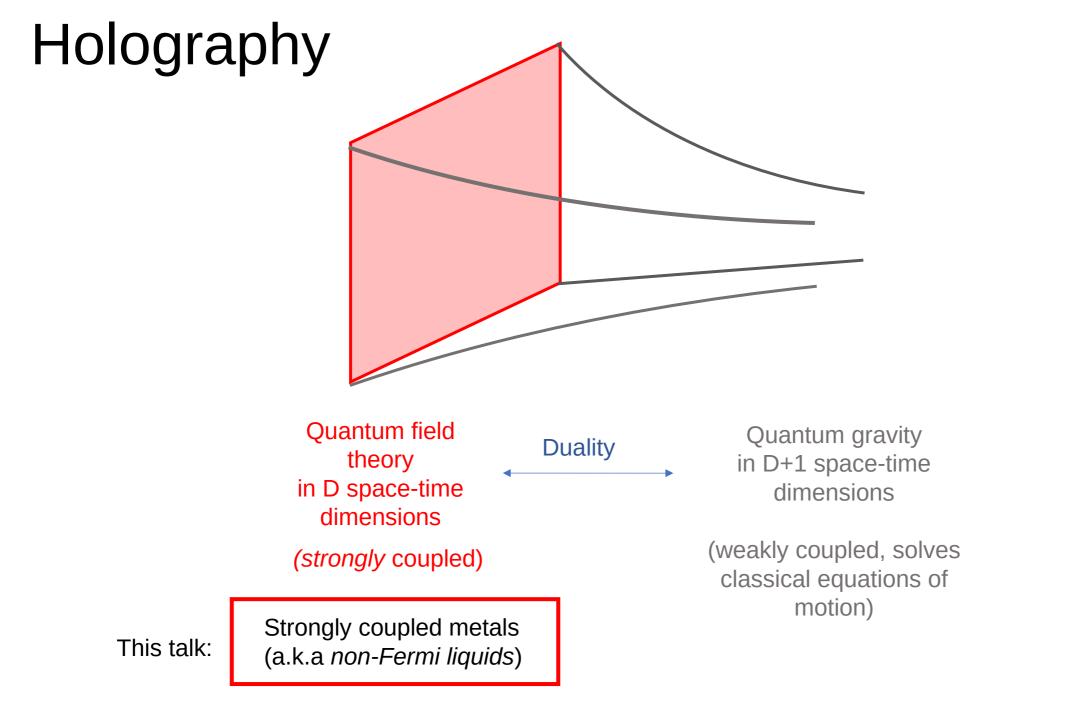
A holographic effective field theory for a metal with a Fermi surface

Dominic Else (Perimeter Institute)

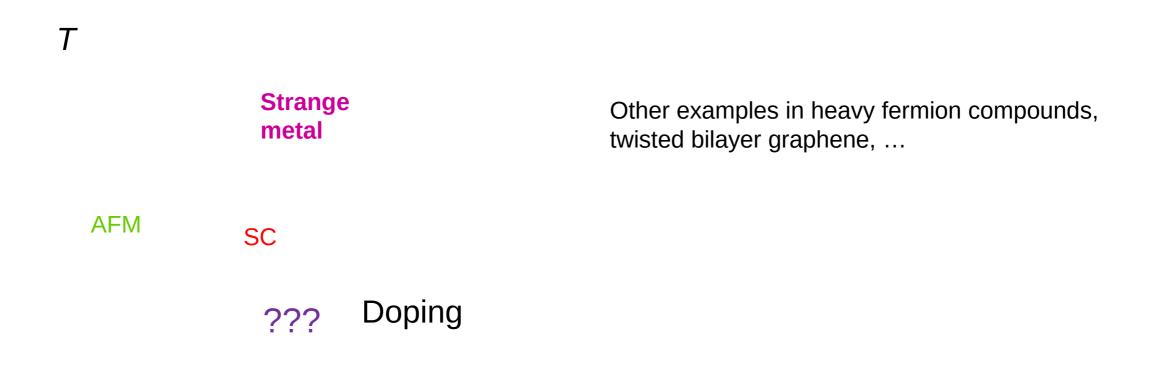
arXiv:2307.02526

HoloTube, November 14 2023



Strange metals: example of non-Fermi liquid

Doped cuprates (e.g. YBCO = Yttrium Barium Copper Oxide) High temperature superconductors (YBCO has $T_c \sim 93$ K)



Outline

- What are the fundamental properties of metals (beyond weak coupling)?
- Review: previous holographic models of metals
- Constructing a new holographic model as an *effective field theory*
- Results from solution of the model

1. Fundamental properties of metals

What is a metal?

