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An Old, Beautiful, Story: Fluid dynamics

Fluid dynamics, as an effective theory, has a very wide range of

applicability.
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▶ In a fluid system, one assumes local equilibrium:

T (x), µ(x), ....

▶ The equations of motion are given by conservation:

∇µT
µν = F νρJρ, ∇µJ

µ = 0, ...

▶ The basic input of fluid dynamics are the constitutive

relations: Tµν = ϵuµuν + pPµν +Πµν ,...
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Some immediate questions:

▶ Relation between microscopic observables and fluid data.

▶ This has been long addressed by the Kubo formula:

GR(w, k) ∼
F (w, k)

−iw +Dk2

▶ The role of stochastic (and quantum) fluctuations.

▶ This can be addressed with a Lagrangian description [Crossley,

Glorioso, and Liu; Loganayagam, Rangamani]:∫
DχDϕeiSmicro[χ,ϕ] ∼

∫
DχeiShydro[χ]
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A matter of order: the SK contour

▶ A key observable are the real-time thermal correlators.

▶ The order of operators is important (causality).

▶ A familiar choice is to compute time-ordered correlators:

⟨T O(t1)O(t2)...O(tn)⟩.

▶ Other orderings are useful, for instance, retarded correlators:

θ(t− t′) ⟨[O(t),O(t′)]⟩.



Holographic SK contours and EFTs for Fluids

▶ All the orderings can be taken into account by considering

time-fold contours.

−i(β − ϵ)

t
⟨O(t2)O(t1)⟩β =

O(t1)

O(t2)

▶ Up to 3-point (thermal) correlators, one only needs a two-fold

contour.
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Many birds with one shutgun

The in-in formalism addresses many problems at once:

▶ Causal ordering.

▶ The lack of adiabaticity in strongly coupled, densed, quantum

field theory.

▶ Correlation functions with respect of mixed states or in open

systems.
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The open system paradigm for fluid actions

The dissipative nature of fluid dynamics emerges from unitarity

theories by considering open quantum system[Caldeira-Leggett]:

Ltotal[J,O] = Lsys.[J ] + Lenv.[O] + Lint.[J,O]

After integrating out the environment (fluid), one can obtain an

effective description for the system of interest (thermometer,

barometer, etc.).
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▶ Using the in-in formalism:

Z =

∫
DJL/RDOL/R exp (iSsys.[JR]− iSsys.[JL]

+iSenv.[OR]− iSenv.[OL] + i

∫
(JROR − JLOL)

)
=

∫
DJL/R exp (iSsys.[JR]− iSsys.[JL] + iSEFT[JR, JL])

▶ Notice that, in general, SEFT[JR, JL] is not R/L diagonal.
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▶ In practice, we don’t need to keep close watch of the system’s

internal dynamics:

Z[JR, JL] = ⟨ei
∫
(JROR−JLOL)⟩β = eiW [JR,JL]

▶ However, it is not a good idea to fully integrate out the

environmental degrees of freedom.

▶ Instead, one should compute the Wilsonian influence

functional :

eiW [JR,JL] =

∫
DφR/L eiSWIF[JR/L,φR/L]
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Holographic real-time correlators

▶ The evaluation of SWIF is a challenging endeavor, specially for

strongly coupled theories.

▶ It is possible to learn many lessons by considering a

holographic environment (for instance N = 4 SYM).

▶ Long history of real-time holography [Herzog, Son, Starinets, Skenderis, van

Rees...].
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Gravitational SK geometry

▶ An unified prescription for the holographic dual of the SK

Keldysh contour has been proposed[Glorioso, Crossley, Liu]
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▶ Equivalently, one may consider a complex, two-sheeted,

solution of Einstein equations[Jana, Loganayagam, Rangamani].
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▶ Concretely:

ds2 = −r2fdv2 + iβr2fdvdζ + r2dx⃗2,
dζ

dr
=

2

iβ

1

r2f

rH
rc

rc+iε
ℜ(ζ)=0

ℜ(ζ)=1
rc−iε

▶ The non-trivial monodromy of ζ(r) precisely captures the

Euclidean evolution around the thermal circle.
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▶ Correlation functions are then computed as Witten diagrams

in this geometry.
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Gravitational perturbations in SK contours

