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Motivation



Fluctuations on all length scales
• Fluctuations are ubiquitous phenomena emerging on all length scales.
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Atmosphere

Quantum fluctuations

Nobel Prize in Physics 2021

S. Manabe, K. Hasselmann, G. Parisi

CMB



Thermal equilibrium is extremely boring.

Fluctuations in equilibrium

• Non-Gaussian fluctuations become more important when systems 
possess smaller number of DOFs (e.g., closer to the critical point).
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Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob≍ x#{+-neighbors}

ξ → ∞Ising phase diagram

Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob≍ x#{+-neighbors}

Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob≍ x#{+-neighbors}

Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob≍ x#{+-neighbors}

• Thermal fluctuations: systems possess large number of DOFs; 
small deviation from Gaussian due to the central limit theorem.

Landau

ξ ↔ λlight

Susskind



Fluctuations out of equilibrium
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∂t ψ = ∇ ⋅ (flux [ψ]) where ψ = (
n
ϵ
πi)

• Hydrodynamic fluctuations: large number of locally thermalized 
cells comoving with fluid

fluctuations not equilibrated at large scales

evolution described by a set of 
conservation equations

charge
energy
momentum

noise



The importance of hydrodynamic fluctuations

6

long-time tail⟨v(t)v(0)⟩ ∼ e−μt → D ∼ μ−1

With only dissipation

⟨v(t)v(0)⟩ ∼ t−3/2 → D ∼ t−1/2

With also fluctuations

• Einstein’s formula for diffusion coefficient: Einstein, 1905

D = lim
t→∞

1
2t

⟨Δx2(t)⟩ = ∫
∞

0
dτ⟨v(τ)v(0)⟩

• Long-time behavior:

Correlation function of scattered light intensity 
provides experimental estimate of ⟨v(t)v(0)⟩

Paul et al, 1981, J. Phys. A: Math. Gen. 14 3301



Why fluctuating hydro works in QGP?
• Hydrodynamics works because:
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Flow collectivity manifests QGP as a perfect fluid 
Gale et al, 1301.5893

Fire ball size  fm: small enough∼ 10

January 25, 2013 1:14

HYDRODYNAMIC MODELING OF HEAVY-ION COLLISIONS 19

LHC energies [20]. The agreement with experimental results from LHC shown in
Fig. 6 is particularly striking.
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Fig. 6. Left: Root-mean-square anisotropic flow coe�cients hv2ni1/2 in the IP-Glasma model [20],
computed as a function of centrality, compared to experimental data of vn{2}, n 2 {2, 3, 4},
by the ALICE collaboration [182] (points). Right: Root-mean-square anisotropic flow coe�cients
hv2ni1/2 as a function of transverse momentum, compared to experimental data by the ATLAS
collaboration using the event plane (EP) method [22] (points). Bands indicate statistical errors.

This agreement indicates that initial state fluctuations in the deposited energy
density, translated by hydrodynamic evolution into anisotropies in the particle pro-
duction, are the main ingredient to explain the measured flow coe�cients.

Because of this feature, some e↵ort has been concentrated on characterizing the
initial state in a way that ties it directly to the measured flow. The simplest way of
doing so is to compare the initial eccentricities of the system

"n =

p
hrn cos(n�)i2 + hrn sin(n�)i2

hrni (13)

to the final flow harmonics vn. However, in particular for v4 and higher harmonics,
the nonlinear nature of hydrodynamics becomes important [183] and more accurate
predictors for flow coe�cients involve both linear and nonlinear terms, e.g. v5 has
contributions from "5 and "2"3, and it was shown [184] that the nonlinear term
becomes more dominant with increasing viscosity.

The fact that linear terms are damped more by viscosity leads to a growing
correlation of di↵erent event planes

 n =
1

n
arctan

hsin(n�)i
hcos(n�)i , (14)

with increasing viscosity [184], a result that is in line with findings in a di↵erent
work [185], where experimental data on event plane correlations from the ATLAS
collaboration [186] was compared to hydrodynamic calculations in di↵erent scenar-
ios.