UV

Quantum field theory with global U(1) symmetry and continuous translation symmetry at nonzero charge density $\rho \neq 0$

e.g. non-relativistic electron with chemical potential

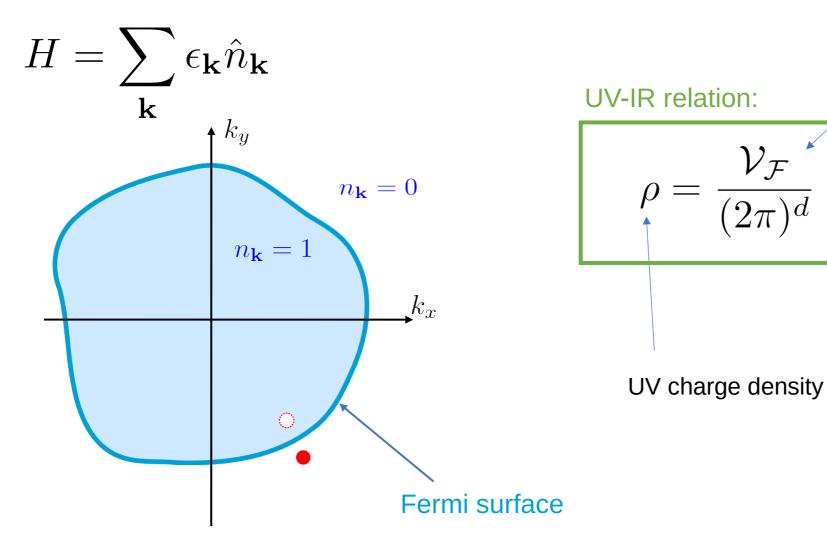
$$H = \int d^d \mathbf{x} \left[-\frac{1}{2m} \Psi^{\dagger} \nabla^2 \Psi - \mu \Psi^{\dagger} \Psi + (\text{interactions}) \right]$$

IR Effective field theory

Metal or superfluid

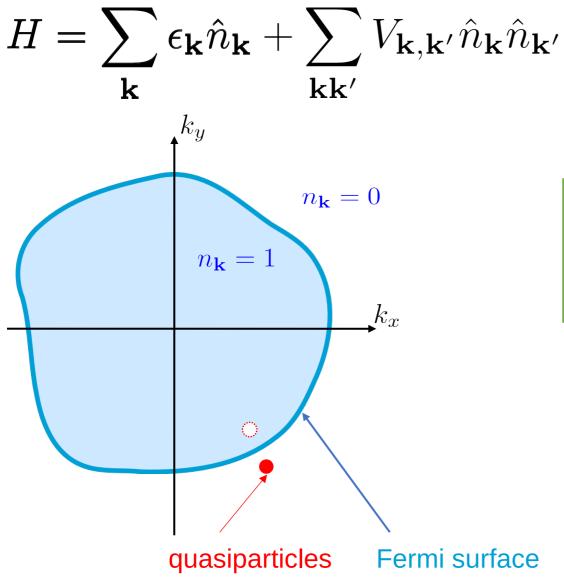
Spontaneously breaks U(1)

IR theory of a metal: non-interacting electrons



Volume enclosed by Fermi surface

IR theory of a metal: Fermi liquid theory



Volume enclosed by UV Fermi surface **UV-IR** relation (Luttinger's theorem) UV charge density

Fermi liquid theory represents a fixed-point under RG flow

IR

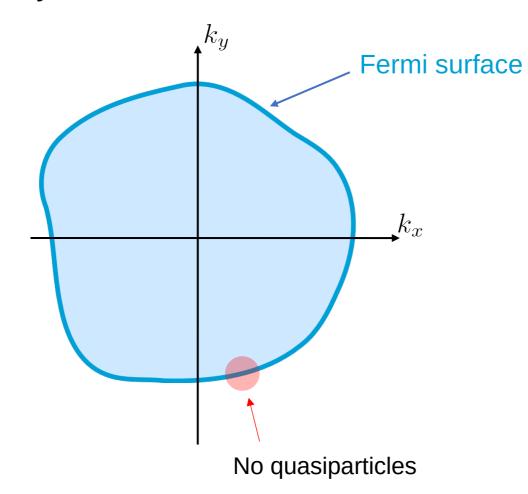
Possibilities for IR fixed point

"Non-Fermi liquid metal"

Continuum theory with global U(1) symmetry and continuous translation symmetry UV at nonzero charge density ho
eq 0Fermi liquid Strongly coupled fixed-point(s)

General features of metals (beyond Fermi liquid)

They still have a Fermi surface!



