained through the Equations (7.3), (7.4) and 

(7.5) where the values of the limits on the di-muon flux (Φ )di µ− , and the neutrino flux 

(Φ )di µ− have been considered  for each scenario. For better comparison in Fig 7.18, 

the ANTARES exclusion limits for the three Secluded DM scenarios (products of 

DM annihilation in the Sun through mediators decaying into: di-muons (dash-dotted 

blue), neutrinos from di-muons (solid blue), directly into neutrinos (green)) as a 

function of the annihilation rate ( Γ ) and the decay length ( γcτ ) for all dark matter 
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masses analysed are shown. The shadow regions would be excluded for these models. 

Depending on the Mχ and the decay length different regions can be explored. 
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Fig 7.18. ANTARES exclusion limits for the three Secluded DM scenarios 
(products of DM annihilation in the Sun through mediators decaying into: 
di-muons (dash-dotted blue), neutrinos from di-muons (solid blue), 
directly into neutrinos (Green)) as a function of the annihilation rate (Γ) 
and the decay length (γcτ) for three all analysed dark matter masses. The 
shadow regions would be excluded for these models 

7.6.2 Limits on Cross Sections for SDM 

To finalize, the cross section limits are presented and compared with other 

experiments. The spin-dependent and spin-independent cross section limits depends 

on the annihilation rates and these, in turn, depends on the lifetime of the mediator 

for the SDM model, as explained in section 7.4. Here, the cross-section limits for the 

three cases are presented, for the two lifetime values for which the sensitivities are 

the best. Fig 7.19 shows Antares proton‐WIMP cross‐section limits for SDM scenario 
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(products of DM annihilation in the Sun through mediators decaying into: di-muons 

(blue) and directly into neutrinos (Green)) for favourable mediator life time values. 

Fig 7.20 shows the limits compared to different experiments of direct search for dark 

matter in the Sun. 

Fig 7.19. ANTARES 90% CL upper limits on the spin-dependent (left) and spin-
independent (right) WIMP-proton cross-sections as a function of the WIMP 
mass for favourable mediator life time. 

Fig 7.20. Sensitivities collection of different direct detection experiments 
(SIMPLE (Felizardo et al., 2014), COUPP (Behnke et al., 2012), LUX 
(Akerib et al., 2014) and XENON-100 (Aprile et al., 2012)) of search for 
dark matter in the sun (black lines). On the spin-dependent (left) and spin-
independent (right) WIMP-nucleon cross-sections as a function of the 
WIMP mass. SDM ANTARES limits (color lines). 
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The limits derived in this thesis are the first experimental limits to SDM models 

established in neutrino telescopes. There were some previous constrains or 

sensitivities predicted by phenomenology physicists (Meade et al., 2010; Schuster et 

al., 2010), but naturally, the knowledge of the response of the detector in this kind of 

papers is quite limited, and therefore, the results are usually taken with caution. As 

shown in Fig 7.20, for sufficiently long-lived, but not stable, mediators, the imposed 

limits to these models are much more restrictive than the ones derived in direct 

detection searches for the case of spin-dependent interaction. In case of spin-

independent interactions, direct detection search is more competitive for low and 

intermediate masses, but this search becomes to be competitive for larger masses (> 

1 TeV).  

Comparing with other indirect detection methods, such as gamma ray detection, 

roughly speaking, the limits derived here will be competitive for large dark matter 

masses and favorable mediator life time (γcτ ~ 1011 m). However, the comparison is 

not easy, since results are usually given in terms of <σ v> parameter and several 

astrophysical assumptions have to be taken. Therefore, it will be better understood in 

terms of complementary information. In that sense, this analysis constrains in an 

alternative way these models that are one of the preferred solutions to explain, for 

example, the energy of the positron flux measured by AMS-II (Accardo et al., 2014; 

M. Aguilar et al., 2014). Although one possible interpretation of this data would be 

the existence of near-by pulsars, quite a lot of papers study the possibility of a DM 

hint. In this line, the annihilation into two mediators that results in four leptons (two 

di-muons, for example) is much favored that the direct annihilation into leptons 

(Boudaud et al., 2014; Cholis & Hooper, 2013; Lopez, Savage, Spolyar, & Adams, 

2015).  
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Conclusions 
 

 

 

 

 

 

 

 

 

 

 

 

The first part of the thesis has been dedicated to the design and development of a 

calibrator for the acoustic detection of neutrinos in deep sea neutrino telescopes. The 

parametric acoustic source technique has been tested and finally used in order to 

reach the high directivity of the bipolar pulse maintaining a compact design. 

