Holographic SK contours and EFTs for Fluids

Holographic SK contours and EFTs for Fluids

Julio Virrueta

FSU Jena

Based on: T. He, R. Loganayagam, M. Rangamani, JV, S. Zhou [2108.03244], [2205.03415], [2211.07683], [2306.01055].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An Old, Beautiful, Story: Fluid dynamics

Fluid dynamics, as an effective theory, has a very wide range of applicability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- In a fluid system, one assumes *local* equilibrium: T(x), μ(x),
- The equations of motion are given by conservation: $\nabla_{\mu}T^{\mu\nu} = F^{\nu\rho}J_{\rho}, \ \nabla_{\mu}J^{\mu} = 0, ...$
- The basic input of fluid dynamics are the constitutive relations: $T_{\mu\nu} = \epsilon u_{\mu}u_{\nu} + pP_{\mu\nu} + \Pi_{\mu\nu},...$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Some immediate questions:

- Relation between microscopic observables and fluid data.
- This has been long addressed by the Kubo formula:

$$G_{\mathsf{R}}(w,k) \sim rac{F(w,k)}{-iw + \mathcal{D}k^2}$$

- ► The role of stochastic (and quantum) fluctuations.
- This can be addressed with a Lagrangian description [Crossley,

Glorioso, and Liu; Loganayagam, Rangamani]

$$\int \mathcal{D}\chi \mathcal{D}\phi e^{iS_{\rm micro}[\chi,\phi]} \sim \int \mathcal{D}\chi e^{iS_{\rm hydro}[\chi]}$$

A matter of order: the SK contour

- A key observable are the real-time thermal correlators.
- The order of operators is important (causality).
- A familiar choice is to compute time-ordered correlators:
 \$\langle \mathcal{T} \mathcal{O}(t_1) \mathcal{O}(t_2) \ldots \mathcal{O}(t_n) \rangle\$.
- Other orderings are useful, for instance, retarded correlators: $\theta(t - t') \langle [\mathcal{O}(t), \mathcal{O}(t')] \rangle.$

 All the orderings can be taken into account by considering time-fold contours.

$$\langle \mathcal{O}(t_2)\mathcal{O}(t_1)\rangle_{\beta} = \begin{bmatrix} \mathcal{O}(t_2) \\ \mathcal{O}(t_2) \\ -i(\beta - \epsilon) \end{bmatrix}$$

 Up to 3-point (thermal) correlators, one only needs a two-fold contour.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Many birds with one shutgun

The in-in formalism addresses many problems at once:

- Causal ordering.
- The lack of adiabaticity in strongly coupled, densed, quantum field theory.
- Correlation functions with respect of mixed states or in open systems.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The open system paradigm for fluid actions

The dissipative nature of fluid dynamics emerges from unitarity theories by considering open quantum system[Caldeira-Leggett]:

$$\mathcal{L}_{\mathsf{total}}[J, \mathcal{O}] = \mathcal{L}_{\mathsf{sys.}}[J] + \mathcal{L}_{\mathsf{env.}}[\mathcal{O}] + \mathcal{L}_{\mathsf{int.}}[J, \mathcal{O}]$$

After integrating out the environment (fluid), one can obtain an effective description for the system of interest (thermometer, barometer, etc.).

- ロ ト - 4 回 ト - 4 □

Using the in-in formalism:

$$\begin{split} \mathcal{Z} &= \int DJ_{L/R} D\mathcal{O}_{L/R} \exp\left(iS_{\text{sys.}}[J_R] - iS_{\text{sys.}}[J_L]\right. \\ &+ iS_{\text{env.}}[\mathcal{O}_R] - iS_{\text{env.}}[\mathcal{O}_L] + i\int \left(J_R\mathcal{O}_R - J_L\mathcal{O}_L\right) \\ &= \int DJ_{L/R} \exp\left(iS_{\text{sys.}}[J_R] - iS_{\text{sys.}}[J_L] + iS_{\text{EFT}}[J_R, J_L]\right) \end{split}$$

▶ Notice that, in general, $S_{\text{EFT}}[J_R, J_L]$ is not R/L diagonal.

