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The problem 1
A longstanding challenge in quantum field theory: analytically
tractable IR fixed points with
I strong coupling

(no quasiparticles/not close to Gaussian fixed point)

use holography!

I finite U(1) charge density, Fermi surfaces

study charged black holes!

I finite disorder

We will find new, stable, IR fixed points with finite disorder and clarify
some subtleties in earlier papers.
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Scaling exponents 2
Start with some UV QFT (which might be emergent in a lattice
description in condensed matter...):

S =

∫
dd+1x L

in d spatial dimensions. (We don’t need a Lagrangian description, but
such “notation” will be useful for the talk.)

The theory may have non-trivial dynamical scaling exponent z:

[t] = z · [x],

and non-trivial hyperscaling-violating exponent θ:

s ∼ T (d−θ)/z .
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Adding disorder 3
Suppose this QFT has scalar operator O, with scaling dimension ∆:

〈O(x, 0)O(y, 0)〉 ∼ |x − y|−2∆.

We add random-field disorder coupled to O:

S = S0 −
∫

ddxdt h(x)O(x, t)

where the disorder profile is random:

h(x) = 0, h(x)h(y) = D · δ(d)(x − y),

Note that we want the same disorder profile at all t.
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Adding disorder 4
Let [x] = −1. Then if [O] = ∆,

[D] = d − θ + z − 2∆.

We see that [D] = 2ν if we write

∆ =
d − θ

2
+ z − ν.

Harris relevant ν > 0

Harris marginal ν = 0

Harris irrelevant ν < 0

[Harris; J. Phys. C7 1671 (1974)]
[Lucas, Sachdev, Schalm; Phys. Rev. D89 066018 (2014)]

Harris marginal (or relevant!) disorder could change IR fixed point.
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Holographic setup 5
Einstein-Maxwell-dilaton theories give holographic models with
tunable z and θ:

S =

∫
dd+2x

√
−g

[
R − 2(∂Φ)2 − V (Φ)− Z(Φ)

4
FabFab

]
.

where
V (Φ) = V0e−βΦ, Z(Φ) = Z0eαΦ

with α, β depending on z, θ.

Fab is the Maxwell flux, so the dual field theory has a conserved U(1)
charge. (Added bonus feature for us!)

Expand around background:

ds2 ∼ 1

r2

[
r2θ/(d−θ)dr2 − dt2

r2d(z−1)/(d−θ)
+ dx2

]
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Holographic setup 6
In usual QFT, disorder is handled through replica method, which is
subtle to physically interpret.

But in holography, random-field disorder is simple to add! Consider
the scalar field ψ dual to O:

S = SEMD +

∫
dd+2x

√
−g

[
1

2
(∂ψ)2 − B(Φ)ψ2

]
.

For suitable B(Φ), this can encode operator with generic scaling
dimension ∆ (i.e. generic ν).

The UV boundary conditions encode disorder realization:

ψ(r , x) = h(x)r# + · · · .

The inhomogeneous geometry encodes the influence of disorder. Solve
Einstein equations to deduce the IR fixed point (r → ∞).
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A line of fixed points? 7
Let’s study d = 1, z = 1, θ = 0, with Harris marginal disorder ν = 0.

S =

∫
d3x

√
−g

(
R + 2− 1

2
(∂ψ)2 +

3

4
ψ2

)
.

Claim: there is a line of Lifshitz fixed points in the IR with

z∗ = 1 +
D
8
, θ∗ = 0.

Both analytical and numerical arguments provided.
[Hartnoll, Santos; Phys. Rev. Lett. 112 231601 (2014)]
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A line of fixed points? 8
Step 1: the geometry can be taken to be homogeneous.

Rab −
R
2

gab = Tab ∼ DT̄ab(k = 0) + DT ′
ab(k 6= 0)

Since on average T ′
ab = 0, it will only correct the homogeneous metric

at order D2. The homogeneous part can be self-consistent at O(D).

