# **Relativistic Fluctuation Dynamics**



**Applied Holography Webinar** 



#### Xin An

Oct 17 2023

# **SINCBJ**



### Motivation

## Fluctuations on all length scales

• Fluctuations are ubiquitous phenomena emerging on all length scales.



Nobel Prize in Physics 2021 S. Manabe, K. Hasselmann, G. Parisi





Air Temperature at 2 Meters (°C)

#### Atmosphere



January 23

#### Quantum fluctuations

### Fluctuations in equilibrium

- Thermal fluctuations: systems possess large number of DOFs; small deviation from Gaussian due to the central limit theorem.
- Non-Gaussian fluctuations become more important when systems possess smaller number of DOFs (e.g., closer to the critical point).





Thermal equilibrium is extremely boring.



Susskind



## Fluctuations out of equilibrium

• Hydrodynamic fluctuations:



## The importance of hydrodynamic fluctuations

• Einstein's formula for diffusion coefficient: Einstein, 1905

$$D = \lim_{t \to \infty} \frac{1}{2t} \langle \Delta x^2 ($$

• Long-time behavior:

$$\langle v(t)v(0)\rangle \sim e^{-\mu t} \quad \rightarrow \quad D \sim \mu^{-1}$$

With only dissipation

 $\langle v(t)v(0)\rangle \sim t^{-3/2} \rightarrow D \sim t^{-1/2}$ 

With also fluctuations

Paul et al, 1981, J. Phys. A: Math. Gen. 14 3301





10x 10<sup>-4</sup>

## Why fluctuating hydro works in QGP?

• Hydrodynamics works because: Particle **number**  $\sim 10^2 - 10^4$ : *large* enough



Flow collectivity manifests QGP as a *perfect fluid* Gale et al, 1301.5893

• Fluctuations are important because: Fire ball size  $\sim 10$  fm: small enough



#### Hydrodynamization time $\sim 1$ fm: *fast* enough



Hydrodynamic *attractor* far from equilibrium Florkowski et al, 1707.02282, Romatschke et al, 1712.05815

#### Correlation length $\sim 1 - 10$ fm: *large* enough



Correlation length diverges near the critical point XA et al, 2009.10742





## **Experiment vs Theory**

the equilibrium properties of QCD matters in different phases.



#### Collision event simulation at LHC (CERN)



Out of equilibrium; observables fluctuate event-by-event

# • Fluctuating hydrodynamics is a *non-equilibrium* approach to unraveling



## Small bang vs Big bang

followed by freezeout and thermalization.



History of a heavy-ion collision

#### **Difference**:

Many events (HICs), high statistics measured in *momentum* coordinate

# • Similarity: extreme initial state; particle synthesis; system expands, cools



History of Universe

#### One event (CMB), cosmic variance measured in space coordinate

## Theory for fluctuation dynamics



#### EFTs (top-down like)

Starting from effective action with first principles

e.g., Martin-Siggia-Rose (MSR), Schwinger-Keldysh (SK), Hohenberg-Halperin (HH), nparticle irreducible (nPI), etc.

Glorioso et al, 1805.09331 Jain et al, 2009.01356 Sogabe et al, 2111.14667 Chao et al, 2302.00720

• • •

#### EOMs (bottom-up like)

Starting from phenomenological equations with required properties

e.g., Langevin equations in stochastic description, Fokker-Planck (FP) equations in deterministic description.

Akamatsu et al, 1606.07742 Nahrgang et al, 1804.05728 Singh et al, 1807.05451 Chattopadhyay et al, 2304.07279

. . .



Pros: one equation, albeit millions of samplesCons: divergence due to infinite noise; ambiguitydue to multiplicative noise

#### Deterministic

#### **Fokker-Planck equation** probability evolution equation

 $Q_{ij}$ : Onsager matrix (symmetric)  $\Omega_{ij}$ : Poisson matrix (anti-symmetric)



Pros: infinite noise regularized analytically;multiplicative noise well definedCons: *millions* of equations, albeit *one* sample



### **Dynamics of correlators**

• Both approaches consider *n*-pt correlators  $G_n \equiv \langle \phi \dots \phi \rangle \equiv$ where  $\phi \equiv \psi - \langle \psi \rangle$ .



