Relativistic Fluctuation Dynamics

Xin An

Holo Tulde

Applied Holography Webinar
Oct 172023

Motivation

Fluctuations on all length scales

- Fluctuations are ubiquitous phenomena emerging on all length scales.

Nobel Prize in Physics 2021
S. Manabe, K. Hasselmann, G. Parisi

Fluctuations in equilibrium

- Thermal fluctuations: systems possess large number of DOFs; small deviation from Gaussian due to the central limit theorem.

Thermal equilibrium is extremely boring.
Susskind

- Non-Gaussian fluctuations become more important when systems possess smaller number of DOFs (e.g., closer to the critical point).

Fluctuations out of equilibrium

- Hydrodynamic fluctuations:
noise
scale hierarchy

$$
\begin{array}{r}
\ell_{\text {mic }} \ll b<\ell \ll L \\
T \ggg q \gg k
\end{array}
$$

scale hierarchy

$\ell_{\text {mic }} \ll b<\ell \ll L$
$T \gg$
$T>q \gg$

evolution described by a set of conservation equations
large number of locally thermalized cells comoving with fluid

The importance of hydrodynamic fluctuations

- Einstein's formula for diffusion coefficient: Einstein, 1905

$$
D=\lim _{t \rightarrow \infty} \frac{1}{2 t}\left\langle\Delta x^{2}(t)\right\rangle=\int_{0}^{\infty} d \tau\langle v(\tau) v(0)\rangle
$$

- Long-time behavior:

$$
\underset{\text { With only dissipation }}{\rightarrow} \quad D \sim \mu^{-1}
$$

$$
\begin{gathered}
\langle v(t) v(0)\rangle \sim t^{-3 / 2} \rightarrow \quad D \sim t^{-1 / 2} \\
\text { With also fluctuations }
\end{gathered}
$$

Why fluctuating hydro works in QGP?

- Hydrodynamics works because:

Particle number $\sim 10^{2}-10^{4}$: large enough

Flow collectivity manifests QGP as a perfect fluid Gale et al, 1301.5893

- Fluctuations are important because:

Fire ball size $\sim 10 \mathrm{fm}$: small enough

Net-proton fluctuates event by event Adam et al, 2001.02852

Hydrodynamization time $\sim 1 \mathrm{fm}$: fast enough

Hydrodynamic attractor far from equilibrium
Florkowski et al, 1707.02282, Romatschke et al, 1712.05815

Correlation length $\sim 1-10 \mathrm{fm}$: large enough

Correlation length diverges near the critical point XA et al, 2009.10742

Experiment vs Theory

- Fluctuating hydrodynamics is a non-equilibrium approach to unraveling the equilibrium properties of QCD matters in different phases.

Collision event simulation at LHC (CERN)

Out of equilibrium; observables fluctuate event-by-event

In equilibrium; observables fluctuate ensemble-by-ensemble

Small bang vs Big bang

- Similarity: extreme initial state; particle synthesis; system expands, cools followed by freezeout and thermalization.

History of a heavy-ion collision

History of Universe

- Difference:

Many events (HICs), high statistics measured in momentum coordinate

One event (CMB), cosmic variance measured in space coordinate

Theory for fluctuation dynamics

Theory

EFTs (top-down like)

Starting from effective action with first principles
e.g., Martin-Siggia-Rose (MSR), SchwingerKeldysh (SK), Hohenberg-Halperin (HH), nparticle irreducible (nPI), etc.