Step 2: Attempt perturbation theory. The bulk disordered scalar has
solutions:

ψ(k, r) = h(k)
√

rf (kr)

with f (0) = const.. We deduce that

T̄ab(k = 0) ∼
∫

dk k2rf (kr) ∼ 1

r2
,

which has the same scaling as

Rab ∼ Rgab ∼ r−2.
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A line of fixed points? 9
Step 3: Naive perturbation theory will get log-divergences:

gtt ∼ r−2

(
1 +

D
4

log r + · · ·
)
.

Like in ordinary QFT, these logs suggest a critical exponent:

gtt ∼ r−2z , z = 1 +
D
8
,

and indeed, a slightly more sophisticated ansatz for gab finds this solves
Einstein’s equations with the T̄ab from Step 2. This leads to a
Lifshitz IR geometry

ds2(r → ∞) ∼ dr2

r2
− dr2

r2z +
dx2

r2
.

Note that in holography, this argument requires a non-perturbative
resummation of solutions to Einstein’s equations.
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A puzzle 10
Using the bulk action

S =

∫
d3x

√
−g

(
R + 2− 1

2
(∂ψ)2 +

3

4
ψ2

)
we find that in the Lifshitz geometry:

m2 = −3

4
= ∆(∆− d − z)

so in the IR theory:

∆∗ ≈
3

2
+

3D
16

> ∆marginal =
3

2
+

D
8
.

[Ganesan, Lucas; JHEP 06 023 (2020)]

How can irrelevant disorder support a Lifshitz fixed point?
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Resolving the puzzle 11
Revisit our arguments before?

Step 1 (homogeneity) is fine. 👍

Step 2 assumed that the perturbation to the geometry was mild (no
change to asymptotics). But in a Lifshitz geometry:

ψ(k, r) ∼ h(k)r1−z/2f (kr),

which leads to (since z > 1):

Tab ∼ r−1−z � Rab ∼ r−2

This is where our earlier argument breaks down!
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Resolving the puzzle 12
Improve Step 3 by the ansatz:

ds2 ∼ dr2

r2
− dt2

r2z(r) +
dx2

r2
B(r).

If B ≈ 1 and z slowly varies, then we can set:

T̄ab → T̄ab(z(r)) ∼ r−1−z(r).

Use asymptotic methods to show that Einstein-matter system
approximately solved by (here Λ is a UV cutoff on disorder):

z(r) ∼ 1 +
1

log(rΛ)
log

(
1 +

D
8

log(rΛ)
)
.

[Ganesan, Lucas; JHEP 06 023 (2020)]
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Resolving the puzzle 13

z(r) ∼ 1 +
1

log(rΛ)
log

(
1 +

D
8

log(rΛ)
)
.

As r → ∞, z → 1. There is no Lifshitz fixed point in the IR.

The breakdown of the “Lifshitz fixed point” is only visible if

r > rIR ∼ 1

Λ
e8/D,

which is non-perturbatively deep in the IR.

Claim: This z(r) is actually associated with marginally irrelevant
disorder. In the right language, it is a one-loop effect.

[Ganesan, Lucas, Radzihovsky; Phys. Rev. D105 066016 (2022)]

This effect can only be seen by a careful non-perturbative analysis of
Einstein’s equations.
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Conformal perturbation theory 14
Insight comes from conformal perturbation theory. Calculate

〈F〉 = 1

Z(h)

∫
DO · · ·Fe−S0+

∫
hO,

where the overline denotes averaging over h.

Due to 1/Z(h), this average is very hard. The strategy is to use the
replica method. Consider n copies of the theory with fields Oa
(a = 1, . . . ,n), and calculate

〈F〉D =

∫
DOa · · ·Fa exp

[
−

n∑
a=1

S0,a − Sdis

]
.

Sdis = −D
n∑

a,b=1

∫
dt1dt2dxOa(t1, x)Ob(t2, x)

Take the n → 0 limit at the end of the calculation. 🤨
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Conformal perturbation theory 15
Notice that if t1 is close to t2, diagonal term has∫

dt1dt2dxOa(t1, x)Oa(t2, x) =
∫

dtdxdt′COOT
|t|′

Ttt,a(t, x) + · · ·

= log b
∫

dtdxTtt

if we integrate out short time scales (bΛ)−1 < |t′| < Λ−1.