3

-2

-1.5

-1

-0.5

 0

 0.1  1  10

Cη=1
Cπ =5
Cλ =0

τ T

rBRSSS

0th order hydro
1st order hydro
2nd order hydro

 0.1  1

Cη=0.08
Cπ =0.4
Cλ =0.71

τ T

Boltzmann

numerical
attractor

 0.1  1

Cη=0.08
Cπ =0.21
Cλ =0.77

τ 
∂ τ

 ln
 ε

τ T

AdS/CFT

FIG. 1. Numerical results for energy density evolution as a function of inverse gradient strength ⌧T for conformal Bjorken
flow in three di↵erent microscopic theories. Note that for Boltzmann and AdS/CFT, the numerical solutions shown are low
dimensional projections from an infinite dimensional space of initial conditions. See text for details.

such that the ambiguity in the Borel transform of the
transseries part with m = m0 is exactly canceled by
⌦m0+1(⌧T ) for the part with m = m0 + 1. This pro-
gram has successfully been performed for rBRSSS in
Ref. [15, 34]. The final result for the Borel trans-
form of ⌧@⌧ ln ✏ can be written in the form ⌧@⌧ ln ✏ =
(⌧@⌧ ln ✏)att + (⌧@⌧ ln ✏)non�hydro, consisting of a non-
analytic “attractor” solution defined for arbitrary ⌧T
to which the non-hydrodynamic part decays to on a
timescale ⌧T ' z�1

0 .

Note that obtaining non-analytic solutions from diver-
gent perturbative series’ has recently generated consider-
able interest under the name of “resurgence” [15, 16, 34].

Finding Hydrodynamic Attractors Identifying
the hydrodynamic attractor solution from the Borel re-
summation program of the hydrodynamic gradient series
is possible, but somewhat tedious. Fortunately, it is pos-
sible to obtain the same attractor solution more directly
from the equations of motion via the analogue of a slow-
roll approximation, cf. Refs. [15, 35] (see Supplemental
Material for details). In Fig. 1, results from solving the
rBRSSS equations of motions for a range of initial con-
ditions (“numerical”) are as shown together with zeroth,
first and second order hydrodynamic gradient series re-
sults from Eq. (2). It can be observed that the numerical
solutions converge to the hydrodynamic results for mod-
erate gradient strength. One also observes from Fig. 1
that the numerical results trend to the unique attractor

solution even before matching the gradient series results.
This attractor solution is nothing else but the result of
the Borel transformation of the divergent transseries as
reported in Ref. [15].
Hydrodynamic Attractor in Kinetic Theory It

is tempting to look for hydrodynamic attractors in other
microscopic theories, such as kinetic theory in the relax-
ation time approximation. This theory is defined by a
single particle distribution function f(t,x,p) obeying

pµ@µf � ��
µ⌫p

µp⌫
@

@p�
f = �f � f eq

⌧⇡
, (3)

where here ��
µ⌫ are the Christo↵el symbols associated

with the Bjorken flow geometry and the equilibrium dis-
tribution function may be taken to be f eq = ep

µuµ/T .
Here uµ is again the time-like eigenvector of hTµ⌫i =R d3p

(2⇡)3
pµp⌫

p f(x, p) and T is the non-equilibrium tempera-

ture defined from the time-like eigenvalue of hTµ⌫i, which

for a single massless Boltzmann particle is T =
⇣

⇡2✏
6

⌘1/4
.

Note that for a conformal system one can again write
⌧⇡ = C⇡T�1 with C⇡ a constant. Solving Eq. (3) nu-
merically, representative results for ⌧@⌧ ln ✏ are shown in
Fig. 1 (note that ⌧@⌧ ln ✏  �1 because the e↵ective lon-
gitudinal pressure PL = ✏ (1 + ⌧@⌧ ln ✏) in kinetic theory
can never be negative for f > 0).
One observes the same basic structure as in rBRSSS,

indicating the presence of a hydrodynamic attractor at

Hydrodynamic attractor far from equilibrium 
Florkowski et al, 1707.02282, Romatschke et al, 1712.05815

 Particle number : large enough∼ 102 − 104

• Fluctuations are important because:

 Hydrodynamization time  fm: fast enough∼ 1

Correlation length  fm: large enough∼ 1 − 10
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Figure 2: Event-by-event net-proton number distributions for head-on (0-5% central) Au+Au

collisions for nine
p

sNN values measured by the STAR detector at RHIC. The distributions are

normalized to the total number of events at each
p

sNN. The statistical uncertainties are smaller

than the symbol sizes and the lines are to guide the eye. The distributions in this figure are not

corrected for proton and anti-proton detection efficiency. The deviation of the distribution for
p

sNN

= 54.4 GeV from the general energy dependence trend is understood to be due to the reconstruction

efficiency of protons and anti-protons being different compared to other energies.

transverse momentum range 0.4 < pT (GeV/c)< 2.0 for Au+Au collisions at various
p

sNN. To

study the shape of the event-by-event net-proton distribution in detail, cumulants (Cn) of various

orders are calculated, where C1 = M, C2 = s2, C3 = Ss3 and C4 = ks4.