In practice, we don't need to keep close watch of the system's internal dynamics:

$$\mathcal{Z}[J_R, J_L] = \langle e^{i \int (J_R \mathcal{O}_R - J_L \mathcal{O}_L)} \rangle_\beta = e^{i W[J_R, J_L]}$$

- However, it is not a good idea to fully integrate out the environmental degrees of freedom.
- Instead, one should compute the Wilsonian influence functional:

$$e^{iW[J_R,J_L]} = \int D\varphi_{R/L} \, e^{i\mathcal{S}_{\mathsf{WIF}}[J_{R/L},\varphi_{R/L}]}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Holographic real-time correlators

- The evaluation of S_{WIF} is a challenging endeavor, specially for strongly coupled theories.
- It is possible to learn many lessons by considering a holographic environment (for instance N = 4 SYM).
- Long history of real-time holography [Herzog, Son, Starinets, Skenderis, van Rees...].

Gravitational SK geometry

 An unified prescription for the holographic dual of the SK Keldysh contour has been proposed[Glorioso, Crossley, Liu]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Equivalently, one may consider a complex, two-sheeted, solution of Einstein equations[Jana, Loganayagam, Rangamani].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Concretely:

$$ds^2 = -r^2 f dv^2 + i\beta r^2 f dv d\zeta + r^2 d\vec{x}^2, \qquad \frac{d\zeta}{dr} = \frac{2}{i\beta} \frac{1}{r^2 f}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The non-trivial monodromy of ζ(r) precisely captures the Euclidean evolution around the thermal circle. Correlation functions are then computed as Witten diagrams in this geometry.

Gravitational perturbations in SK contours

Consider Einstein-Maxwell gravity:

$$S_{\mathsf{Bulk}} = \int d^{d+1}x \sqrt{-g} \left(R + d(d-1) - \frac{1}{2}F_{AB}F^{AB} \right)$$

We want to consider perturbations around equilibrium:

$$ds^{2} = ds^{2}_{(0)} + ds^{2}_{(1)} \quad A_{B}dx^{B} = -a(r)dv + \mathcal{A}_{B}dx^{B}$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

The equilibrium configuration is taken to be the RN black hole:

$$\begin{aligned} ds_{(0)}^2 &= -r^2 f(r) dv^2 + 2dv dr + r^2 d\vec{x}^2 \,, \\ f(r) &= 1 - (1+Q^2) \left(\frac{r_+}{r}\right)^d + Q^2 \left(\frac{r_+}{r}\right)^{2(d-1)} \,, \\ a(r) &= \sqrt{\frac{d-1}{d-2}} Q \frac{r_+^{d-1}}{r^{d-2}} \end{aligned}$$

With the usual relations between the black hole parameter and the thermodynamic variables:

$$T = \frac{d - (d - 2)Q^2}{4\pi} r_+, \quad \mu = \sqrt{\frac{d - 1}{d - 2}}Qr_+$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Due to the inner horizon, the SK geometry is a bit different:

$$\begin{array}{c|c} & & & & \\ & & & \\ \hline r_{-} & r_{Q} & & & \\ \hline r_{+} & & \\ &$$

The parameter r_Q^{d-2} = d-1/d (1+Q²) r₊^{d-2} is related to the DC conductivity as

$$\sigma_{\rm DC} = r_+^{d-3} h(r_+)^2 , \quad h(r) = 1 - \frac{r_Q^{d-2}}{r^{d-2}} .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Repackaging gravity: designer scalars

Classify the perturbations in terms of SO(d-2) representations [Kodama, Ishibashi] [Gubser, Pufu]:

$$ds_{(1)}^2 = ds_{\mathsf{Tensor}}^2 + ds_{\mathsf{Vector}}^2 + ds_{\mathsf{Scalar}}^2$$
$$\mathcal{A}_B dx^B = \mathcal{A}_B^{\mathsf{Vector}} dx^B + \mathcal{A}_B^{\mathsf{Scalar}} dx^B$$

Expand the perturbations in terms of harmonic functions of SO(d-2).