So this amounts to a rescaling of time:
dt

d log b
= D COOT

CTT
.

[Aharony, Narovlansky; Phys. Rev. Lett. 121 071601 (2018)]

In the holographic theory we studied,
COOT
CTT

=
1

8
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Conformal perturbation theory 16
ButD also flows under RG. A natural RG scheme is to fix that

d
d log b

〈1〉D = 0

which requires sending

(D + δD)〈OO〉 = D〈OO〉 − D2

2
log bCOOT

CTT
〈TOO〉+ t-rescaling,

Ultimately, we fix

dδD
d log b

= −βD = −D2 dCOOT
CTT

.

[Ganesan, Lucas, Radzihovsky; Phys. Rev. D105 066016 (2022)]
[Huang, Sachdev, Lucas; Phys. Rev. Lett. 131 141601 (2023)]
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Conformal perturbation theory 17
Putting this together we conclude that as a function of energy,

D(E) =
D

1 + D dCOOT
CTT

log Λ

E

which reproduces the holographic prediction that

D ∼ ψ2 ∼ D

1 +
D
8

log(Λr)
.

Integrate dt/d log E ∼ D to obtain the effective z found before!

What is special about the holographic models is that the OPE is
simple, due to the large N limit?
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Finite disorder fixed point 18
Now consider operator with scaling dimension

∆ = ∆marginal − ν,

such that [D] = 2ν. Then we get

βD = −2νD + D2 dCOOT
CTT

.

There is now a flow to a fixed point at

D∗ =
2ν

d
CTT

COOT
.

The resulting theory has Lifshitz scaling:

z∗ = 1 +
2ν

d
,

and is a stable, strongly coupled, disordered fixed point!
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Finite disorder fixed point 19
The holographic confirmation proceeds similarly to before; for
d = z = 1 and θ = 0, we find

gtt(r) ≈ − 1

r2

[
1 +

D
16ν

r2ν
]−2

,

which crosses over to the IR geometry at

rIR ∼
(

D
ν

)−1/2ν

,

which is non-perturbatively large in ν and D!

We find that at the IR fixed point,

[D]∗ = 0,

so the disorder supporting it is exactly marginal.
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Comparison to weakly coupled theories 20
The IR Lifshitz exponent for charge-neutral perturbed CFTs was:

z∗ = 1 +
2ν

d
.

This same scaling has also been found in a large-N vector model in
d = 2, z = 1, θ = 0. Disorder is weakly relevant with

ν =
16

3π2N

and the disordered IR fixed point has

z∗ = 1 + ν = 1 +
2ν

d
.

[Goldman, Thomson, Nie, Bi; Phys. Rev. B101 144506 (2020)]



More disordered fixed points 21
The holographic models are not limited to perturbations of
charge-neutral CFTs! We can use the EMD backgrounds to study
perturbations of finite density theories with non-trivial z and θ.
Similar analysis reveals a flow to a new fixed point where

z∗ ≈ z +
2ν

d
(z − θ) > z, θ∗ = θ.

Holography is crucial for these theories, where is no known analogue of
conformal perturbation theory!
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Transport and scaling exponents 22
At very low finite temperature, the disordered fixed point described
approximately by usual Lifshitz black brane.

We can calculate the thermoelectric transport coefficients. For small ν,
the IR has perturbatively weak disorder, and thus there is a large
conductivity:

σdc =
ρ2

D∗
· K0

T (d−θ∗+2)/z∗
,

where K0 ∼ T0 and ρ is the U(1) charge density; D∗ is the universal
disorder strength at the fixed point.

Scaling consistent with older predictions of
[Lucas, Sachdev, Schalm; Phys. Rev. D89 066018 (2014)]



Transport and scaling exponents 22
At very low finite temperature, the disordered fixed point described
approximately by usual Lifshitz black brane.

We can calculate the thermoelectric transport coefficients. For small ν,
the IR has perturbatively weak disorder, and thus there is a large
conductivity:

σdc =
ρ2

D∗
· K0

T (d−θ∗+2)/z∗
,

where K0 ∼ T0 and ρ is the U(1) charge density; D∗ is the universal
disorder strength at the fixed point.