Figure 3 shows the variation of net-proton cumulants (Cn) as a function of
p

sNN for cen-

tral and peripheral Au+Au collisions. The cumulants are corrected for the multiplicity variations
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Net-proton fluctuates event by event

Adam et al, 2001.02852

equilibrium
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Correlation length diverges near the critical point 
XA et al, 2009.10742



Experiment vs Theory
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Collision event simulation at LHC (CERN)

Is there a CP between QGP and hadron gas phases?

Q2: Is there phase coexistence, i.e., 1st order transition? Likely.

Unfortunately, lattice QCD cannot reach beyond µB ⇠ 2T .

Hadron Gas

Crossover
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The Phases of QCD

1st Order Phase Transition
Critical
Point?

But 1st order transition (and thus C.P.) is ubiquitous in models of QCD:
NJL, RM, Holography, Strong coupl. Lattice QCD, . . .

M. Stephanov QCD Critical Point ASU 2020 10 / 36

2015LRP

In equilibrium;

observables fluctuate 

ensemble-by-ensemble

Out of equilibrium;

observables fluctuate 

event-by-event

• Fluctuating hydrodynamics is a non-equilibrium approach to unraveling 
the equilibrium properties of QCD matters in different phases.

static fluid

Static fluid & static fluctuations
Stephanov, 2011
Mroczek, Acuna, Noronha-Hostler, Parotto, Ratti & Stephanov, 2020
see also talk by Karthein (Tue)
…

Static or uniformly varying fluid & dynamic fluctuations
Berdnikov & Rajagopal 1999
Mukherjee, Venugopalan & Yin, 2015
Nahrgang, Bluhm, Schafer & Bass, 2019
XA, Basar, Stephanov & Yee, 2020
see also talk by Pradeep (Tue), Sogabe (Wed)
…
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Small bang vs Big bang
• Similarity: extreme initial state; particle synthesis; system expands, cools 

followed by freezeout and thermalization.

9

History of a heavy-ion collision

       initial stage            QGP               hadronic                       freeze-out

History of Universe

• Difference:
One event (CMB), cosmic variance


measured in space coordinate
Many events (HICs), high statistics

measured in momentum coordinate



Theory for fluctuation dynamics



Theory

EOMs (bottom-up like)
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Starting from phenomenological 
equations with required properties

e.g., Langevin equations in stochastic 
description, Fokker-Planck (FP) 
equations in deterministic description.

Akamatsu et al, 1606.07742

Nahrgang et al, 1804.05728

Singh et al, 1807.05451 

Chattopadhyay et al, 2304.07279

…

EFTs (top-down like)

Starting from effective action with 
first principles

e.g., Martin-Siggia-Rose (MSR), Schwinger-
Keldysh (SK), Hohenberg-Halperin (HH), n-
particle irreducible (nPI), etc.

Glorioso et al, 1805.09331

Jain et al, 2009.01356

Sogabe et al, 2111.14667 

Chao et al, 2302.00720

…



Two different EOMs

Langevin equation          
Newton’s equation + noise

12

∂t ψi = Fi [ψ] + ηi

⟨ηi(x1) ηj(x2)⟩ = 2Qij δ(4)(x1 − x2)

Langevin

Fokker-Planck equation     
probability evolution equation

PlanckFokker

Pros: infinite noise regularized analytically; 
multiplicative noise well defined

Cons: millions of equations, albeit one sample

Pros: one equation, albeit millions of samples

Cons: divergence due to infinite noise; ambiguity 
due to multiplicative noise

Stochastic Deterministic

Landau Lifshitz

∂t P = (−Fi P + (Mij P), j ), i

Mij S, j + Mij, j

=

Qij + Ωij

=

 : Onsager matrix (symmetric)

 : Poisson matrix (anti-symmetric)

Qij
Ωijinfinite noisemultiplicative noise

Peq = eSdrift



• Both approaches consider -pt correlators                                                
where .

n
ϕ ≡ ψ − ⟨ψ⟩

Dynamics of correlators

13

kurtosis

↓


sharpness


skewness

↓


lopsidedness

variance

↓


width

+ …+ + -pt correlators are 
related to cumulants 

by integration

n

Gn ≡ ⟨ ϕ…ϕ
⏟

⟩ ≡ ∫ dψ P[ψ] ϕ…ϕ
⏟n n

• Evolution equations for  : 
XA et al, 2009.10742, 2212.14029

Gn

∂t P = (−Fi P + (Mij P), j ), i ⟶ ∂t Gn = …shown in Fig. 2. The cumulants are also corrected for the
finite track reconstruction efficiencies of the TPC and
TOF detectors. This is done by assuming a binomial
response of the two detectors [42,45]. A cross-check using
a different method based on unfolding [34] the distribu-
tions for central Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
has been found to give values consistent with the cumu-
lants shown in Fig. 2. Further, the efficiency correction
method used has been verified in a Monte Carlo calcu-
lation. Typical values for the efficiencies in the TPC (TOF
matching) for the momentum range studied in 0%–5%
central Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV are 83%
(72%) and 81% (70%) for the protons and antiprotons,
respectively. The corresponding efficiencies for