Glorioso et al, 1805.09331
Jain et al, 2009.01356
Sogabe et al, 2111.14667
Chao et al, 2302.00720

EOMs (bottom-up like)

Starting from phenomenological equations with required properties
e.g., Langevin equations in stochastic description, Fokker-Planck (FP)
equations in deterministic description.
Akamatsu et al, 1606.07742
Nahrgang et al, 1804.05728
Singh et al, 1807.05451
Chattopadhyay et al, 2304.07279

Two different EOMs

Stochastic

Langevin equation

Newton's equation + noise

$\left\langle\eta_{i}\left(x_{1}\right) \eta_{j}\left(x_{2}\right)\right\rangle=2 Q_{i j} \delta^{(4)}\left(x_{1}-x_{2}\right)$ multiplicative noise infinite noise

Pros: one equation, albeit millions of samples Cons: divergence due to infinite noise; ambiguity due to multiplicative noise

Deterministic

Fokker-Planck equation

probability evolution equation

$$
\begin{aligned}
& \partial_{t} P=\left(-F_{i} P+\left(M_{i j} P\right)_{, j}\right)_{, i} \\
& M_{i j} S_{, j}+M_{i j, j} \text { Q }_{i j}+\Omega_{i j} \quad P_{\mathrm{eq}}=e^{S}
\end{aligned}
$$

$Q_{i j}$: Onsager matrix (symmetric)
$\Omega_{i j}$: Poisson matrix (anti-symmetric)

Pros: infinite noise regularized analytically; multiplicative noise well defined
Cons: millions of equations, albeit one sample

Dynamics of correlators

- Both approaches consider n-pt correlators $G_{n} \equiv\langle\underbrace{\phi \ldots \phi}_{n}\rangle \equiv \int d \psi P[\psi] \underbrace{\phi \ldots \phi}_{n}$
where $\phi \equiv \psi-\langle\psi\rangle$.

cumulants measured in HIC
n-pt correlators are related to cumulants by integration
- Evolution equations for G_{n} :

XA et al, 2009.10742, 2212.14029

$$
\partial_{t} P=\left(-F_{i} P+\left(M_{i j} P\right)_{, j}\right)_{, i} \quad \longrightarrow \quad \partial_{t} G_{n}=\ldots
$$

E.g., $\partial_{t} G_{i j}=F_{i, k} G_{k j}+F_{j, k} G_{k i}+2 M_{i j}+\frac{1}{2} F_{i, k \ell} G_{k \ell j}+\frac{1}{2} F_{j, k \ell} G_{k \ell i}+M_{i j, k \ell} G_{k \ell}+\ldots$

Diagrams and truncation

- Evolution equations for n-pt correlators (diagrams): xAetal, 2009:10742, 2212:4029

$$
\partial_{t} G_{n}=\mathscr{F}\left[\langle\psi\rangle, G_{2}, G_{3}, \ldots, G_{n}, G_{n+1}, \ldots, G_{\infty}\right]
$$

all combinatorial configurations of trees
need ∞ equations to close the system!

$$
F_{i} \equiv \longrightarrow \quad F_{i, j \ldots} \equiv-\mathbb{D}
$$

$$
M_{i j} \equiv \backsim \quad M_{i j, k \ldots} \equiv \underset{\AA}{\ldots} \quad G_{i j \ldots} \equiv \underset{\sim}{\ldots}
$$

- Introducing the loop expansion parameters $\varepsilon \sim 1 /$ number of DOFs, the evolution equations can be systematically truncated and iteratively solved:

```
XA et al, 2009.10742
```

$\partial_{t} G_{n}=\mathscr{F}\left[\langle\psi\rangle, G_{2}, G_{3}, \ldots, G_{n}\right]+\mathscr{O}\left(\varepsilon^{n}\right) \quad$ where $\quad G_{n} \sim \varepsilon^{n-1}, \quad F_{i} \sim 1, \quad M_{i j} \sim \varepsilon$.

Hydrodynamics: $\varepsilon \sim(\xi / \ell)^{3} \sim$ correlated volume / fluctuation volume Holography: $\varepsilon \sim 1 / N_{c} \sim 1$ / number of colors

Truncated equations

- First few truncated equations (diagrams): xAeta, 2009. $10742,2212,14029$

conventional hydro equations

one loop (renormalization \& long-time tails)