The executive summary

Metric perturbations:

$$\begin{aligned} & b_{\mathsf{Tensor}}^2 = r^2 \sum_{\sigma=1}^{N_T} \int_k \Phi_\sigma(r, v | \vec{k}) \mathbb{T}_{ij}^\sigma(\vec{x} | \vec{k}) dx^i dx^j. \\ & b_{\mathsf{Vector}}^2 = 2r^2 \sum_{\alpha=1}^{N_V} \int_k \left(\Psi_r^\alpha dr + \Psi_v^\alpha dv \right) \mathbb{V}_i^\alpha dx^i. \\ & b_{\mathsf{Scalar}}^2 = \frac{\Phi_{\mathsf{E}} - rf \Phi_{\mathsf{w}}}{r^{d-3}} dv^2 + \frac{2}{r^{d-1}f} \left(\Phi_{\mathsf{o}} - \Phi_{\mathsf{E}} + rf \Phi_{\mathsf{w}} \right) dv dr + \\ & \frac{\Phi_{\mathsf{W}}}{r^{d-4}} d\vec{x}^2 - \frac{2(\Phi_{\mathsf{o}} - \Phi_{\mathsf{E}}) + (d-1)rf\Phi_{\mathsf{W}}}{r^{d+1}f^2} dr^2. \end{aligned}$$

Gauge field perturbations

$$\begin{array}{l} \blacktriangleright \ \mathcal{A}_B^{\mathsf{Vector}} dx^B = \sum_{\alpha=1}^{N_V} \int_k \Xi_\alpha(v,r) \mathbb{V}_i^\alpha dx^i. \\ \blacktriangleright \ \mathcal{A}_B^{\mathsf{Scalar}} dx^B = \frac{1}{r^{d-3}} \left(dv \mathbb{D}_+ - dr \frac{d}{dr} \right) \mathcal{V}, \qquad \mathbb{D}_+ = r^2 f \partial_r + \partial_v. \end{array}$$

The physical summary

- Not all of the fields above are independent, due to gauge symmetry and the associated constraint equations.
- We can solve these constraints in terms of a few master fields:
 - Tensor sector: Φ_{σ} .
 - Vector sector: X_{α}, Y_{α} .
 - Scalar sector: \mathcal{Z}, \mathcal{V} .
- Finally, we can introduce a diagonal basis (X_α, Y_α) and
 (Z, V), where all the interactions decouple.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Linear response in gravity is then all packaged in a few scalars:

$$S_{\mathcal{M}} = -\frac{1}{2} \int d^{d+1}x \sqrt{-g} e^{\chi(r)} \left[\nabla_A \Phi_{\mathcal{M}} \nabla^A \Phi_{\mathcal{M}} + V(\Phi_{\mathcal{M}}) \right] + S_{\mathsf{bdy.}}$$

• Tensors:
$$e^{\chi(r)} = 1$$
.

Vectors:
$$e^{\chi(r)} = \frac{1}{r^{2(d-1)}}$$
, $e^{\chi(r)} = \frac{h^2}{r^2}$.
Scalars: $e^{\chi(r)} = \frac{h^2}{r^{2(d-2)}\Lambda_k^2}$, $e^{\chi(r)} = \frac{1}{h^2r^{2(d-2)}}$,
 $\Lambda_k = k^2 + \frac{1}{2}(d-1)r^3f'$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The asymptotic behavior determines whether a perturbation is long or short-lived.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dynamic of designer scalars in SK

From our previous discussion, let us study the system:

$$S_{\text{designer}} = -\frac{1}{2} \int d^{d+1}x \sqrt{-g} \, r^{\mathcal{M}-d+1} \nabla_A \Phi_{\mathcal{M}} \nabla^A \Phi_{\mathcal{M}} + S_{\text{bdy.}}$$

In Fourier domain, the equation of motion is

$$r^{-\mathcal{M}}\mathbb{D}_{+}\left(r^{\mathcal{M}}\mathbb{D}_{+}\Phi_{\mathcal{M}}\right) + (\omega^{2} - k^{2}f)\Phi_{\mathcal{M}} \equiv \mathcal{D}_{\mathcal{M}}\Phi_{\mathcal{M}} = 0.$$

▶ For *d* > 2, this equation can be solved in a gradient expansion:

$$\mathfrak{w},\mathfrak{q}=\frac{\omega}{r_+},\frac{k}{r_+}\ll 1$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

At zeroth order, the solution behaves as:

$$\Phi_{\mathcal{M}} \sim c_1 + \frac{c_2}{r^{\mathcal{M}+1}}$$

► For M > −1, we impose Dirichlet conditions (S_{bdy.} = 0).