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV collisions are 62% (69%) and 60% (68%) for the
protons and antiprotons, respectively. The statistical
uncertainties are obtained using a bootstrap approach
[28,45] and the Delta theorem [28,45,46] method. The
systematic uncertainties are estimated by varying the
experimental requirements to reconstruct p (p̄) in the
TPC and TOF. These requirements include the distance of
the proton and antiproton tracks from the primary vertex
position, the track quality reflected by the number of TPC
space points used in the track reconstruction, the particle
identification criteria passing certain selection criteria,
and the uncertainties in estimating the reconstruction
efficiencies. The systematic uncertainties at different
collision energies are uncorrelated.
The large values of C3 and C4 for central Auþ Au

collisions show that the distributions have non-Gaussian
shapes, a possible indication of enhanced fluctuations
arising from a possible critical point [11,22]. The
corresponding values for peripheral collisions are small
and close to zero. For central collisions, the C1 and C3

monotonically decrease with increasing
ffiffiffiffiffiffiffiffi
sNN

p
.

We employ ratios of cumulants in order to cancel volume
variations to first order. Further, these ratios of cumulants
are related to the ratio of baryon-number susceptibilities.
The latter are χBn ¼ ðdnP=dμnBÞ, where n is the order and P
is the pressure of the system at a given T and μB,
computed in lattice QCD and QCD-based models [47].
The C3=C2 ¼ Sσ ¼ ðχB3 =TÞ=ðχB2 =T2Þ and C4=C2 ¼ κσ2 ¼
ðχB4 Þ=ðχB2 =T2Þ. Close to the critical point, QCD-based
calculations predict the net-baryon number distributions
to be non-Gaussian and the susceptibilities to diverge,
causing moments, especially higher-order quantities like
κσ2, to have nonmonotonic variations as a function offfiffiffiffiffiffiffiffi
sNN

p
[47,48].

Figure 3 shows the central 0%–5% Auþ Au collision
data for Sσ and κσ2 in the collision energy range of 7.7–
62.4 GeV, fitted to a polynomial function of order 5 and
4, respectively. The derivative of the polynomial function
changes sign [34] with

ffiffiffiffiffiffiffiffi
sNN

p
for κσ2, thereby indicating a

nonmonotonic variation of the measurement with the
collision energy. The uncertainties of the derivatives are
obtained by varying the data points randomly at each
energy within the statistical and systematic uncertainties
separately. The overall significance of the change
in the sign of the slope for κσ2 vs

ffiffiffiffiffiffiffiffi
sNN

p
, based on the

fourth order polynomial function fitting procedure fromffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–62.4 GeV, is 3.1 σ. This significance is
obtained by generating one million sets of points, where
for each set, the measured κσ2 value at a given

ffiffiffiffiffiffiffiffi
sNN

p
is

randomly varied within the total Gaussian uncertainties
(systematic and statistical uncertainties added in quad-
rature). Then for each new κσ2 vs a

ffiffiffiffiffiffiffiffi
sNN

p
set of points, a

fourth order polynomial function is fitted and the
derivative values are calculated at a different

ffiffiffiffiffiffiffiffi
sNN

p
(as

0

10

20

30

40 (1) C1

0% - 5%
70% - 80%

5 10 20 50 100 200

0

10

20

30

40 (3) C3

0

10

20

30

40 (2) C2

0

20

40

60

80

100

5 10 20 50 100 200

(4) C4

Stat. uncertainty
Syst. uncertainty

N
et

-p
ro

to
n 

C
um

ul
an

ts

 (GeV)NNsCollision Energy 

Au+Au Collisions at RHICAu+Au Collisions at RHIC
Net-proton

< 2.0 (GeV/c)T|y| < 0.5,   0.4 < p

FIG. 2. Cumulants (Cn) of the net-proton distributions for
central (0%–5%) and peripheral (70%–80%) Auþ Au collisions
as a function of collision energy. The transverse momentum (pT)
range for the measurements is from 0.4 to 2 GeV=c, and the
rapidity (y) range is −0.5 < y < 0.5.
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FIG. 3. Upper panels: Sσ (1) and κσ2 (2) of net-proton
distributions for 0%–5% central Auþ Au collisions fromffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–62.4 GeV. The bars on the data points are statistical
and systematic uncertainties added in quadrature. The black solid
lines are polynomial fit functions that best describe the data. The
black dashed lines are the Poisson baselines. Lower panels:
Derivative of the fitted polynomial as a function of

ffiffiffiffiffiffiffiffi
sNN

p
. The bar

and the shaded band on the derivatives represent the statistical
and systematic uncertainties, respectively.