▶ Consider Einstein-Maxwell gravity:

SBulk =

∫
dd+1x

√
−g

(
R+ d(d− 1)− 1

2
FABF

AB

)
▶ We want to consider perturbations around equilibrium:

ds2 = ds2(0) + ds2(1) ABdx
B = −a(r)dv +ABdx

B .
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▶ The equilibrium configuration is taken to be the RN black

hole:

ds2(0) = −r2f(r)dv2 + 2dvdr + r2dx⃗2 ,

f(r) = 1− (1 +Q2)
(r+

r

)d
+Q2

(r+
r

)2(d−1)
,

a(r) =

√
d− 1

d− 2
Q
rd−1
+

rd−2

▶ With the usual relations between the black hole parameter

and the thermodynamic variables:

T =
d− (d− 2)Q2

4π
r+ , µ =

√
d− 1

d− 2
Qr+
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▶ Due to the inner horizon, the SK geometry is a bit different:

r+
rc

rc+iε
ℜ(ζ)=0

ℜ(ζ)=1
rc−iε

r− r
Q

▶ The parameter rd−2
Q = d−1

d
2Q2

1+Q2 r
d−2
+ is related to the DC

conductivity as

σDC = rd−3
+ h(r+)

2 , h(r) = 1−
rd−2
Q

rd−2
.
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Repackaging gravity: designer scalars

▶ Classify the perturbations in terms of SO(d− 2)

representations [Kodama, Ishibashi] [Gubser, Pufu]:

ds2(1) = ds2Tensor + ds2Vector + ds2Scalar

ABdx
B = AVector

B dxB +AScalar
B dxB

▶ Expand the perturbations in terms of harmonic functions of

SO(d− 2).
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The executive summary

▶ Metric perturbations:

▶ ds2Tensor = r2
∑NT

σ=1

∫
k
Φσ(r, v|⃗k)Tσ

ij(x⃗|⃗k)dxidxj .

▶ ds2Vector = 2r2
∑NV

α=1

∫
k
(Ψα

r dr +Ψα
v dv)Vα

i dx
i.

▶ ds2Scalar =
Φ

E
−rfΦ

W

rd−3 dv2 + 2
rd−1f

(Φ
O
− Φ

E
+ rfΦ

W
) dvdr +

Φ
W

rd−4 dx⃗
2 − 2(Φ

O
−Φ

E
)+(d−1)rfΦ

W

rd+1f2 dr2.

▶ Gauge field perturbations

▶ AVector
B dxB =

∑NV

α=1

∫
k
Ξα(v, r)Vα

i dx
i.

▶ AScalar
B dxB = 1

rd−3

(
dvD+ − dr d

dr

)
V, D+ = r2f∂r + ∂v.
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The physical summary

▶ Not all of the fields above are independent, due to gauge

symmetry and the associated constraint equations.

▶ We can solve these constraints in terms of a few master fields:

▶ Tensor sector: Φσ.

▶ Vector sector: Xα, Yα.

▶ Scalar sector: Z,V.

▶ Finally, we can introduce a diagonal basis (Xα,Yα) and

(Z,V), where all the interactions decouple.
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▶ Linear response in gravity is then all packaged in a few scalars:

SM = −1

2

∫
dd+1x

√
−geχ(r)

[
∇AΦM∇AΦM + V (ΦM)

]
+Sbdy.

▶ Tensors: eχ(r) = 1.

▶ Vectors: eχ(r) = 1
r2(d−1) , eχ(r) = h2

r2
.

▶ Scalars: eχ(r) = h2

r2(d−2)Λ2
k

, eχ(r) = 1
h2r2(d−2) ,

Λk = k2 + 1
2
(d− 1)r3f ′.
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▶ The dilaton makes all the difference:

r

eχ

r+

Markovian

non-Markovian

▶ The asymptotic behavior determines whether a perturbation is

long or short-lived.
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Dynamic of designer scalars in SK

▶ From our previous discussion, let us study the system:

Sdesigner = −1

2

∫
dd+1x

√
−g rM−d+1∇AΦM∇AΦM + Sbdy.