Multi-point Wigner function

- For fluctuation fields, we introduced the novel n-pt Wigner function XAetal, 2009.10742

$$
W_{n}\left(x ; q_{1}, \ldots, q_{n}\right)=\int d^{3} y_{1} \ldots d^{3} y_{n} e^{-\left(i q_{1} y_{1}+\ldots+i q_{n} y_{n}\right)} \delta^{(3)}\left(\frac{y_{1}+\ldots+y_{n}}{n}\right) G_{n}\left(x ; y_{1}, \ldots, y_{n}\right)
$$

y-space

q-space
"While the bottom-up approach is useful in order to calculate two-point correlation functions, it is not immediately obvious how it should be generalized for the calculation of n-point correlation functions." Romatschke, 2019

An example: charge diffusion near critical point

- Simple charge diffusion problem: \times Aetal, 2009,10742

$$
\partial_{t} n=\nabla \lambda \nabla \alpha+\eta, \quad\langle\eta(x) \eta(y)\rangle=2 \nabla^{(x)} \lambda \nabla^{(y)} \delta^{(3)}(x-y)
$$

quantities	general	diffusive charge
variable	ψ_{i}	$n(\boldsymbol{x})$
variable index	i, j, k, etc.	$\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$, etc.
Onsager matrix	$Q_{i j}$	$\boldsymbol{\nabla}_{\boldsymbol{x}} \lambda \boldsymbol{\nabla}_{\boldsymbol{y}} \delta_{\boldsymbol{x} \boldsymbol{y}}^{(3)}$
drift force	F_{i}	$\boldsymbol{\nabla}_{\boldsymbol{x}} \lambda \boldsymbol{\nabla}_{\boldsymbol{x}} \alpha$

$n \equiv$ charge density; $\lambda \equiv$ conductivity; $\alpha \equiv$ chemical potential

An example: charge diffusion near critical point

- Charge diffusion near QCD critical point: strong memory effect

XA et al, 2009.10742, 2209.15005

Evolution of correlators along a typical (white) trajectory
for recent numerical implementation with freeze-out procedure, see Pradeep et al, 2204.00639, 2211.09142

Connection to top-down approach

- Schwinger-Keldysh formalism

Schwinger Keldysh

$$
Z=\int \mathscr{D} \psi_{1} \mathscr{D} \psi_{2} \mathscr{D} \chi_{1} \mathscr{D} \chi_{2} e^{i I_{0}\left(\psi_{1}, \chi_{1}\right)-i I_{0}\left(\psi_{2}, \chi_{2}\right)}=\int \mathscr{D} \psi_{1} \mathscr{D} \psi_{2} e^{i \int_{\tau} \mathscr{L}_{\mathrm{EFT}}}
$$

- The effective Lagrangian is constructed following fundamental symmetries:

Glorioso et al, 1805.09331; Jain et al, 2009.01356

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{EFT}}\left(\psi_{r}, \psi_{a}\right)=\psi_{a i} Q_{i j}^{-1}\left(F_{j}-\dot{\psi}_{r j}\right)+i \psi_{a i} Q_{i j}^{-1} \psi_{a j} \quad \text { where } \quad \psi_{r}=\frac{1}{2}\left(\psi_{1}+\psi_{2}\right), \quad \psi_{a}=\psi_{1}-\psi_{2} \\
& P[\psi]=\int_{\psi_{r}=\psi(t)} \mathscr{D} \psi_{r} \mathscr{D} \psi_{a} J\left(\psi_{r}\right) e^{i \int_{-\infty}^{t} d \tau \mathscr{L}_{\mathrm{EFT}}} \longrightarrow \quad \partial_{t} P=\left(-F_{i} P+\left(Q_{i j} P\right)_{, j}\right)_{, i}
\end{aligned}
$$

[^0]
Fluctuation dynamics in relativistic fluids

Relativistic dynamics

Eulerian specification

more often used in non-relativistic theory

There is a global time for every observer.
All correlators G_{n} can be measured at the same time in the same frame (lab).

Lagrangian specification

more convenient for relativistic theory

Each fluid cell has its own clock (proper time).
How to define the analogous equal-time correlator G_{n} in relativistic theory?

Confluent formulation: correlator and derivative

- Confluent formulation: covariant description for the comoving fluctuations.