PHYSICAL REVIEW LETTERS 126, 092301 (2021)

092301-5

cumulants measured in HIC   

E.g.,  ∂t Gij = Fi,kGkj + Fj,kGki + 2Mij +
1
2

Fi,kℓGkℓj +
1
2

Fj,kℓGkℓi + Mij,kℓGkℓ + …



Diagrams and truncation 
• Evolution equations for -pt correlators (diagrams): XA et al, 2009.10742, 2212.14029n
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∂t Gn = ℱ [⟨ψ⟩, G2, G3, …, Gn, ]

• Introducing the loop expansion parameters , the 
evolution equations can be systematically truncated and iteratively solved:                           
XA et al, 2009.10742 

ε ∼ 1/number of DOFs

∂t Gn = ℱ [⟨ψ⟩, G2, G3, …, Gn ] + Gn ∼ εn−1, Fi ∼ 1, Mij ∼ ε .where

need  equations to close the system!∞
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• First few truncated equations (diagrams): XA et al, 2009.10742, 2212.14029
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Multi-point Wigner function
• For fluctuation fields, we introduced the novel -pt Wigner function XA et al, 2009.10742n

16

Wn(x; q1, …, qn) = ∫ d3y1…d3yn e−(iq1y1+…+iqnyn) δ(3) ( y1 + … + yn

n ) Gn(x; y1, …, yn)

“While the bottom-up approach is useful in order to calculate two-point correlation functions, it is not immediately 
obvious how it should be generalized for the calculation of n-point correlation functions.” Romatschke, 2019



An example: charge diffusion near critical point
• Simple charge diffusion problem: XA et al, 2009.10742

17

QM22 printed on July 30, 2022 3

( )

( )

( )

diagrammatic ingredients

cumulant evolution equations

Gij… Fi M ij , k…Fi ,  j… Mij 
c Ok •

0

, , ,

°

, , ,

-

@ @

. @

@ @ @
@

@
@

@
'

@ @
@ @ @ @

@

Fig. 1. Diagrammatic representation of Eq. (8) (or Eqs. (10)) for n = 2, 3, 4 in terms of the diagrammatic
ingredients introduced in this figure. The dot on the left hand side denotes the time derivative @t.

3. Non-Gaussian fluctuation dynamics of di↵usive charge

In this section we apply our general formalism to a specific problem – the evolution of
di↵usive charge, using the translation given by Table. 1. In this problem the stochastic vari-
able, charge density n(x), is defined in continuous space, the Onsager matrix Qij is related to
conductivity � through the fluctuation-dissipation relation, and the drift force Fi is given by
the divergence of a di↵usion current whose constitutive relation, �r↵ where ↵ is the chemical
potential per temperature, can be determined by the second law of thermodynamics.

quantities general di↵usive charge

variable  i n(x)

variable index i, j, k, etc. x,y, z, etc.

Onsager matrix Qij rx�ry �
(3)
xy

drift force Fi rx�rx↵

Table 1. Translation of general formalism to the problem of di↵usive charge.

Applying the translation in Table. 1 to Eq. (8) and using Eq. (9), one immediately obtains
the evolution equations for the di↵usive charge cumulants in the wave-vector space. The first
few equations for n = 2, 3, 4 read (cf. Fig. 1):

@tW2(q1) =� 2
⇥
�q21W2(q1) + �q1 · q2

⇤
12

,

@tW3(q1, q2) =� 3
⇥
�q21W3(q1, q2) + �0q21W2(q2)W2(q3) + 2�0q1 · q2W2(q3)

⇤
123

,

@tW
c
4 (q1, q2, q3) =� 4

⇥
�q21W

c
4 (q1, q2, q3) + 3�0q21W2(q2)W3(q3, q4) + �00q21W2(q2)W2(q3)W2(q4)

+3�0q1 · q2W3(q3, q4) + 3�00q1 · q2W2(q3)W2(q4)
⇤
1234

, (10)

where � = �↵0, ↵0 ⌘ @↵/@n and 1 . . . n denotes the sum over all n! permutations of q1, . . . , qn
divided by n!. Eqs. (10) are solved by W eq