• Evolution equations for  $G_n$ :

XA et al, 2009.10742, 2212.14029

$$\partial_t P = (-F_i P + (M_{ij}))$$

# $d\psi P[\psi] \ \phi \dots \phi$



cumulants measured in HIC

 $\partial_t G_n = \dots$ 

E.g.,  $\partial_t G_{ij} = F_{i,k}G_{kj} + F_{j,k}G_{ki} + 2M_{ij} + \frac{1}{2}F_{i,k\ell}G_{k\ell j} + \frac{1}{2}F_{j,k\ell}G_{k\ell i} + M_{ij,k\ell}G_{k\ell} + \dots$ 

╋

. . .

by ir

## **Diagrams and truncation**

 Evolution equations for n-pt correlators (diagrams): XA et al, 2009.10742, 2212.14029  $\partial_t G_n = \mathscr{F}[\langle \psi \rangle, G_2, G_3, \dots, G_n, G_{n+1}, \dots, G_m]$  $(-)^{\bullet} = -c_{\bullet}^{\bullet} + c_{\bullet}^{\bullet}$  all combinatorial configurations



XA et al, 2009.10742

$$\partial_t G_n = \mathscr{F}[\langle \psi \rangle, G_2, G_3, \dots, G_n] + \mathcal{O}(\varepsilon^n)$$

Hydrodynamics:  $\varepsilon \sim (\xi/\ell)^3 \sim \text{correlated volume / fluctuation volume}$ Holography:  $\varepsilon \sim 1/N_c \sim 1$  / number of colors

need  $\infty$  equations to close the system!  $F_i \equiv -D$   $F_{i,j...} \equiv -D$ all combinatorial of trees  $Mij \equiv -\Delta \quad Mij, k... \equiv A \quad G_{ij...} \equiv A$ 

evolution equations can be systematically truncated and iteratively solved:

where 
$$G_n \sim \varepsilon^{n-1}$$
,  $F_i \sim 1$ ,  $M_{ij} \sim \varepsilon$ .

### **Truncated equations**

• First few truncated equations (diagrams): XA et al, 2009.10742, 2212.14029



## **Multi-point Wigner function**

$$W_n(x;q_1,\ldots,q_n) = \int d^3y_1\ldots d^3y_n \, e^{-(iq_1y_1+\ldots+iq_ny_n)} \,\delta^{(3)}\left(\frac{y_1+\ldots+y_n}{n}\right) G_n(x;y_1,\ldots,y_n)$$



"While the bottom-up approach is useful in order to calculate two-point correlation functions, it is not immediately obvious how it should be generalized for the calculation of n-point correlation functions." Romatschke, 2019

• For fluctuation *fields*, we introduced the novel *n*-pt Wigner function XA et al, 2009.10742





• Sim

$$\partial_t n = \nabla \lambda \nabla \alpha + \eta, \qquad \langle \eta (x + \eta) \rangle$$

|                | See also talk by Natthein (Tue) |                                                                                                         |
|----------------|---------------------------------|---------------------------------------------------------------------------------------------------------|
| quantities     | general                         | diffusive charge                                                                                        |
| variable       | $\psi_i$                        | $n(\boldsymbol{x})$                                                                                     |
| variable index | $i, j, k, 	ext{ etc.}$          | $oldsymbol{x},oldsymbol{y},oldsymbol{z},$ etc.                                                          |
| Onsager matrix | $Q_{ij}$                        | $\nabla_{\boldsymbol{x}} \lambda \nabla_{\boldsymbol{y}}  \delta^{(3)}_{\boldsymbol{x} \boldsymbol{y}}$ |
| drift force    | $F_i$                           | Station or Uniformly varying fluid & dynam                                                              |