▶ In Fourier domain, the equation of motion is

r−MD+

(
rMD+ΦM

)
+ (ω2 − k2f)ΦM ≡ DMΦM = 0 .

▶ For d > 2, this equation can be solved in a gradient expansion:

w, q =
ω

r+
,
k

r+
≪ 1
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▶ At zeroth order, the solution behaves as:

ΦM ∼ c1 +
c2

rM+1

▶ For M > −1, we impose Dirichlet conditions (Sbdy. = 0).

▶ For M < −1, compute the conjugate momentum:

πM = −rMD+ΦM ∼ c̃1 + c̃2r
M

▶ Quantization is done using Neumann conditions

(Sbdy. =
∫
ddxΦMπM).
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Solutions and actions: M > −1

▶ The ingoing bulk-to-boundary propagator:

DMGin

M
(r, ω, k) = 0 , Gin

M
(r → ∞, ω, k) = 1 , Gin

M
(r+, ω, k) = reg.

▶ The outgoing propagator is obtained by time-reversal

symmetry: Gout

M(r, ω, k) = eβωζGin

M(r+,−ω, k)

▶ The most general solution (in SK geometry):

ΦM(ζ, ω, k) = c1G
in

M(r, ω, k) + c2G
out

M(r, ω, k)
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▶ Imposing Dirichlet bdy. conditions:

lim
ζ→0

ΦM = JR , lim
ζ→1

ΦM = JL

▶ The solution in grSK geometry is

ΦM(ζ, w, k⃗) = JaG
in
M +

[(
nβ +

1

2

)
Gin

M − nβe
β(ζ−1)Grev

M

]
Jd ,

with Jd = JR − JL and Ja = 1
2 (JR + JL).
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▶ Finally, we can evaluate the on-shell action:

W [Ja, Jd] = S[ΦM]on-shell

= −
∫
k

J†
dK

in
M

[
Ja +

(
nβ +

1

2

)
Jd

]

Kin
M = −iw +

k2

1−M
+∆2,0

M
(r+)w

2 + ...

where Kin
M is obtained as a boundary limit of the conjugate

momentum.
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Solutions and actions: M < −1

▶ Same story could be repeated with Neumann conditions in

order to compute W [Ja, Jd].

▶ But let us be smarter: for long-lived modes we should

compute SWIF[Φ̌a, Φ̌d].

▶ The relation between these two objectes is a Legendre

transform: change boundary conditions from Neumann to

Dirichlet!
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▶ Then:

ΦM(ζ, w, k⃗) = Φ̌aG
in
M +

[(
nβ +

1

2

)
Gin

M − nβe
β(ζ−1)Grev

M

]
Φ̌d

SWIF[Φ̌a, Φ̌d] = S[ΦM]on-shell

= −
∫
k

Φ̌†
dK

in
−M

[
Φ̌a +

(
nβ +

1

2

)
Φ̌d

]
K−M = −iw +

k2

1 +M
−∆2,0

M
(r+)w

2 + ...

▶ In order to compute correlators, one needs to go back to the

generating functional, then ⟨OO⟩ ∼ 1
K−M

.
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Back to EFTs for fluids

▶ We can run this machinery for every mode in the gravitational

perturbation.

▶ Φσ and Yα are completely markovian, hence boring.

▶ Xα, Z, and V are non-markovian, they correspond to the

physical degrees of freedom of the fluid.
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▶ In total:

SWIF ∝ −
NV∑
α=1

∫
k

(
P̌α
d

)†
K in

X

[
P̌α
a +

(
nβ +

1

2

)
P̌α
d

]
−
∫
k

(
V̌d

)†
K in

V

[
V̌a +

(
nβ +

1

2

)
V̌d

]
−
∫
k

(
Žd

)†
K in

Z

[
Ža +

(
nβ +

1

2

)
Žd

]
▶ K in

X and K in
V are similar to the M < −1 result before.