2 = 1/↵0, W eq
3 = �↵00/↵03, W c,eq

4 = (3↵002�↵0↵000)/↵05

in equilibrium, as expected from thermodynamic calculations.
In the critical regime where the correlation length ⇠ is still much less than the fluctuation

scale q�1 ⌘ |q|�1 but becomes much larger than all other microscopical lengths such as the

charge density;  conductivity;  chemical potentialn ≡ λ ≡ α ≡

∂t n = ∇λ∇α + η, ⟨η(x)η(y)⟩ = 2∇(x)λ∇(y) δ(3)(x − y)

static fluid

Static fluid & static fluctuations
Stephanov, 2011
Mroczek, Acuna, Noronha-Hostler, Parotto, Ratti & Stephanov, 2020
see also talk by Karthein (Tue)
…

Static or uniformly varying fluid & dynamic fluctuations
Berdnikov & Rajagopal 1999
Mukherjee, Venugopalan & Yin, 2015
Nahrgang, Bluhm, Schafer & Bass, 2019
XA, Basar, Stephanov & Yee, 2020
see also talk by Pradeep (Tue), Sogabe (Wed)
…

...toS
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An example: charge diffusion near critical point
• Charge diffusion near QCD critical point: strong memory effect 

XA et al, 2009.10742, 2209.15005 
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critical region

CP

1st-order

crossover

evolution trajectory
T(ti)

T(t f )

μ

T

Printed by Wolfram Mathematica Student Edition

equilibrium
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Evolution of correlators along a typical (white) trajectory

for recent numerical implementation with freeze-out procedure, see Pradeep et al, 2204.00639, 2211.09142



Connection to top-down approach 
• Schwinger-Keldysh formalism
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KeldyshSchwinger
ti tf

1
2

Z = ∫ 𝒟ψ1𝒟ψ2𝒟χ1𝒟χ2 e i I0 (ψ1 , χ1) − i I0 (ψ2 , χ2) = ∫ 𝒟ψ1𝒟ψ2 e i ∫τ ℒEFT

ℒEFT(ψr , ψa) = ψaiQ−1
ij (Fj − ·ψrj) + iψaiQ−1

ij ψaj ψr =
1
2 (ψ1 + ψ2), ψa = ψ1 − ψ2

P[ψ] = ∫ψr=ψ(t)
𝒟ψr 𝒟ψa J(ψr) ei ∫t

−∞ dτℒEFT

• The effective Lagrangian is constructed following fundamental symmetries:               
Glorioso et al, 1805.09331; Jain et al, 2009.01356

∂t P = (−Fi P + (Qij P), j ), i

where

XA et al, in progress



Fluctuation dynamics in relativistic fluids



Relativistic dynamics
Eulerian specification                                                  
more often used in non-relativistic theory

21

u ⋅ ∂ ψi = . . .
u ⋅ ∂Gn = . . .

Each fluid cell has its own clock (proper time). 
How to define the analogous equal-time 

correlator  in relativistic theory?Gn

(∂t + v ⋅ ∇) ψi = . . .
(∂t + v ⋅ ∇) Gn = . . .

There is a global time for every observer. 
All correlators  can be measured at the 

same time in the same frame (lab).
Gn

Lagrangian specification                             
more convenient for relativistic theory

u = u(ψ)



Confluent formulation: correlator and derivative
• Confluent formulation: covariant description for the comoving fluctuations. 

See XA et al, 2212.14029 for more details
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Λ(x2-x)

Λ(x1-x) Λ(xn-x) u(xn)
u(x1)

u(x2)

u(x)

x

x2

x1
xn

-

Confluent correlator Ḡ

e1

e2

e1

e2

u(x)

u(x+Δx)

u(x)
φ(x+Δx)

u(x+Δx)

Λ(Δx)φ(x+Δx)

Λ(Δx)

φ(x)
Λ(Δx)   y-1

Λ(Δx)

u(x) u(x)

Λ(Δx)  -1
(x+Δx)φ

(x)φ

u(x+Δx) u(x+Δx)

2

e2

e1(x+Δx)Λ(Δx)φ

e1

e

(a) (b)

o

o

o

Confluent derivative ∇̄

boost all fields (measured at their own 
local rest frame) to one common frame 

(chosen at their midpoint)

the frame at midpoint moves accordingly as the  
points move, the difference of a given field before 
and after the movement is calculated in one same 
frame, with the equal-time constraint preserved by 

introducing the local triad  with 

n

eμ
a a = 1,2,3

Ḡi1…in = Λ j1
i1

(x − x1)…Λ jn
in

(x − xn)Ḡj1…jn
∇̄μḠi1…in = ∂μḠi1…in − n (ω̊a

μbyb
1∂(y1)

a Ḡi1…in + ω̄ j1
μi1

Ḡj1…in)perm.