 $n \equiv$  charge density;  $\lambda \equiv$  conductivity;  $\alpha \equiv$  chemical potential



## $\langle x \rangle \eta(y) \rangle = 2 \nabla^{(x)} \lambda \nabla^{(x)} \lambda \nabla^{(x)} \chi_{\text{Stephanov, 2011}} y)$

Mroczek, Acuna, Noronha-Hostler, Parotto, Ratti & Stephanov, 2020 see also talk by Karthein (Tue)



ic fluctuati

## An example: charge diffusion near critical point

#### • Charge diffusion near QCD critical point: strong memory effect

XA et al, 2009.10742, 2209.15005





for recent numerical implementation with freeze-out procedure, see Pradeep et al, 2204.00639, 2211.09142

## **Connection to top-down approach**

Schwinger-Keldysh formalism



$$Z = \int \mathscr{D}\psi_1 \mathscr{D}\psi_2 \mathscr{D}\chi_1 \mathscr{D}\chi_2 e^{iI_0(\psi_1,\chi_1) - iI_0(\psi_2,\chi_2)} = \int \mathscr{D}\psi_1 \mathscr{D}\psi_2 e^{i\int_{\tau} \mathscr{L}_{\text{EFT}}}$$

Glorioso et al, 1805.09331; Jain et al, 2009.01356

$$\mathscr{L}_{\mathrm{EFT}}(\psi_r, \psi_a) = \psi_{ai} Q_{ij}^{-1}(F_j - \dot{\psi}_{rj}) + i\psi_{ai} Q_{ij}^{-1} \psi_{aj} \quad \text{where} \quad \psi_r = \frac{1}{2} \left( \psi_1 + \psi_2 \right), \quad \psi_a = \psi_1 - \psi_2$$

$$P[\psi] = \int_{\psi_r = \psi(t)} \mathscr{D}\psi_r \, \mathscr{D}\psi_a J(\psi_r) \, e^{i \int_{-\infty}^t d\tau \mathscr{L}_{\mathrm{EFT}}} \longrightarrow \quad \partial_t P = \left( -F_i P + \left( Q_{ij} P \right)_{,j} \right)_{,i}$$

XA et al, in progress

 $t_{f}$ 



Schwinger Keldysh

• The effective Lagrangian is constructed following fundamental symmetries:

### Fluctuation dynamics in relativistic fluids

### **Relativistic dynamics**

#### **Eulerian specification**

more often used in non-relativistic theory



There is a global time for every observer. All correlators  $G_n$  can be measured at the same time in the same frame (lab).

#### Lagrangian specification

more convenient for relativistic theory

 $\int u = u(\psi)$  $u \cdot \partial \psi_i = \dots$  $u \cdot \partial G_n = \dots$ 

> Each fluid cell has its own clock (proper time). How to define the analogous equal-time correlator  $G_n$  in relativistic theory?



## **Confluent formulation: correlator and derivative**

#### • Confluent formulation: covariant description for the comoving fluctuations.

See XA et al, 2212.14029 for more details

#### Confluent correlator $\bar{G}$



 $\bar{G}_{i_1...i_n} = \Lambda_{i_1}^{j_1} (x - x_1) \dots \Lambda_{i_n}^{j_n} (x - x_n) \bar{G}_{j_1...j_n}$ 

boost all fields (measured at their own local rest frame) to one common frame (chosen at their midpoint) Confluent derivative  $\bar{\nabla}$ 

$$\bar{\nabla}_{\mu}\bar{G}_{i_{1}...i_{n}} = \partial_{\mu}\bar{G}_{i_{1}...i_{n}} - n\left(\mathring{\omega}_{\mu b}^{a}y_{1}^{b}\partial_{a}^{(y_{1})}\bar{G}_{i_{1}...i_{n}} + \bar{\omega}_{\mu i_{1}}^{j_{1}}\bar{G}_{j_{1}...i_{n}}\right)_{\text{perm.}}$$

the frame at midpoint moves accordingly as the *n* points move, the difference of a given field before and after the movement is calculated in one same frame, with the equal-time constraint preserved by introducing the local triad  $e_a^\mu$  with a = 1,2,3