► For *M* < −1, compute the conjugate momentum:</p>

$$\pi_{\mathcal{M}} = -r^{\mathcal{M}} \mathbb{D}_{+} \Phi_{\mathcal{M}} \sim \tilde{c}_{1} + \tilde{c}_{2} r^{\mathcal{M}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Quantization is done using Neumann conditions $(S_{bdy.} = \int d^d x \Phi_{\mathcal{M}} \pi_{\mathcal{M}}).$

Solutions and actions: $\mathcal{M} > -1$

The ingoing bulk-to-boundary propagator:

$$\mathcal{D}_{\mathcal{M}}G^{\rm in}_{\,\mathcal{M}}(r,\omega,k)=0\,,\quad G^{\rm in}_{\,\mathcal{M}}(r\to\infty,\omega,k)=1\,,\quad G^{\rm in}_{\,\mathcal{M}}(r_+,\omega,k)={\rm reg}\,.$$

- The outgoing propagator is obtained by time-reversal symmetry: $G^{\text{out}}_{\mathcal{M}}(r,\omega,k) = e^{\beta\omega\zeta}G^{\text{in}}_{\mathcal{M}}(r_+,-\omega,k)$
- The most general solution (in SK geometry):

$$\Phi_{\mathcal{M}}(\zeta,\omega,k) = c_1 G_{\mathcal{M}}^{\rm in}(r,\omega,k) + c_2 G_{\mathcal{M}}^{\rm out}(r,\omega,k)$$

Imposing Dirichlet bdy. conditions:

$$\lim_{\zeta \to 0} \Phi_{\mathcal{M}} = J_R \,, \quad \lim_{\zeta \to 1} \Phi_{\mathcal{M}} = J_L$$

The solution in grSK geometry is

$$\Phi_{\mathcal{M}}(\zeta, w, \vec{k}) = J_a G_{\mathcal{M}}^{\text{in}} + \left[\left(n_\beta + \frac{1}{2} \right) G_{\mathcal{M}}^{\text{in}} - n_\beta e^{\beta(\zeta - 1)} G_{\mathcal{M}}^{\text{rev}} \right] J_d \,,$$

with $J_d = J_R - J_L$ and $J_a = \frac{1}{2} (J_R + J_L)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▶ Finally, we can evaluate the on-shell action:

$$\begin{split} W[J_a, J_d] &= S[\Phi_{\mathcal{M}}]_{\text{on-shell}} \\ &= -\int_k J_d^{\dagger} \mathcal{K}_{\mathcal{M}}^{\text{in}} \left[J_a + \left(n_{\beta} + \frac{1}{2} \right) J_d \right] \\ \mathcal{K}_{\mathcal{M}}^{\text{in}} &= -iw + \frac{k^2}{1 - \mathcal{M}} + \Delta_{\mathcal{M}}^{2,0}(r_+)w^2 + \dots \end{split}$$

where $\mathcal{K}_{\mathcal{M}}^{\text{in}}$ is obtained as a boundary limit of the conjugate momentum.

Solutions and actions: $\mathcal{M} < -1$

- Same story could be repeated with Neumann conditions in order to compute W[J_a, J_d].
- ▶ But let us be smarter: for long-lived modes we should compute S_{WIF}[Ă_a, Ă_d].
- The relation between these two objectes is a Legendre transform: change boundary conditions from Neumann to Dirichlet!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then:

$$\Phi_{\mathcal{M}}(\zeta, w, \vec{k}) = \check{\Phi}_a G_{\mathcal{M}}^{\mathsf{in}} + \left[\left(n_\beta + \frac{1}{2} \right) G_{\mathcal{M}}^{\mathsf{in}} - n_\beta e^{\beta(\zeta-1)} G_{\mathcal{M}}^{\mathsf{rev}} \right] \check{\Phi}_d$$