Confluent formulation: Wigner function
• The confluent -pt Wigner transform from -independent variable 

 to  with . XA et al, 2212.14029

n x
ya = ea

μ(x) yμ qa a = 1,2,3
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Wn(x; qa
1 , …, qa

n) = ∫
n

∏
i=1

(d3ya
i e−iqiaya

i ) δ(3) ( 1
n

n

∑
i=1

ya
i ) Ḡn(x + eaya

1 , …, x + eaya
n)

= 0+

x-space

q1x1

x2

xn

q2

qn

q-space

q1 q2 qn+

x

x1 x2+ +x = n
xn+ +

x≡ yn+

y-space

x1

x2

xn
x

x≡ yn+

= 0+

q1

q2

qn

q-space

q1 q2 qn++

u(x)

(a) (b)
= 0+y1 y2 yn++

u(x)

x

u(x) = 0yi u(x) = 0qi& &

.⑧k ⑧É

☒

•

.⑧k

⑧dd ④É

•

.⑧k

•
•



Confluent fluctuation evolution equations
• Fluctuation evolution equations in the impressionistic form: XA et al, in progress
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of which the solutions match thermodynamics with entropy .  
: entropy per baryon; : pressure; : Lagrange multiplier for 

S(m, p, uμ, η)
m p η u2 = − 1.

ℒWn = icsq(Wn − …) − γq2(Wn − …) − ∂ψWn + … where ℒ = u ⋅ ∇̄x + f ⋅ ∇q

For , there are 21+56+126=203 equations (for the 2-pt, 3-pt and 4-pt 
correlators) to solve——bite off more than one can chew!

ϕ = ( δm, δp, δuμ )
Equilibrium solutions in diagrammatic representation

sound dissipation background gradient



Rotating phase approximation
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• Step 1: choose a set of new bases in Fock space s.t. the ideal hydrodynamic 
equations are diagonalized with eigenvalues .λ±(q) = ± cs |q | , λm(q) = λ(i)(q) = 0

Φ =
Φm

Φ±

Φ(i)

∼
δm

δp ± csw ̂q ⋅ δu
t(i) ⋅ δu

i = 1, 2ϕ =
ϕm

ϕp

ϕμ

=
δm
δp
δuμ

• Step 2: for -pt correlators ,n WΦ1…Φn
(q1, …, qn)

As a result, we end up with 7+10+15=32 equations to solve. 
E.g., the 7 independent 2-pt slow modes are .Wmm, Wm(i), W(i)( j), W+−

NB: -pt correlators are analogous to -particle 
quantum states lying in the Fock space.
n n

n

∑
i=1

λΦi
(qi) { = 0 ⟶ slow mode (kept)

≠ 0 ⟶ fast mode (averaged out)

E.g.,  is a slow mode since ;

 is not a slow mode since .

W+−(q1, q2) λ+(q1) + λ−(q2) = cs( |q1 | − |q2 | ) = 0
W+++(q1, q2, q3) λ+(q1) + λ+(q2) + λ+(q3) = cs( |q1 | + |q2 | + |q3 | ) ≠ 0

if



Hydro-kinetic equations 
• The equation for  has a kinetic interpretation:W+−
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ℒW+− ≡ ((u + cs ̂q) ⋅ ∇x + f ⋅ ∇q) W+− = − γq2 (W+− −
T
E )

Further developments, other approaches

Stochastic e↵ective actions and

multilicative noise

Chao, Schaefer, [2008.01269]

Covariant Wigner-function for order

parameter 2pt function

W (x, q) =

Z
d
4
y �(u(x) · y)e�iy·q

D
 

⇣
x+

y

2

⌘
 

⇣
x �

y

2

⌘E

An et al. [1912.13456]

Kinetics of hydro fluctuations

W (x, q) =
X

n

wn�(x � xn)�(q � qn)

An et al. [1912.13456]

Evolution of 4th order cumulant

equilibrium KZ scaling equilibrium

t=»tKZ»

-5 0 5 10

-4

-2

0

2

4

t

f 4B
HtL

S. Mukherjee et al. [1605.09341], An et al. [2009.10742]

Further developments, other approaches

Stochastic e↵ective actions and

multilicative noise

Chao, Schaefer, [2008.01269]
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Kinetics of hydro fluctuations
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n
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from Schafer

Bose-Einstein (phonon) distribution  at high n =
1

eE/T − 1
T

Coriolis
  

Inertial "Hubble"