## **Confluent formulation: Wigner function**

• The confluent *n*-pt Wigner transform from *x*-independent variable  $y^{a} = e_{\mu}^{a}(x) y^{\mu}$  to  $q^{a}$  with a = 1, 2, 3. XA et al, 2212.14029

$$W_n(x;q_1^a,\dots,q_n^a) = \int \prod_{i=1}^n \left( d^3 y_i^a \, e^{-iq_{ia}y_i^a} \right) \, \delta^{(3)}\left(\frac{1}{n} \sum_{i=1}^n y_i^a\right) \bar{G}_n(x+e_a y_1^a,\dots,x+e_a y_n^a)$$



23

## **Confluent fluctuation evolution equations**

• Fluctuation evolution equations in the *impressionistic* form: XA et al, in progress

$$\mathscr{L}W_n = ic_s q(W_n - ...) - \gamma q^2(W_n - ...)$$
  
sound dissipation

of which the solutions match thermodynamics with entropy  $S(m, p, u_{\mu}, \eta)$ .



Equilibrium solutions in diagrammatic representation

correlators) to solve -- bite off more than one can chew!

 $-\partial \psi W_n + \dots$  where  $\mathscr{L} = u \cdot \overline{\nabla}_x + f \cdot \nabla_q$ background gradient

*m*: entropy per baryon; *p*: pressure;  $\eta$ : Lagrange multiplier for  $u^2 = -1$ .

For  $\phi = (\delta m, \delta p, \delta u_{\mu})$ , there are 21+56+126=**203** equations (for the 2-pt, 3-pt and 4-pt

## **Rotating phase approximation**

$$\phi = \begin{pmatrix} \phi_m \\ \phi_p \\ \phi_\mu \end{pmatrix} = \begin{pmatrix} \delta m \\ \delta p \\ \delta u_\mu \end{pmatrix} \longrightarrow \Phi = \begin{pmatrix} \Phi_m \\ \Phi_{\pm} \\ \Phi_{(i)} \end{pmatrix} \sim \begin{pmatrix} \delta p \pm d_{\mu} \\ \Phi_{\mu} \end{pmatrix} = \begin{pmatrix} \phi_m \\ \phi_\mu \\ \phi_\mu \end{pmatrix} = \begin{pmatrix} \phi_m \\ \phi_\mu \end{pmatrix} = \begin{pmatrix} \phi_$$

NB: *n*-pt correlators are analogous to *n*-particle quantum states lying in the Fock space.

• Step 2: for *n*-pt correlators  $W_{\Phi_1...\Phi_n}(q_1,...,q_n)$ ,

if  $\sum_{i=1}^{n} \lambda_{\Phi_i}(q_i) \begin{cases} = 0 \quad \longrightarrow \quad \text{slow mode (kept)} \\ \neq 0 \quad \longrightarrow \quad \text{fast mode (averaged out)} \end{cases}$ 

E.g.,  $W_{+-}(q_1, q_2)$  is a slow mode since  $\lambda_+(q_1) + \lambda_-(q_2) = c_s(q_1 - q_2) = 0$ ;  $W_{+++}(q_1, q_2, q_3)$  is not a slow mode since  $\lambda_+(q_1) + \lambda_+(q_2) + \lambda_+(q_3) = c_s(q_1 + q_2 + q_3) \neq 0$ .

As a result, we end up with 7+10+15=32 equations to solve. E.g., the 7 independent 2-pt slow modes are  $W_{mm}$ ,  $W_{m(i)}$ ,  $W_{(i)(j)}$ ,  $W_{+-}$ .

• Step 1: choose a set of new bases in Fock space s.t. the ideal hydrodynamic equations are diagonalized with eigenvalues  $\lambda_{\pm}(q) = \pm c_s q$ ,  $\lambda_m(q) = \lambda_{(i)}(q) = 0$ .