Pioneering studies of this technique have been carried out here demonstrating its 

capacity for this application even for the case of cylindrical symmetry and transitory 

signals. Moreover, taking the advantage of the versatility of the chosen transducer, 

the functionality of the final calibrator prototype has been expanded, allowing 

working in two operation modes: low and high frequency. In one hand the low-

frequency mode allows the system to deal several acoustic-related tasks in an 

underwater neutrino telescope such as calibration of the receiver sensors, or use it as 

emitter for acoustic positioning purposes. On the other hand the high-frequency mode 

is used for acoustic neutrino detection calibration by generating directive bipolar 

pulses using the parametric technique. Furthermore, a strategy for performing sea 

campaigns with the calibrator has been planned and a mechanical structure which 
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makes possible to operate the calibrator from a vessel controlling the direction of 

emission has been developed. A register system to monitor the position, orientation 

and emissions during the sea campaign has also been integrated. The prototype has 

been successfully tested in low-frequency mode. However, the power electronics for 

high frequency mode has still to be completed in order to be able to use the compact 

calibrator with all functionalities. All this work and results have been presented in 

different ANTARES meetings, Multidark Workshops and international conferences 

(ARENA, 2010; MARSS, 2011; VLVnT, 2011; ARENA, 2012; CIBRA, 2013;), and 

published in refereed journals (Adrián-Martínez et al., 2011; Ardid et al., 2012a; 

Ardid et al., 2012b; Adrián-Martínez et al., 2013a; Adrián-Martínez et al., 2013b). 

The second part of the thesis has been dedicated to the analysis of the ANTARES 

data in order to constrain Secluded Dark Matter models. Specifically, these models 

have been tested by the detection of di-muons and/or neutrinos coming from Sun 

direction. In order to know the detector response to the di-muon signal, a dedicated 

code has been developed for the simulation of di-muon generation from mediator 

decay and its detection with ANTARES. In order to avoid biases in the event 

selection, a blinding policy has been followed in the analysis  choosing the optimum 

cuts before looking at the Sun direction, where the signal is expected. The selection 

criteria have been chosen to maximize the amount of signal over the expected 

background, i.e. for better flux sensitivity, for a few representative cases. Finally, 

since no significant statistical excess has been observed above the expected 

background in the Sun’s direction, it has been proceed to constrain the models. The 

limits derived in this thesis are the first experimental ones established in neutrino 

telescopes to SDM models. Through the comparison with other experiments, it has 

been drawn that the imposed limits to these models are much more restrictive than 

the ones derived in direct detection searches for the case of spin-dependent interaction 

for a wide range of lifetimes of the meta-stable mediator. In case of spin-independent 
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interactions, direct detection search is more competitive for low and intermediate 

masses, but this search becomes to be competitive for larger masses (> 1 TeV).  

It is worth to mention that SDM models are one of the preferred solutions to explain 

some non-completely understood measurements, such as for example the rising in the 

positron-electron ratio spectrum measured by AMS-II. Although one possible 

interpretation of this data would be the existence of near-by pulsars, quite a lot of 

research works study the possibility of a DM hint. In this line, the annihilation into 

two mediators that results in four leptons (two di-muons, for example) is much 

favored that the direct annihilation into leptons. Recently, some constrains from 

gamma detectors have also been arisen for this explanation and, in this sense, the 

analysis of this thesis constrains it in an alternative and complementary way. This 

analysis and results have been presented in different ANTARES meetings, Multidark 

Workshops and in RICAP 2014 conference (Adrian-Martínez, RICAP). Moreover, a 

publication in a refereed journal is being prepared. 
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Annex A 
 

Cut values which minimizes the flux sensitivities for each DM mass and strategy. 