The Fermi surface still obeys Luttinger's theorem!

UV-IR relation (Luttinger's theorem)

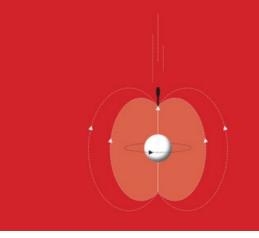
UV charge density

Volume enclosed by Fermi surface

2. Review: previous holographic models

HOLOGRAPHIC QUANTUM MATTER

SEAN A. HARTNOLL, ANDREW LUCAS, AND SUBIR SACHDEV



Holographic construction of metal

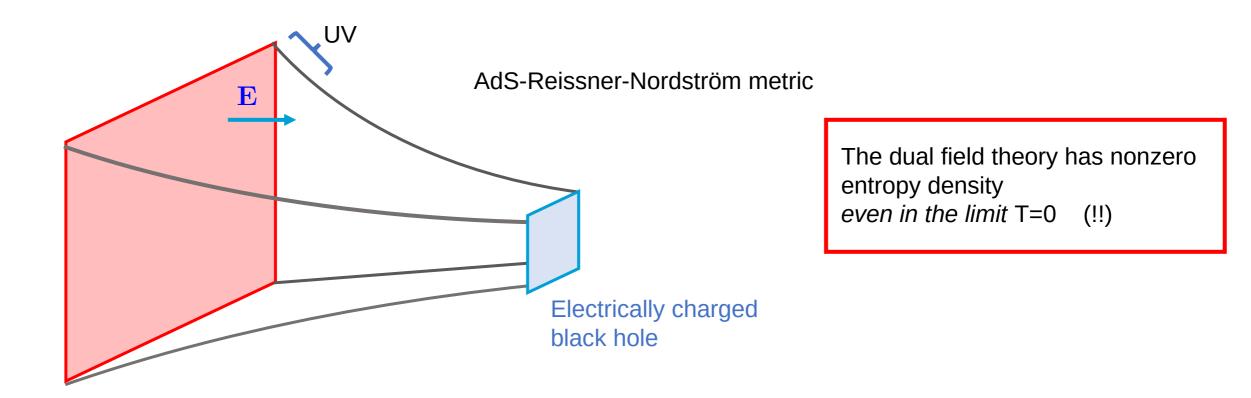
Continuum theory with global U(1) symmetry and continuous translation symmetry at nonzero charge density $\rho \neq 0$

For holography: take this to be a strongly coupled CFT perturbed by a chemical potential

IR Effective field theory

UV

Metal



3D CFT \checkmark Asymptotically AdS_4 geometry in the UV region

Nonzero charge density

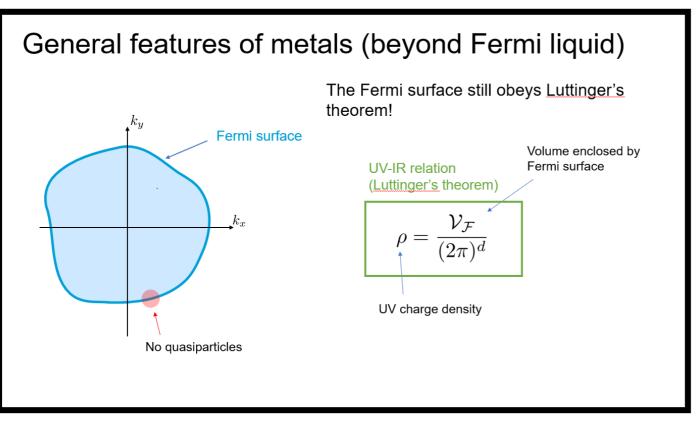
Electric field in the UV region in the direction normal to the boundary