$$\begin{split} \mathcal{S}_{\mathsf{WIF}}[\check{\Phi}_a,\check{\Phi}_d] &= S[\Phi_{\mathcal{M}}]_{\mathsf{on-shell}} \\ &= -\int_k \check{\Phi}_d^{\dagger} \mathcal{K}_{-\mathcal{M}}^{\mathsf{in}} \left[\check{\Phi}_a + \left(n_{\beta} + \frac{1}{2}\right) \check{\Phi}_d\right] \\ \mathcal{K}_{-\mathcal{M}} &= -iw + \frac{k^2}{1+\mathcal{M}} - \Delta_{\mathcal{M}}^{2,0}(r_+)w^2 + \dots \end{split}$$

▶ In order to compute correlators, one needs to go back to the generating functional, then $\langle OO \rangle \sim \frac{1}{\mathcal{K}_{-M}}$.

Back to EFTs for fluids

- We can run this machinery for every mode in the gravitational perturbation.
- Φ_{σ} and Y_{α} are completely markovian, hence boring.
- X_α, Z, and V are non-markovian, they correspond to the physical degrees of freedom of the fluid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Holographic SK contours and EFTs for Fluids

In total:

$$\begin{split} \mathcal{S}_{\text{WIF}} \propto & -\sum_{\alpha=1}^{N_{V}} \int_{k} \left(\check{\mathcal{P}}_{d}^{\alpha} \right)^{\dagger} K_{\mathcal{X}}^{\text{in}} \left[\check{\mathcal{P}}_{a}^{\alpha} + \left(n_{\beta} + \frac{1}{2} \right) \check{\mathcal{P}}_{d}^{\alpha} \right] \\ & - \int_{k} \left(\check{\mathcal{V}}_{d} \right)^{\dagger} K_{V}^{\text{in}} \left[\check{\mathcal{V}}_{a} + \left(n_{\beta} + \frac{1}{2} \right) \check{\mathcal{V}}_{d} \right] \\ & - \int_{k} \left(\check{\mathcal{Z}}_{d} \right)^{\dagger} K_{Z}^{\text{in}} \left[\check{\mathcal{Z}}_{a} + \left(n_{\beta} + \frac{1}{2} \right) \check{\mathcal{Z}}_{d} \right] \end{split}$$

*K*ⁱⁿ_X and *K*ⁱⁿ_V are similar to the *M* < −1 result before.
 *K*ⁱⁿ_Z is special:

$$K_{\rm Z}^{\rm in} \propto K_s^{\rm in} = -\mathfrak{w}^2 + \frac{\mathfrak{q}^2}{d-1} + \frac{\nu_s}{1+Q^2}\mathfrak{q}^2\Gamma_s(\mathfrak{w},\mathfrak{q})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Correlation functions

$$\begin{split} \langle T_{xy}(-w,-k)T_{xy}(w,k\rangle^{\mathsf{Ret}} &\sim i\mathcal{K}_{d-1}^{\mathsf{in}}(w,k) \\ \langle T_{vx}(-w,-k)T_{vx}(w,k\rangle^{\mathsf{Ret}} &\sim i\left[\frac{a_1}{\mathcal{K}_{\mathcal{X}}^{\mathsf{in}}(w,k)} + a_2\mathcal{K}_{\mathcal{Y}}^{\mathsf{in}}(w,k)\right] \\ \langle J_x(-w,-k)J_x(w,k\rangle^{\mathsf{Ret}} &\sim i\left[\frac{b_1}{\mathcal{K}_{\mathcal{X}}^{\mathsf{in}}(w,k)} + b_2\mathcal{K}_{\mathcal{Y}}^{\mathsf{in}}(w,k)\right] \\ \langle T_{vv}(-w,-k)T_{vv}(w,k\rangle^{\mathsf{Ret}} &\sim i\left[\frac{c_1}{\mathcal{K}_s^{\mathsf{in}}(w,k)} + \frac{c_2}{\mathcal{K}_{\mathsf{V}}^{\mathsf{in}}(w,k)}\right] \\ \langle J_v(-w,-k)J_v(w,k\rangle^{\mathsf{Ret}} &\sim i\left[\frac{d_1}{\mathcal{K}_{\mathsf{V}}^{\mathsf{in}}(w,k)} + \frac{d_2}{\mathcal{K}_{\mathsf{V}}^{\mathsf{in}}(w,k)}\right] \end{split}$$