 

 Optimun Cuts 

 Dimuon (MultiLine) Dimuon (SingleLine) 

mχ (TeV) MRF Qcut 
ψcut 
(º) 

ΦDi-µ 
(km-2yr -1) 

MRF Qcut 
ψcut 
(º) 

ΦDi-µ 

(km-2yr -

1) 
10 5,8E-04 1,8 1,3 3,9E+01 4,3E-02 1,2 1 2,9E+03 

5 7,7E-04 1,7 1,4 5,3E+01 4,9E-02 1,1 1,9 3,4E+03 

2 1,4E-03 1,7 1,4 9,8E+01 7,3E-02 1,1 1,9 4,9E+03 

1 2,3E-03 1,6 1,4 1,6E+02 9,6E-02 1 3,2 6,6E+03 

0,5 3,4E-03 1,6 1,4 2,3E+02 1,4E-01 1 8,2 9,0E+03 

0,2 6,4E-03 1,6 1,6 4,4E+02 1,7E-01 1 9,8 1,2E+04 

0,1 2,9E-02 1,6 2 2,0E+03 2,3E-01 1 11,1 1,6E+04 

0,05 4,3E-01 1,5 4,1 2,9E+04 4,6E-01 1 12,8 3,1E+04 

0,03 3,3E+01 1,5 6,2 2,2E+06 1,5E+00 1 16 1,0E+05 

Table 1. Di-muon flux sensitivities obtained using the optimum cuts values of Qcut and 
ψcut which minimized the Model Rejection Factor. 
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 Optimun Cuts 

 Dimuon into ν(MultiLine) Dimuon into ν (SingleLine) 

mχ (TeV) MRF Qcut 
ψcut 
(º) 

ν ν+Φ   

(km-2yr -1) 
MRF Qcut 

ψcut 
(º) 

ν ν+Φ  

(km-2yr -1) 
10 1,3E+03 1,8 1,3 1,8E+08 3,6E+04 0,7 8,2 4,9E+09 

5 4,8E+03 1,8 1,4 6,6E+08 9,6E+04 0,7 8,2 1,3E+10 

2 2,9E+04 1,4 2,1 3,9E+09 4,2E+05 0,7 8,2 5,7E+10 

1 1,3E+05 1,4 2,6 1,8E+10 1,3E+06 0,7 8,7 1,9E+11 

0,5 6,9E+05 1,4 3,1 9,6E+10 4,4E+06 0,7 8,7 6,0E+11 

0,2 1,0E+07 1,4 4,2 1,4E+12 2,5E+07 0,7 9,2 3,5E+12 

0,1 1,4E+08 1,4 4,6 1,9E+13 1,3E+08 0,7 11,2 1,7E+13 

0,05 9,9E+09 1,4 5 1,4E+15 1,6E+09 0,7 12,7 2,2E+14 

0,03 3,4E+11 1,3 3,1 4,6E+16 8,7E+09 0,9 14,7 1,2E+15 

Table 2. Neutrino flux sensitivities obtained using the optimum cuts values of Qcut and ψcut 
which minimized the Model Rejection Factor. 

 Optimun Cuts 

 Mediator into ν (MultiLine) Mediator into ν (SingleLine) 

mχ (TeV) MRF Qcut 
ψcut 
(º) 

ν ν+Φ   
(km-2yr -1) 

MRF Qcut 
ψcut 
(º) 

ν ν+Φ  

(km-2yr -1) 
10 2,2E+02 1,8 1,3 2,9E+07 9,5E+03 0,9 5,6 1,3E+09 

5 6,4E+02 1,8 1,4 8,8E+07 2,1E+04 0,7 8,9 2,9E+09 

2 3,2E+03 1,8 1,4 4,5E+08 7,1E+04 0,7 8,7 9,8E+09 

1 1,2E+04 1,4 1,9 1,7E+09 2,0E+05 0,7 8,2 2,8E+10 

0,5 5,0E+04 1,4 2,3 6,9E+09 6,4E+05 0,7 8,2 8,9E+10 

0,2 3,9E+05 1,4 3,1 5,5E+10 2,9E+06 0,7 8,7 4,1E+11 

0,1 2,3E+06 1,4 3,8 3,2E+11 9,2E+06 0,7 8,7 1,3E+12 

0,05 2,2E+07 1,4 4,7 2,9E+12 3,3E+07 0,7 9,9 4,6E+12 

0,03 1,7E+08 1,4 5,1 2,4E+13 9,8E+07 0,7 11,4 1,4E+13 

Table 3. Neutrino flux sensitivities obtained using the optimum cuts values of Qcut and 
ψcut which minimized the Model Rejection Factor. 
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