The missing Fermi surface

• These models have no trace of a Fermi surface*

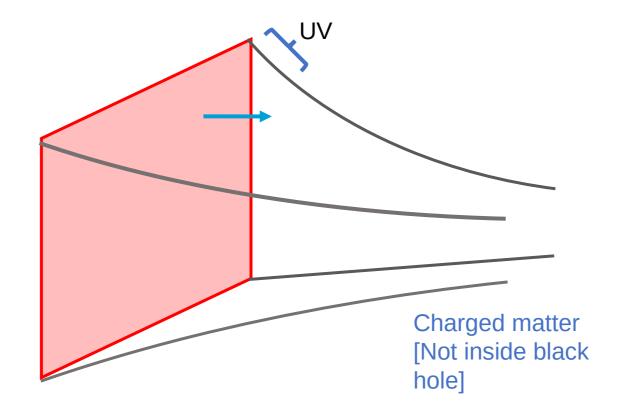
* at least not a Fermi surface satisfying Luttinger's theorem

Recall from before:



There are some hints that the Fermi surface may come back if we include quantum corrections in the bulk

Electron star models



[Hartnoll and Tavanfar, PRD 2011]

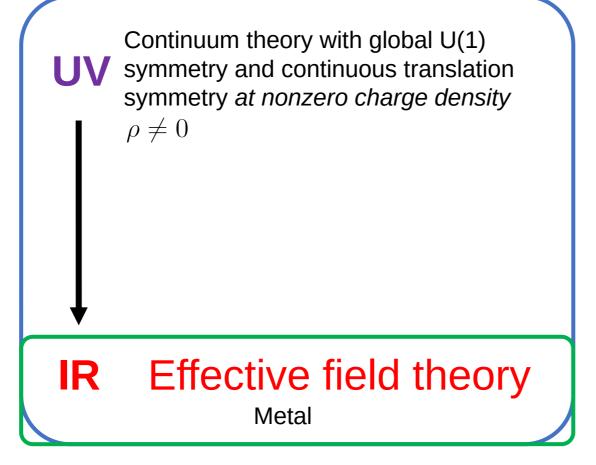
3. A new model

What are we actually trying to do?

The previous holographic models are attempting to find an exact description of this *entire* RG flow

Instead:

Just find a holographic description of the IR theory

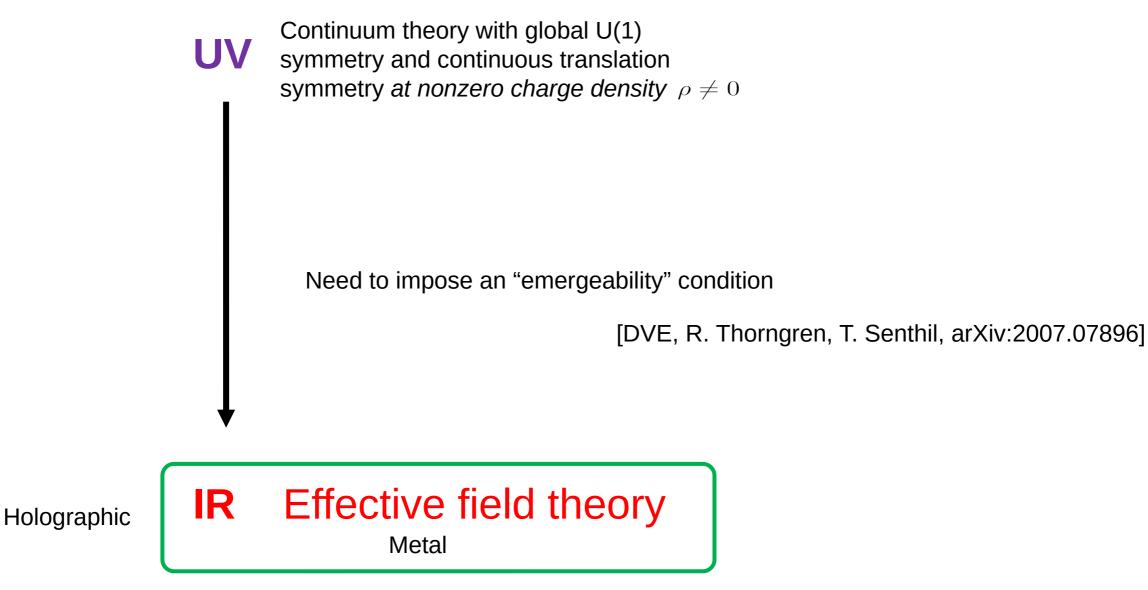


What we usually do in condensed matter physics:

JV Some material, e.g. YBCO

IR We narrow down what the IR theory could be through *experimental* probes of the material