## Hydro-kinetic equations





#### **Fluctuation feedback**

 Fluctuations give feedback to the bare quantities order by order in gradient expansion:

$$T_{\mu\nu}^{\text{physical}} = \underbrace{T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)} + \dots + \delta T_{\mu\nu}(\{G_n\})}_{\text{bare}} \underbrace{T_{\mu\nu}^{R(0)} + T_{\mu\nu}^{R(1)} + T_{\mu\nu}^{R(2)} + \widetilde{T}_{\mu\nu}^{(3/2)} + \widetilde{T}_{\mu\nu}^{(3)} + \widetilde{T}_{\mu\nu}^{(9/2)} + \dots}_{\text{long-time tails}}$$
  

$$T_{\mu\nu}^{R(0)} + \underbrace{T_{\mu\nu}^{R(1)} + T_{\mu\nu}^{R(2)} + \widetilde{T}_{\mu\nu}^{(3/2)} + \widetilde{T}_{\mu\nu}^{(3)} + \widetilde{T}_{\mu\nu}^{(9/2)} + \dots}_{\text{long-time tails}}$$
  

$$T_{\mu\nu}^{R(0)} \sim \int d^3q_1 \dots d^3q_n \delta^{(3)}(q_1 + \dots + q_n) W_n(x, q_1, \dots, q_n)$$

$$T_{\mu\nu}^{\text{physical}} = \underbrace{T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)} + \dots + \delta T_{\mu\nu}(\{G_n\})}_{\text{bare}} \underbrace{\{G_n\}}_{\text{fluctuation}} = \underbrace{T_{\mu\nu}^{R(0)} + T_{\mu\nu}^{R(1)} + T_{\mu\nu}^{R(2)} + \widetilde{T}_{\mu\nu}^{(3/2)} + \widetilde{T}_{\mu\nu}^{(3)} + \widetilde{T}_{\mu\nu}^{(9/2)} + \dots}_{\text{long-time tails}}$$
where  $G_n(x) \sim \int d^3q_1 \dots d^3q_n \delta^{(3)}(q_1 + \dots + q_n) W_n(x, q_1, \dots, q_n)$ 

need to find the solutions from equations for Wigner functions

#### Renormalization

 Equation for 2-pt functions under RPA:  $\mathscr{L}W(q) = -\gamma q^2 (W(q) - W^{(0)}) - \partial \psi W(q)$ 

with asymptotic solutions

$$W(q) = \frac{\gamma q^2 W^{(0)}}{-i\omega + \gamma q^2 + \partial \psi} = \begin{cases} W^{(0)} \left(1 - \frac{-i\omega + \partial \psi}{\gamma q^2}\right) \\ W^{(0)} \frac{\gamma q^2}{-i\omega + \partial \psi} \left(1 - \frac{-i\omega + \partial \psi}{\gamma q^2}\right) \end{cases}$$

$$W^{(1)} \sim \frac{\partial \psi}{\gamma q^2} \implies G^{(1)} = \int_q W^{(1)} \sim$$

E.g.,

$$\eta_{R} = \eta + \frac{T\Lambda}{30\pi^{2}} \left( \frac{1}{\gamma_{L}} + \frac{7}{2\gamma_{\eta}} \right), \quad \zeta_{R} = \zeta + \frac{T\Lambda}{18\pi^{2}} \left( \frac{1}{\gamma_{L}} (1 - 3\dot{T} + 3\dot{c}_{s})^{2} + \frac{2}{\gamma_{\eta}} (1 - 3(\dot{T} + c_{s}^{2})/2)^{2} + \frac{9}{4\gamma_{\lambda}} (1 - \dot{c}_{p})^{2} \right), \quad \lambda_{R} = \lambda + \frac{T^{2}n^{2}\Lambda}{3\pi^{2}w^{2}} \left( \frac{c_{p}T}{(\gamma_{\eta} + \gamma_{\lambda})w} - \frac{1}{2} \frac{1}{\gamma_{L}} (1 - 3\dot{T} + 3\dot{c}_{s})^{2} + \frac{2}{\gamma_{\eta}} (1 - 3(\dot{T} + c_{s}^{2})/2)^{2} + \frac{9}{4\gamma_{\lambda}} (1 - \dot{c}_{p})^{2} \right), \quad \lambda_{R} = \lambda + \frac{T^{2}n^{2}\Lambda}{3\pi^{2}w^{2}} \left( \frac{c_{p}T}{(\gamma_{\eta} + \gamma_{\lambda})w} - \frac{1}{2} \frac{1}{\gamma_{L}} (1 - 3\dot{T} + 3\dot{c}_{s})^{2} + \frac{2}{\gamma_{\eta}} (1 - 3(\dot{T} + c_{s}^{2})/2)^{2} + \frac{9}{4\gamma_{\lambda}} (1 - \dot{c}_{p})^{2} \right),$$