See XA et al, 2212.14029 for more details

Confluent correlator \bar{G}

$\bar{G}_{i_{1} \ldots i_{n}}=\Lambda_{i_{1}}^{j_{1}}\left(x-x_{1}\right) \ldots \Lambda_{i_{n}}^{j_{n}}\left(x-x_{n}\right) \bar{G}_{j_{1} \ldots j_{n}}$
boost all fields (measured at their own local rest frame) to one common frame (chosen at their midpoint)

Confluent derivative $\bar{\nabla}$

(a)

(b)

$$
\bar{\nabla}_{\mu} \bar{G}_{i_{1} \ldots i_{n}}=\partial_{\mu} \bar{G}_{i_{1} \ldots i_{n}}-n\left(\check{\omega}_{\mu b}^{a} y_{1}^{y_{1}} \partial_{a}^{\left(y_{1}\right)} \bar{G}_{i_{1} \ldots i_{n}}+\bar{\omega}_{\mu i_{1}}^{j_{1}} \bar{G}_{j_{1} \ldots i_{n}}\right)_{\text {perm. }}
$$ the frame at midpoint moves accordingly as the n points move, the difference of a given field before and after the movement is calculated in one same frame, with the equal-time constraint preserved by introducing the local triad e_{a}^{μ} with $a=1,2,3$

Confluent formulation: Wigner function

- The confluent n-pt Wigner transform from x-independent variable $y^{a}=e_{\mu}^{a}(x) y^{\mu}$ to q^{a} with $a=1,2,3$. XA et al, 2212.14029

$$
W_{n}\left(x ; q_{1}^{a}, \ldots, q_{n}^{a}\right)=\int \prod_{i=1}^{n}\left(d^{3} y_{i}^{a} e^{-i q_{i \alpha} y_{i}^{a}}\right) \delta^{(3)}\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{a}\right) \bar{G}_{n}\left(x+e_{a} y_{1}^{a}, \ldots, x+e_{a} y_{n}^{a}\right)
$$

(a)

(b)

Confluent fluctuation evolution equations

- Fluctuation evolution equations in the impressionistic form: x_{A} etal, in progeress
of which the solutions match thermodynamics with entropy $S\left(m, p, u_{\mu}, \eta\right)$.

Equilibrium solutions in diagrammatic representation
For $\phi=\left(\delta m, \delta p, \delta u_{\mu}\right)$, there are $21+56+126=\mathbf{2 0 3}$ equations (for the 2-pt, 3-pt and 4-pt correlators) to solve--bite off more than one can chew!

Rotating phase approximation

- Step 1: choose a set of new bases in Fock space s.t. the ideal hydrodynamic equations are diagonalized with eigenvalues $\lambda_{ \pm}(q)= \pm c_{s} q, \lambda_{m}(q)=\lambda_{(i)}(q)=0$.

$$
\phi=\left(\begin{array}{l}
\phi_{m} \\
\phi_{p} \\
\phi_{\mu}
\end{array}\right)=\left(\begin{array}{c}
\delta m \\
\delta p \\
\delta u_{\mu}
\end{array}\right) \quad \longrightarrow \quad \Phi=\left(\begin{array}{c}
\Phi_{m} \\
\Phi_{ \pm} \\
\Phi_{(i)}
\end{array}\right) \sim\left(\begin{array}{c}
\delta m \\
\delta p \pm c_{s} w \hat{q} \cdot \delta u \\
t_{(i)} \cdot \delta u
\end{array}\right)
$$

$$
\begin{aligned}
i & =1,2 \\
& \sim
\end{aligned}
$$

NB: n-pt correlators are analogous to n-particle quantum states lying in the Fock space.