We want a holographic effective field theory



Emergeability condition

and continuous translation symmetry

Global U(1) symmetry

UV

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

Nonzero charge density $\rho \neq 0$

 $\rho_{\rm IR} \neq \rho_{\rm UV}$

IR UV global symmetries have to act on the IR theory

Charge density is *not* an RG invariant

Example: electron gas in 1 spatial dimension

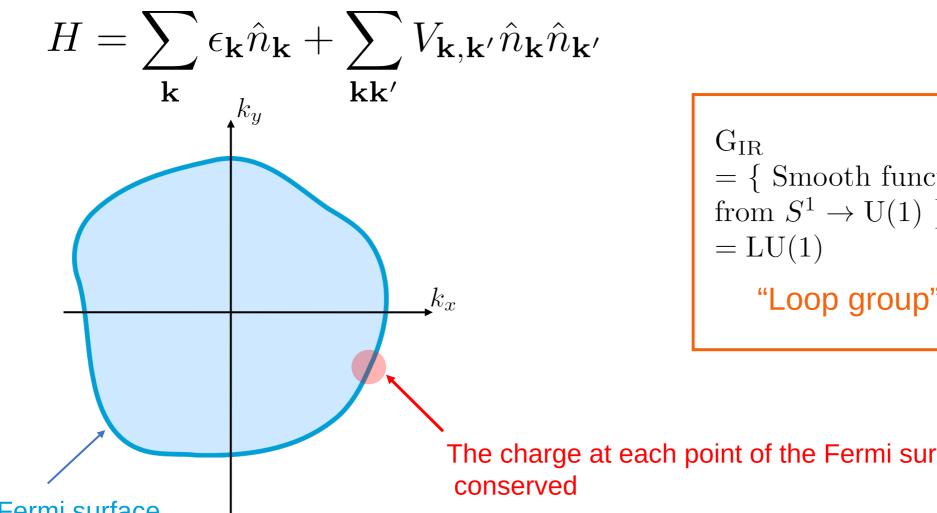
$$H = \int d^d \mathbf{x} \left[-\frac{1}{2m} \Psi^{\dagger} \nabla^2 \Psi - \mu \Psi^{\dagger} \Psi \right]$$

 $(\rho = 0)$ UV theory $(\rho \neq 0)$ E $E-\mu$ Emergent $\mathrm{U}(1)_L \times \mathrm{U}(1)_R$ symmetry k_R k_L Chiral anomaly $\rightarrow k$ $\partial_{\mu}(j^{(R)})^{\mu} = \frac{1}{2\pi}E$ [Example of a 't Hooft anomaly]

The emergent symmetry and anomaly is precisely what allows a (1+1)-D Dirac fermion to be emergeable from a theory with nonzero charge density

IR theory: (1+1)-D Dirac fermion

Emergent symmetry of Fermi liquid theory in 2 spatial dimensions [DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]



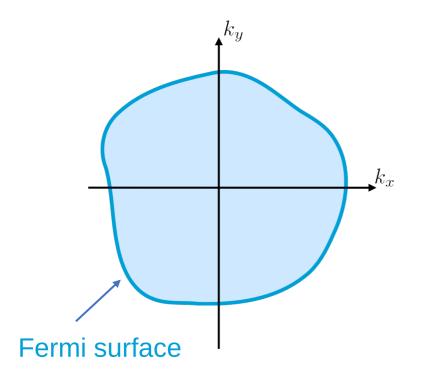
$$G_{IR} = \{ \text{Smooth functions} \\ \text{from } S^1 \to U(1) \} \\ = LU(1) \end{cases}$$

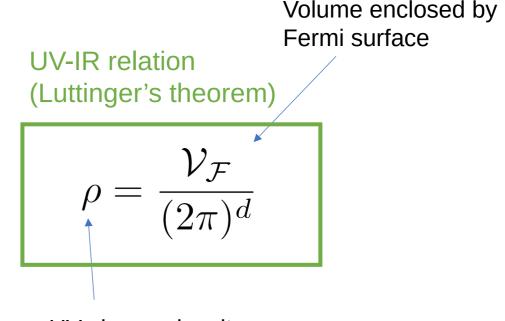
The charge at each point of the Fermi surface is *individually*

Fermi surface

[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

• The emergent LU(1) symmetry (and its anomaly) turns out to be precisely the information needed to derive Luttinger's theorem





UV charge density

We want a holographic effective field theory

UV Continuum theory with global U(1) symmetry and continuous translation symmetry *at nonzero charge density* $\rho \neq 0$