- Main lesson: The current correlators are encoded in terms of a few effective scalar operators: O_X, O_V, O_Z.
- We would like to take this to heart and treat Î_{μν}, Ĵ_μ, ··· are fully quantum operators, parameterized in terms of Ô_X, Ô_V, Ô_Z.
- For this to be a meaningful statement, we need to compute the higher order correlators.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Beyond the Gaussian level: Witten diagrams in SK geometry

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

The ingredients:

- lngoing Bulk-to-Bdy Prop.: $G_{in}(\zeta, k)$.
- ▶ Outgoing Bulk-to-Bdy Prop.: $G_{out}(\zeta, k) = e^{-\beta\omega\zeta}G_{in}(\zeta, \bar{k})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bulk-to-Bulk Prop:

 $G_{\mathsf{bb}}(\zeta,\zeta';k) = \mathcal{N}(k)e^{\beta\omega\zeta'}G_{\mathsf{L}}(\zeta_{>},k)G_{\mathsf{R}}(\zeta'_{<},k).$

Important: $G_{in}(\zeta + 1, k) = G_{in}(\zeta, k)$.

Contact diagram:

$$= \oint d\zeta \mathfrak{L}(\zeta) = \int_{r_{\mathsf{H}}}^{r_c} dr \left(\mathfrak{L}(\zeta(r) + 1) - \mathfrak{L}(\zeta(r)) \right)$$

• Exchange diagram

$$= \oint d\zeta \oint d\zeta' \left[F_1(\zeta,\zeta')\Theta(\zeta-\zeta') + F_2(\zeta,\zeta')\Theta(\zeta'-\zeta) \right]$$

$$= \int_{r_{\rm H}}^{r_c} dr \int_{r_{\rm H}}^{r_c} dr' \left[\mathfrak{F}_1\theta(r-r') + \mathfrak{F}_2\theta(r'-r) \right]$$

where

$$\mathfrak{F}_1 = F_1(\zeta,\zeta') - F_1(\zeta+1,\zeta') + F_2(\zeta+1,\zeta'+1) - F_2(\zeta,\zeta'+1),$$

$$\mathfrak{F}_2 = F_1(\zeta+1,\zeta'+1) - F_1(\zeta+1,\zeta') + F_2(\zeta,\zeta') - F_2(\zeta,\zeta'+1).$$

Analytic structure of Thermal correlators

Explicit, closed-form, calculations are only possible in d = 2 [Loganayagam, Rangamani, JV].

- General lesson: The analytic structure of higher order thermal correlators is determined by a single piece of data: G_{in}(ζ, k).
- The Ward identities due to unitarity and KMS follow from the grSK structure (bulk-to-bdy and bulk-to-bulk propagators).

Long-lived modes and factorization channels:

For d > 2, the Witten diagrams could be evaluated using the gradient expansion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An example where this can be done is the anomalous contributions for a fluid in d = 4 [Rangamani, JV, Zhou].

Work in progress

• Higher order SK correlators for d>2 [Ammon, Rangamani, Specht, JV].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Connections to non-linear fluid actions [Rangamani, JV].
- Beyond the SK contour: OTOC [Ammon, Germerodt, Sieling, JV].

Final musings

- Applications to more complicated thermal systems: rotation (Kerr black holes), superfluids (scalar backgrounds and phase transitions).
- While we focused on using grSK geometries to study fluids, we can learn many lessons about real time gravitational dynamics.

Effective actions for chaotic systems [Blake, Lee, Liu][Haehl, Rozali]

Beyond holography: gravitational SK contours for more general spacetimes (see recent work on dS correlators[Di Pietro, Gorbenko, Komatsu][Loganayagam, Shetye]).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Is there something to be said in asymptotically flat spacetimes? Holographic SK contours and EFTs for Fluids

Thank You!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