Scaling consistent with older predictions of
[Lucas, Sachdev, Schalm; Phys. Rev. D89 066018 (2014)]



Transport and scaling exponents 22
At very low finite temperature, the disordered fixed point described
approximately by usual Lifshitz black brane.

We can calculate the thermoelectric transport coefficients. For small ν,
the IR has perturbatively weak disorder, and thus there is a large
conductivity:

σdc =
ρ2

D∗
· K0

T (d−θ∗+2)/z∗
,

where K0 ∼ T0 and ρ is the U(1) charge density; D∗ is the universal
disorder strength at the fixed point.

Scaling consistent with older predictions of
[Lucas, Sachdev, Schalm; Phys. Rev. D89 066018 (2014)]



Transport and scaling exponents 23
We checked whether there is a sharp Drude peak in ac conductivity,
associated with coherent charge transport (dominated by slow
momentum relaxation):

σ(ω) =
σdc

1− iωτ
.

We find that
τ ∼ T−(2+d−θ∗)/z∗ .

This calculation only valid if τT � 1. Hence, coherent transport if

z∗ < 2 + d − θ∗.

Incoherent transport likely in other regimes?
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Transport and scaling exponents 24
Incoherent transport (momentum-insensitive) does dominate if
ω � T (still below crossover to IR fixed point):

σ(ω) ∼ ω2+(d−θ∗−2)/z∗ .

Demanding that the IR fixed point has

[ρ] = d − θ∗ − Φ∗ = 0

requires an anomalous dimension for the density. Simultaneously,

[σinc] = 3(d − θ∗) + 2(z∗ − 1 + Φ∗).

[Davison, Goutéraux, Hartnoll; JHEP 10 112 (2015)]
[Davison, Gentle, Goutéraux; Phys. Rev. D100 086020 (2019)]

Our IR fixed point consistent with both of these requirements.
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Summary 25
We have found novel disordered IR fixed points using holographic
models.

[Huang, Sachdev, Lucas; Phys. Rev. Lett. 131 141601 (2023)]

Starting with a charge-neutral theory, our predictions are consistent
with conformal perturbation theory, and remarkably even with some
weakly-coupled models.

Starting with generic z and θ, we didn’t find that IR exponents are
universal functions of ν in all models (but were in EMD models). The
IR fixed points pass all sanity checks (marginal disorder, consistent
thermodynamic/transport scalings, etc.).

Our technical methods generalize to many other holographic models!



Summary 25
We have found novel disordered IR fixed points using holographic
models.

[Huang, Sachdev, Lucas; Phys. Rev. Lett. 131 141601 (2023)]

Starting with a charge-neutral theory, our predictions are consistent
with conformal perturbation theory, and remarkably even with some
weakly-coupled models.

Starting with generic z and θ, we didn’t find that IR exponents are
universal functions of ν in all models (but were in EMD models). The
IR fixed points pass all sanity checks (marginal disorder, consistent
thermodynamic/transport scalings, etc.).

Our technical methods generalize to many other holographic models!



Summary 25
We have found novel disordered IR fixed points using holographic
models.

[Huang, Sachdev, Lucas; Phys. Rev. Lett. 131 141601 (2023)]

Starting with a charge-neutral theory, our predictions are consistent
with conformal perturbation theory, and remarkably even with some
weakly-coupled models.

Starting with generic z and θ, we didn’t find that IR exponents are
universal functions of ν in all models (but were in EMD models). The
IR fixed points pass all sanity checks (marginal disorder, consistent
thermodynamic/transport scalings, etc.).

Our technical methods generalize to many other holographic models!



Summary 25
We have found novel disordered IR fixed points using holographic
models.

[Huang, Sachdev, Lucas; Phys. Rev. Lett. 131 141601 (2023)]

Starting with a charge-neutral theory, our predictions are consistent
with conformal perturbation theory, and remarkably even with some
weakly-coupled models.

Starting with generic z and θ, we didn’t find that IR exponents are
universal functions of ν in all models (but were in EMD models). The
IR fixed points pass all sanity checks (marginal disorder, consistent
thermodynamic/transport scalings, etc.).

Our technical methods generalize to many other holographic models!