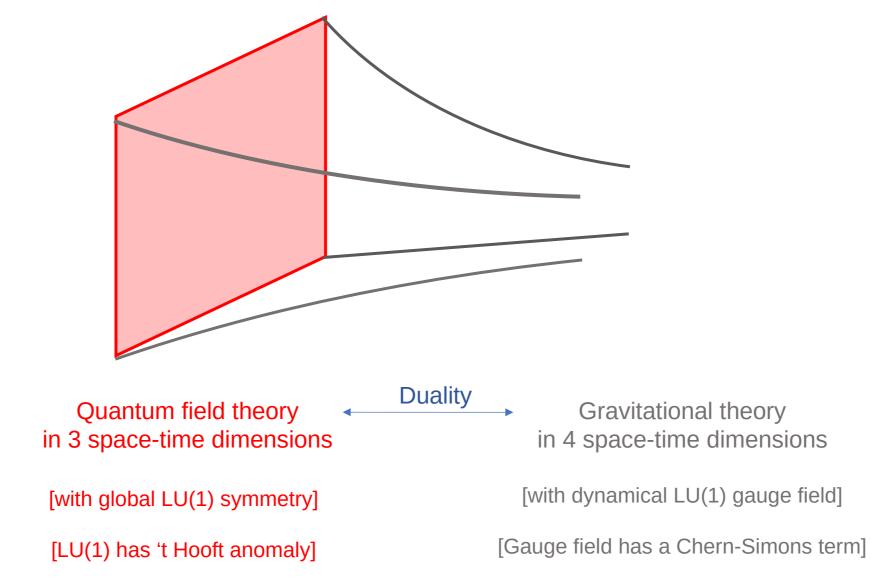
Need to impose an "emergeability" condition

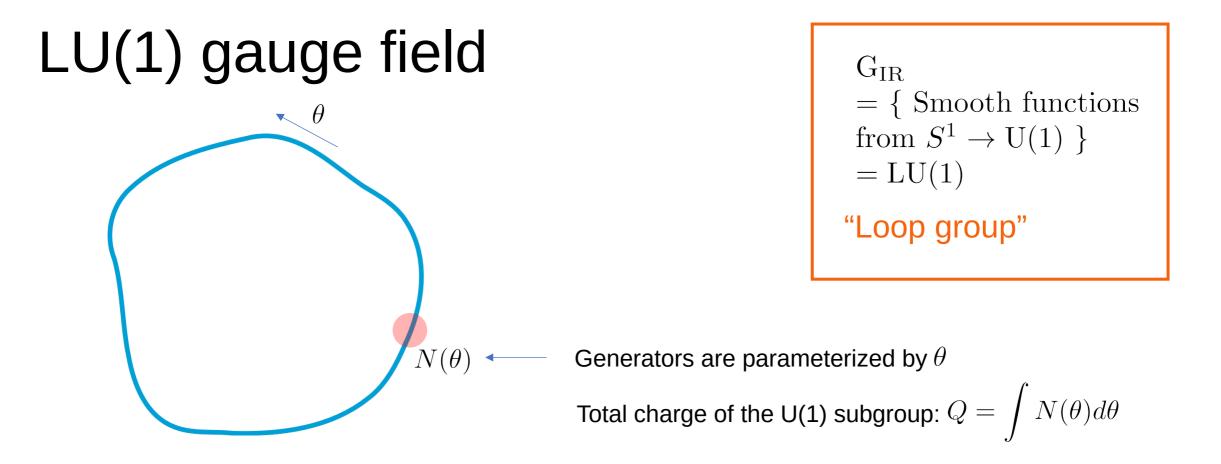
[DVE, R. Thorngren, T. Senthil, arXiv:2007.07896]

Just try to find a holographic effective field theory of a metal

Impose that the field theory has a global LU(1) symmetry (with anomaly)

Holography with a global LU(1) symmetry





An LU(1) gauge field on a space-time M is a family of vector fields $a_{\mu}(\theta)$ parameterized by θ

Gauge transformation: $a_{\mu}(\theta) \rightarrow a_{\mu}(\theta) + \partial_{\mu}\lambda(\theta)$

This is basically equivalent to a ${\rm U}(1)$ gauge field on $\,M \times S^1\,$

The Chern-Simons term

The action for the LU(1) gauge field will include a Chern-Simons term

$$\frac{m}{24\pi^2} \int_{M_4 \times S^1} A \wedge dA \wedge dA$$
$$m \in \mathbb{Z}$$
4D space-time

An important remark:

- The metric that satisfies the Einstein equations lives on M_4 , not $M_4 \times S^1$
- The Fermi surface coordinate is an *internal* label for the symmetry group, not a space-time dimension
- e.g. If the symmetry group were U(1) x U(1), we would not define a metric that lives on a space-time with two disconnected components.