- Step 2: for n-pt correlators $W_{\Phi_{1} \ldots \Phi_{n}}\left(q_{1}, \ldots, q_{n}\right)$,

$$
\text { if } \sum_{i=1}^{n} \lambda_{\Phi_{i}}\left(q_{i}\right)\left\{\begin{array}{lll}
=0 & \longrightarrow & \text { slow mode (kept) } \\
\neq 0 & \longrightarrow & \text { fast mode (averaged out) }
\end{array}\right.
$$

$$
\text { E.g., } W_{+-}\left(q_{1}, q_{2}\right) \text { is a slow mode since } \lambda_{+}\left(q_{1}\right)+\lambda_{-}\left(q_{2}\right)=c_{s}\left(q_{1}-q_{2}\right)=0 \text {; }
$$

$$
W_{+++}\left(q_{1}, q_{2}, q_{3}\right) \text { is not a slow mode since } \lambda_{+}\left(q_{1}\right)+\lambda_{+}\left(q_{2}\right)+\lambda_{+}\left(q_{3}\right)=c_{s}\left(q_{1}+q_{2}+q_{3}\right) \neq 0
$$

As a result, we end up with 7+10+15=32 equations to solve.
E.g., the 7 independent 2-pt slow modes are $W_{m m}, W_{m(i)}, W_{(i)(j)}, W_{+-}$.

Hydro-kinetic equations

- The equation for W_{+-}has a kinetic interpretation:

Fluctuation feedback

- Fluctuations give feedback to the bare quantities order by order in gradient expansion:

$$
\begin{aligned}
& T_{\mu \nu}^{\mathrm{physical}}= \underbrace{T_{\mu \nu}^{(0)}+T_{\mu \nu}^{(1)}+T_{\mu \nu}^{(2)}+\ldots}_{\text {bare }}+\underbrace{\delta T_{\mu \nu}\left(\left\{G_{n}\right\}\right)}_{\text {renormalized }} \\
&= \underbrace{T_{\mu \nu}^{R(0)}+T_{\mu \nu}^{R(1)}+T_{\mu \nu}^{R(2)}}_{\text {luctuation }}+\underbrace{\widetilde{T}_{\mu \nu}^{(3 / 2)}+\widetilde{T}_{\mu \nu}^{(3)}+\widetilde{T}_{\mu \nu}^{(9 / 2)}+\ldots}_{\text {long-time tails }} \\
& \text { where } G_{n}(x) \sim \int d^{3} q_{1} \ldots d^{3} q_{n} \delta^{(3)}\left(q_{1}+\ldots+q_{n}\right) W_{n}\left(x, q_{1}, \ldots, q_{n}\right) \\
& \uparrow
\end{aligned}
$$

Renormalization

- Equation for 2-pt functions under RPA:

$$
\mathscr{L} W(q)=-\gamma q^{2}\left(W(q)-W^{(0)}\right)-\partial \psi W(q)
$$

with asymptotic solutions

$$
W(q)=\frac{\gamma q^{2} W^{(0)}}{-i \omega+\gamma q^{2}+\partial \psi}=\left\{\begin{array}{l}
W^{(0)}\left(1-\frac{-i \omega+\partial \psi}{\gamma q^{2}}+\ldots\right), \quad \gamma q^{2} \gg \omega, \partial \psi \\
W^{(0)} \frac{\gamma q^{2}}{-i \omega+\partial \psi}\left(1-\frac{\gamma q^{2}}{-i \omega+\partial \psi}+\ldots\right), \quad \gamma q^{2} \ll \omega, \partial \psi
\end{array}\right.
$$

- Perturbation analysis for $W=W^{(0)}+W^{(\mathrm{neq})}$ where $W^{(\mathrm{neq})}=W^{(1)}+\ldots$ gives:

$$
W^{(1)} \sim \frac{\partial \psi}{\gamma q^{2}} \quad \Longrightarrow \quad G^{(1)}=\int_{q} W^{(1)} \sim \frac{\Lambda}{\gamma} \partial \psi \quad \longrightarrow \quad \begin{gathered}
\text { renormalize transport coefficients } \\
\text { (regularize infinite noise analytically) }
\end{gathered}
$$