▶ K in
Z is special:

K in
Z ∝ K in

s = −w2 +
q2

d− 1
+

νs
1 +Q2

q2Γs(w, q)
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Correlation functions

⟨Txy(−w,−k)Txy(w, k⟩Ret ∼ iKin
d−1(w, k)

⟨Tvx(−w,−k)Tvx(w, k⟩Ret ∼ i

[
a1

Kin
X (w, k)

+ a2Kin
Y(w, k)

]
⟨Jx(−w,−k)Jx(w, k⟩Ret ∼ i

[
b1

Kin
X (w, k)

+ b2Kin
Y(w, k)

]
⟨Tvv(−w,−k)Tvv(w, k⟩Ret ∼ i

[
c1

Kin
s (w, k)

+
c2

Kin
V (w, k)

]
⟨Jv(−w,−k)Jv(w, k⟩Ret ∼ i

[
d1

Kin
s (w, k)

+
d2

Kin
V (w, k)

]
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▶ Main lesson: The current correlators are encoded in terms of

a few effective scalar operators: OX,OV,OZ.

▶ We would like to take this to heart and treat T̂µν , Ĵµ, · · · are

fully quantum operators, parameterized in terms of

ÔX, ÔV, ÔZ.

▶ For this to be a meaningful statement, we need to compute

the higher order correlators.
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Beyond the Gaussian level: Witten diagrams in SK

geometry
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The ingredients:

▶ Ingoing Bulk-to-Bdy Prop.: Gin(ζ, k).

▶ Outgoing Bulk-to-Bdy Prop.: Gout(ζ, k) = e−βωζGin(ζ, k̄)

▶ Bulk-to-Bulk Prop:

Gbb(ζ, ζ
′; k) = N (k)eβωζ

′
GL(ζ>, k)GR(ζ

′
<, k).

Important: Gin(ζ + 1, k) = Gin(ζ, k).
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▶ Contact diagram:

=

∮
dζL(ζ) =

∫ rc

rH

dr (L(ζ(r) + 1)− L(ζ(r)))

▶ Exchange diagram

=

∮
dζ

∮
dζ ′

[
F1(ζ, ζ

′)Θ(ζ − ζ ′) + F2(ζ, ζ
′)Θ(ζ ′ − ζ)

]
=

∫ rc

rH

dr

∫ rc

rH

dr′
[
F1θ(r − r′) + F2θ(r

′ − r)
]

where

F1 = F1(ζ, ζ
′)− F1(ζ + 1, ζ ′) + F2(ζ + 1, ζ ′ + 1)− F2(ζ, ζ

′ + 1) ,

F2 = F1(ζ + 1, ζ ′ + 1)− F1(ζ + 1, ζ ′) + F2(ζ, ζ
′)− F2(ζ, ζ

′ + 1) .
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Analytic structure of Thermal correlators

▶ Explicit, closed-form, calculations are only possible in d = 2

[Loganayagam, Rangamani, JV].

▶ General lesson: The analytic structure of higher order thermal

correlators is determined by a single piece of data: Gin(ζ, k).

▶ The Ward identities due to unitarity and KMS follow from the

grSK structure (bulk-to-bdy and bulk-to-bulk propagators).
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▶ Long-lived modes and factorization channels:

=

▶ For d > 2, the Witten diagrams could be evaluated using the

gradient expansion.

▶ An example where this can be done is the anomalous

contributions for a fluid in d = 4 [Rangamani, JV, Zhou].



Holographic SK contours and EFTs for Fluids

Work in progress

▶ Higher order SK correlators for d > 2 [Ammon, Rangamani, Specht, JV].

▶ Connections to non-linear fluid actions [Rangamani, JV].

▶ Beyond the SK contour: OTOC [Ammon, Germerodt, Sieling, JV].
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Final musings

▶ Applications to more complicated thermal systems: rotation

(Kerr black holes), superfluids (scalar backgrounds and phase

transitions).

▶ While we focused on using grSK geometries to study fluids, we

can learn many lessons about real time gravitational dynamics.

▶ Effective actions for chaotic systems [Blake, Lee, Liu][Haehl, Rozali]
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▶ Beyond holography: gravitational SK contours for more

general spacetimes (see recent work on dS correlators[Di Pietro,

Gorbenko, Komatsu][Loganayagam, Shetye]).

▶ Is there something to be said in asymptotically flat

spacetimes?
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Thank You!