Another important remark

• LU(1) conservation law in 3-dimensional space-time M_3 is not the same as a U(1) conservation law in $M_3 \times S^1$

```
LU(1) conservation enforces
\mathrm{LU}(1) conservation law in M_3 :
         \partial_{\mu} j^{\mu}(\theta) = (\text{anomaly term})
                 This index ranges over the 3 coordinates of M_{
m 3}
 \mathrm{U}(1) conservation law in M_3 	imes S^1
         \partial_{\mu} j^{\mu}(\theta) + \partial_{\theta} j^{\theta} = (\text{anomaly term})
```

that $j^{\theta} = 0$ No flow of charge *along* the Fermi surface

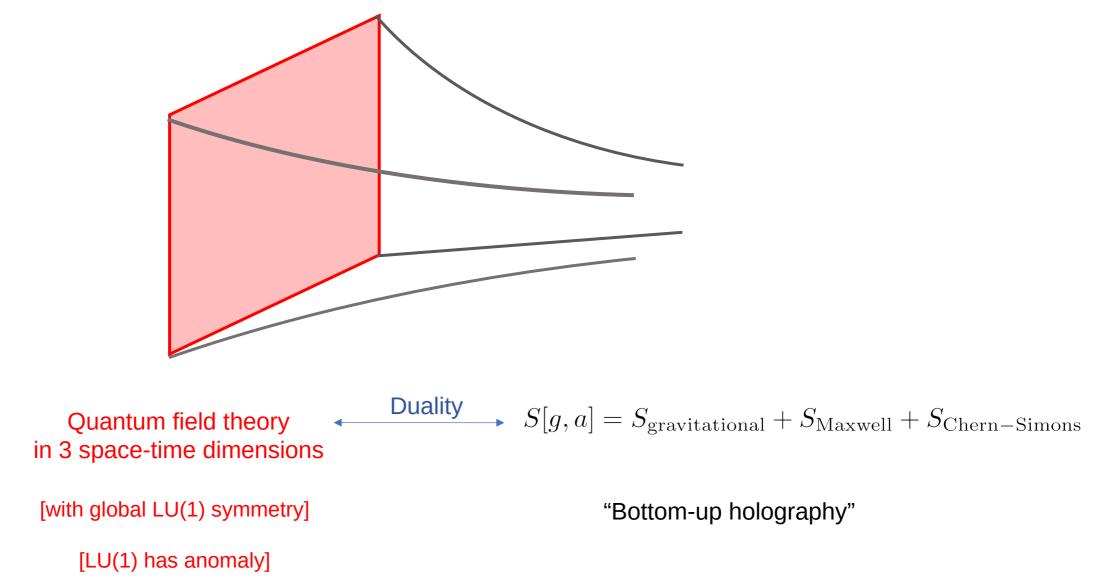
The Maxwell term in the bulk

Indices range over the 4 space-time coordinates, *not* including the Fermi / surface coordinate θ

 $f_{\mu\nu}(\theta) = \partial_{\mu}a_{\nu}(\theta) - \partial_{\nu}a_{\mu}(\theta)$

$$\int_{M_4} d^4 x \sqrt{-g} \int d\theta f_{\mu\nu}(\theta) f^{\mu\nu}(\theta)$$
 Metric on the 4-D space-time

The holographic model



Boundary conditions

• Asymptotic metric is AdS_4

$$ds^{2} = \frac{L^{2}}{r^{2}}(-dt^{2} + dx^{2} + dy^{2} + dz^{2})$$

 Asymptotic solutions to the equations of motion for the LU(1) gauge field take the form

$$a_{\alpha} = a_{\alpha}^{(0)} + ra_{\alpha}^{(1)}$$

• The holographic dictionary tells us to identify

$$a_{\alpha}^{(0)} = A_{\alpha}$$

[background LU(1) gauge field in the dual QFT]

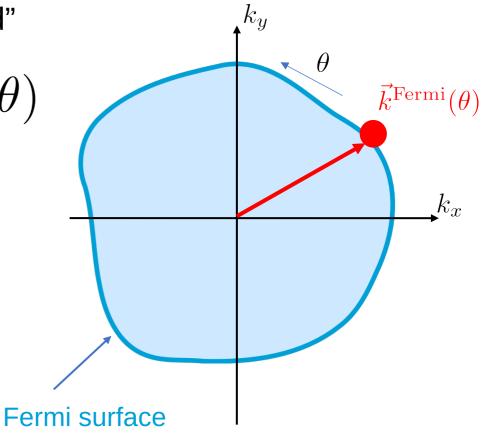
$$a_{\alpha}^{(1)} = \langle j_{\alpha} \rangle$$