Phonons move on top of an arbitrary fluid with 
acceleration, rotation and expansion XA et al, 1902.09517

fμ = Eaμ + 2Ecs ̂qνωνμ + qν ∇⊥
μ uν + ∇μE



Fluctuation feedback
• Fluctuations give feedback to the bare quantities order by order in 

gradient expansion:
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Tphysical
μν = T(0)

μν + T(1)
μν + T(2)

μν + …

bare

+

= TR(0)
μν + TR(1)

μν + TR(2)
μν

renormalized

+ T̃(3/2)
μν + T̃(3)

μν + T̃(9/2)
μν + …

long−time tails

where Gn(x) ∼ ∫ d3q1…d3qnδ(3)(q1 + … + qn)Wn(x, q1, …, qn)

δTμν({Gn})

fluctuation

need to find the solutions from equations for Wigner functions



Renormalization
• Equation for 2-pt functions under RPA:
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ℒW(q) = − γq2(W(q) − W(0)) − ∂ψW(q)
with asymptotic solutions

W(q) =
γq2W(0)

−iω + γq2 + ∂ψ
=

W(0) (1 −
−iω + ∂ψ

γq2
+ …), γq2 ≫ ω, ∂ψ

W(0) γq2

−iω + ∂ψ (1 −
γq2

−iω + ∂ψ
+ …), γq2 ≪ ω, ∂ψ

• Perturbation analysis for  where  gives:W = W(0) + W(neq) W(neq) = W(1) + …

W(1) ∼
∂ψ
γq2

⟹ G(1) = ∫q
W(1) ∼

Λ
γ

∂ψ renormalize transport coefficients

E.g.,

ηR = η +
TΛ

30π2 ( 1
γL

+
7

2γη ), ζR = ζ +
TΛ

18π2 ( 1
γL

(1 − 3 ·T + 3 ·cs)2 +
2
γη

(1 − 3( ·T + c2
s )/2)2 +

9
4γλ

(1 − ·cp)2), λR = λ +
T2n2Λ
3π2w2 (

cpT
(γη + γλ)w

+
c2

s

2γL )

(regularize infinite noise analytically)



Long-time tails
• The remaining non-equilibrium part of 2-pt function:
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the leading contribution (  ) results from 2-pt correlators via             k3/2 ∼ t−3/2

( )

( )

( )

ingredients

equations

( )

𝛿ij Gij…

Fi

M ij , k…

Fi ,  j…

one loop ( renormalization & long-time tails )conventional hydro equations

correlator evolution equations

S,i

⑧
...

...

:

&

· ·

&

· ·

·

· · ·
·

·
& ·
· · ·

· · ⑥
·

for OM talk

W̃ = W(neq) − W(1) ∼
∂ψ

−iω + γq2 + ∂ψ
−

∂ψ
γq2

subtracting local divergence

⟹ G̃ = ∫q
W̃ ∼

∂ψ
γ3/2

(iω + ∂ψ)1/2 ∼ q3
* ∼ k3/2

• Generically, for arbitrary ,n

G̃ n(x) = ∫ d3q1…d3qnδ(3)(q1 + … + qn)

n−1 independent q integration

W̃n(x, q1, …, qn) ∼ εn−1 ∼ q3(n−1)
* ∼ k3(n−1)/2

γq2
* ∼ csk

E.g., Π(ω) = η(ω)∂ ⋅ u ∼ ξ3 (1 − (ωξ3)1/2) ∂ ⋅ u



Interplay with background in the critical regime
• Different slow modes may relax with different time scales near critical point 

due to critical slowing down. Stephanov, 1104.1627; Berdnikov et al, 9912274; XA, 2003.02828
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• In the critical regime (  ), Muller-Israel-Stewart theory is an example of 
the single-mode Hydro+, e.g., Stephanov et al, 1712.10305; Abbasi et al, 2112.14747

ΓΠ ∼ ξ−3

∂μTμν
physical ( ψR, W̃ ) = 0

ℒW̃(q) = − Γ(q)W̃(q) − ∂ψRW̃(q)

{
∂μTμν ( ψ, Π ) = 0
·Π = − ΓΠ (Π − ΠNS)

• Hydro+/++: hydrodynamics with parametrically slow modes (e.g., )Γ(q) ∼ ξ−3 ≪ ω



Conclusion



Recap

• Various approaches for fluctuating hydro have been developed, each with 
its own pros and cons, and can be connected with others.


• For the first time we developed a covariant framework for fluctuation 
dynamics incorporating non-Gaussian hydrodynamic fluctuations.
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• Need efforts to simulate the fluctuation equations with background.


• Need freeze-out prescription for the connection to observables.


• More…

Outlook