• Perturbation analysis for  $W = W^{(0)} + W^{(neq)}$  where  $W^{(neq)} = W^{(1)} + \dots$  gives:

renormalize transport coefficients (regularize infinite noise analytically)



### Long-time tails

• The remaining non-equilibrium part of 2-pt function:  $\widetilde{W} = W^{(\text{neq})} - W^{(1)} \sim \frac{\partial \psi}{-i\omega + \gamma q^2 + \partial \psi} - \frac{\partial \psi}{\gamma q^2}$ 

$$\implies \widetilde{G} = \int_{q} \widetilde{W} \sim \frac{\partial \psi}{\gamma^{3/2}} (i\omega + \partial \psi)^{1/2} \sim$$

• Generically, for arbitrary n,

$$\widetilde{G}_n(x) = \int \underbrace{d^3q_1 \dots d^3q_n \delta^{(3)}(q_1 + \dots + q_n)}_{n \text{ independent a integration}} \widetilde{W}_n(x, q_1, \dots, q_n) \sim \varepsilon^{n-1} \sim q_*^{3(n-1)} \sim k^{3(n-1)/2}$$

n-1 independent q integration

the leading contribution ( $k^{3/2} \sim t^{-3/2}$ ) results from 2-pt correlators via E.g.,  $\Pi(\omega) = \eta(\omega)\partial \cdot u \sim \xi^3 \left(1 - (\omega\xi^3)^{1/2}\right)\partial \cdot u$ 



## Interplay with background in the critical regime

- due to critical slowing down. Stephanov, 1104.1627; Berdnikov et al, 9912274; XA, 2003.02828
- Hydro+/++: hydrodynamics with parametrically slow modes (e.g.,  $\Gamma(q) \sim \xi^{-3} \ll \omega$ )

$$\begin{cases} \partial_{\mu} T^{\mu\nu}_{\text{physical}}(\psi_{R}, \psi_{R}) \\ \widetilde{\mathscr{L}}\widetilde{W}(q) = -\mathbf{I} \end{cases}$$

• In the critical regime (  $\Gamma_{\Pi} \sim \xi^{-3}$  ), Muller-Israel-Stewart theory is an example of the single-mode Hydro+, e.g., Stephanov et al, 1712.10305; Abbasi et al, 2112.14747

$$\begin{cases} \partial_{\mu}T^{\mu\nu}(\psi,\Pi) \\ \dot{\Pi} = -\Gamma_{\Pi}(\Pi) \end{cases}$$

#### Different slow modes may relax with different time scales near critical point

- $\widetilde{W}$  ) = 0
- $\Gamma(q)\widetilde{W}(q) \partial \psi_R \widetilde{W}(q)$

- = ()
- $-\Pi_{\rm NS}$ )



### Conclusion

### Recap

- Various approaches for fluctuating hydro have been developed, each with its own pros and cons, and can be connected with others.
- For the first time we developed a covariant framework for fluctuation dynamics incorporating non-Gaussian hydrodynamic fluctuations.

#### Outlook

- Need efforts to simulate the fluctuation equations with background.
- Need freeze-out prescription for the connection to observables.
- More...