[LU(1) current in the dual QFT]

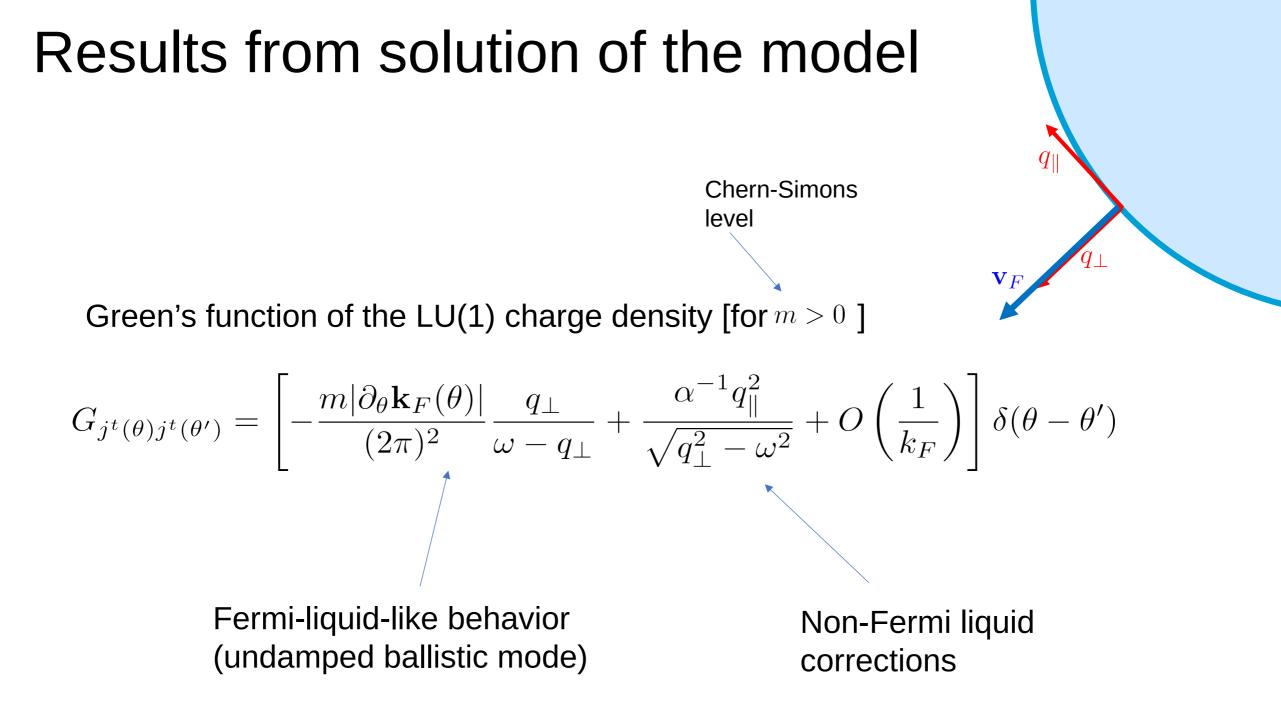
Properties to impose on the dual QFT

- The charge density of the LU(1) symmetry is *zero*
- We need to apply a "phase space magnetic field"

$$f_{\theta i} := \partial_{\theta} a_i - \partial_i a_{\theta} = \partial_{\theta} k_i^{\text{Fermi}}(\theta)$$



4. Results from solution of the model



Results from solution of the model

Optical conductivity: $j^i = \sigma^{ij}(\omega) E_j$ (at $\mathbf{q} = 0$)

$$\sigma^{ij}(\omega) = \frac{i}{\omega} \mathcal{D}^{ij} + \sigma^{ij}_{inc} + O\left(\frac{1}{k_F}\right)$$

"Drude" or
"coherent" "Incoherent"

conductivity

conductivity (absent in Fermi liquid theory)

Conclusions

- I have presented a new holographic model which incorporates the essential physics of strongly coupled metals, including the Fermi surface
- A jumping off point to build models of strongly coupled metals
- One future direction: weakly break the LU(1) symmetry to model scattering and get nonzero DC resistivity