E.g.,
$\eta_{R}=\eta+\frac{T \Lambda}{30 \pi^{2}}\left(\frac{1}{\gamma_{L}}+\frac{7}{2 \gamma_{\eta}}\right), \quad \zeta_{R}=\zeta+\frac{T \Lambda}{18 \pi^{2}}\left(\frac{1}{\gamma_{L}}\left(1-3 \dot{T}+3 \dot{c}_{s}\right)^{2}+\frac{2}{\gamma_{\eta}}\left(1-3\left(\dot{T}+c_{s}^{2}\right) / 2\right)^{2}+\frac{9}{4 \gamma_{\lambda}}\left(1-\dot{c}_{p}\right)^{2}\right), \quad \lambda_{R}=\lambda+\frac{T^{2} n^{2} \Lambda}{3 \pi^{2} w^{2}}\left(\frac{c_{p} T}{\left(\gamma_{\eta}+\gamma_{\lambda}\right) w}+\frac{c_{s}^{2}}{2 \gamma_{L}}\right)$

Long-time tails

- The remaining non-equilibrium part of 2-pt function:

$$
\begin{aligned}
\widetilde{W} & =W^{(\mathrm{neq})}-W^{(1)} \sim \frac{\partial \psi}{\frac{\underbrace{-i \omega+\gamma q^{2}+\partial \psi}_{\text {subtracting local divergence }}}{\gamma q^{2}}} \\
\Longrightarrow \widetilde{G} & =\int_{q} \widetilde{W} \sim \frac{\partial \psi}{\gamma^{3 / 2}}(i \omega+\partial \psi)^{1 / 2} \sim q_{*}^{3} \sim k^{3 / 2}
\end{aligned}
$$

- Generically, for arbitrary n,

$$
\widetilde{G}_{n}(x)=\underbrace{\int d^{3} q_{1} \ldots d^{3} q_{n} \delta^{(3)}\left(q_{1}+\ldots+q_{n}\right)}_{n-1 \text { independent } q \text { integration }} \widetilde{W}_{n}\left(x, q_{1}, \ldots, q_{n}\right) \sim \varepsilon^{n-1} \sim q_{*}^{3(n-1)} \sim k^{3(n-1) / 2}
$$ the leading contribution ($k^{3 / 2} \sim t^{-3 / 2}$) results from 2-pt correlators via E.g., $\Pi(\omega)=\eta(\omega) \partial \cdot u \sim \xi^{3}\left(1-\left(\omega \xi^{3}\right)^{1 / 2}\right) \partial \cdot u$

Interplay with background in the critical regime

- Different slow modes may relax with different time scales near critical point due to critical slowing down. Stephanov, 1104.1627; Berdnikov etal, 9912274; XA, 2003.02828
- Hydro+/++: hydrodynamics with parametrically slow modes (e.g., $\Gamma(q) \sim \xi^{-3} \ll \omega$)

$$
\left\{\begin{array}{l}
\partial_{\mu} T_{\mathrm{physical}}^{\mu \nu}\left(\psi_{R}, \widetilde{W}\right)=0 \\
\mathscr{L} \widetilde{W}(q)=-\Gamma(q) \widetilde{W}(q)-\partial \psi_{R} \widetilde{W}(q)
\end{array}\right.
$$

- In the critical regime $\left(\Gamma_{\Pi} \sim \xi^{-3}\right)$, Muller-Israel-Stewart theory is an example of the single-mode Hydro+, e.g., Stephanov et al, 1712.10305; Abbasi et al, 2112.14747

$$
\left\{\begin{array}{l}
\partial_{\mu} T^{\mu \nu}(\psi, \Pi)=0 \\
\dot{\Pi}=-\Gamma_{\Pi}\left(\Pi-\Pi_{\mathrm{NS}}\right)
\end{array}\right.
$$

Conclusion

Recap

- Various approaches for fluctuating hydro have been developed, each with its own pros and cons, and can be connected with others.
- For the first time we developed a covariant framework for fluctuation dynamics incorporating non-Gaussian hydrodynamic fluctuations.

Outlook

- Need efforts to simulate the fluctuation equations with background.
- Need freeze-out prescription for the connection to observables.
- More...

[^0]: XA et al, in progress

