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pole-skipping
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from pole-skipping



OUTLINE

hydrodynamics

pole-skipping and the reconstruction

summary and future directions



HYDRODYNAMICS



HYDRODYNAMICS

low-energy limit of QFTs — a Schwinger-Keldysh effective field theory
[SG, Polonyi (2013); Crossley, Glorioso, Liu (2015); Haehl, Loganayagam, Rangamani (2015); ...]

conservation laws (equations of motion) of

higher-f ts in MHD
ur w o wy gher-form currents
V/LT =0 V,LLJ =0 "t VMJ =0 [SG, Hofman, Igbal,
PRD (2017)]
(symmetries, gradient expansions) and (QFT)

— N ( ) VMTMV — O @)
i = h A "I’L g W — 8 n
T L L )\Z 7'(77’) Boms T o~ —iwt+1qz g (Q) z_: o
n=0 L 2 N u € n=1
out ~ 0T « 1 > w/T ~ q/T < 1
\ equilibrium
: : : temperature
dispersion relations: shear diffusion sound

e

w = —iDg" w = tv.q —il'q°




HYDRODYNAMICS FROM HOLOGRAPHY

duality:

a result of string theory (quantum gravity) [Maldacena (1997)]

(extremely hard) (much easier)

<TMV(_W7 _q>7 TPU((’U? Q)>R ~

perturbations of black holes ( )

give spectra of QFT operators for w= % eC

invaluable explicit (toy) models:
the N =4 supersymmetric Yang-Mills theory
[SG, Kovtun, Starinets, Tadi¢, JHEP (2019)]

1 i 3—-2In?2 i (72 —244+241n2 — 121n°2
sound: w==+t——q— q° + q° — ( — )q4:|:
V35 6nT 24~/372T2 864m3T
o i 5 i(1-1n2) 4, i(24ln*2—72) 4
shear diffusion: W= 35373 4 96 ZnT ) q

_i[2r°(n32 1)~ 21¢(3) — 24201 + n2(n32 = )] 5
384 (21T’




COMPLEX SPECTRAL CURVES

spectral curves are solutions to

P(z,y) =0 = y(=z); ¢,y eC

simple example:  P(z,y) =2 4+y*—1=0

reqular point  P(z,,y,) =0, 0,P(x,,y,) # 0
Taylor series around  (z,,9.) = (0,1) y=y"(@)=1-F — =+

critical point (order 2)  P(z,y«) =0, 0y P(x«,y«) = 0, 8§P(m*,y*) # 0
around each (z.,y.) = (£1,0) has 2 branches

at (T, y) = (1,000 y=y (@) =iV2z - 1)7 +272(z — 1)7 +---
Y = yép)(m) = —iV2(z—1)Z —i2 2 (z—1)2 +---
at least up to nearest critical point ( ) R =1, RP) =2

.
// 7
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HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

hydrodynamic modes as complex spectral curves
[SG, Kovtun, Starinets, Tadi¢, PRL (2019) and JHEP (2019)]

hydro: det £(q?,w) = 0

OIN\VE a(q®,w) =0 P(q”,w) =0 | = | wi(q) o » G cC

e.g., first-order hydrodynamics: Pl(qQ,w) — (w i iDq2)2 (wz + iTwg® — quQ) — 0

: there exists a convergent series around a critical point of any order

P(qZ,ws) =0, 0,P(q2,we) =0, ..., OPP(q,ws) #0

guaranteed up to the nearest level-crossing critical point ( )
o
radius of convergence of t(q) = Z cnq”, 9] < g«, is set by the lowest momentum at
i=1
which the hydro pole collides ( ):

d« = min Hqcollision”
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HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

hydrodynamic series are (shear , sound )
[SG, Kovtun, Starinets, Tadi¢, PRL(2019): ... : see also Withers; JHEP (2018); Heller, et.al. (2020, ...)]

Oshear = —? Z Cr, (qQ)n — —i@q2 + ... Wsound = —7 Z aneian (qQ)n/2 = +v.q — %QﬁqQ + ...
n=1

n=1

: : : _ =3/2 4 ...
dispersion relations are Rghear(A) = 2.22 (1 + 674.15 A7/ + )

holomorphic in a disk Reound(\) = 2 (1 1 481.68 \"3/2 1 .. )

N=4 SYM radius convergence
[SG, Starinets, Tadi¢, JHEP (2021)]




[SG, Lemut, JHEP (2023)]



RECONSTRUCTION OF SPECTRA

b(w, q) _ B(w,q)

<T,W(—w, _Q)a Tpo(wa C])>R ~

a(w,q) T2 (w —wi(q))

hydrodynamics

rest of the spectrum

[see also Withers, JHEP (2019)]




PUISEUX AND DARBOUX THEOREMS

Around a critical point of order p, we expect p branches of solutions

fze =0,y = 0) =0, 3,f(0,0) =0, ..., OF(0,0)# 0

y:Y](Qf) — Z akxk/mja ]:1,,]?
k>ko

f some m; > 1, we necessarily have a family of 1m; solutions

271l
yzYz(x):Zak(emj) xk/mj, [=0,1,...,m; —1
k> ko
. . . = :tiTFT’n 2\ 1 /2 _ 1 2
recall: sound Weound = —1 Z Qe (9°) " = tvsq — §Q5q + ...

14
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PUISEUX AND DARBOUX THEOREMS

@)
Consider a power series f(z) = Z anz"
n=0
that converges up to a critical point of order v [= —1/p|, which can be computed
—V IRT An+1 _
f(z) ~ (2 — z1) r(z) v = Mo )= 2= =

as well as all coefficients in the expansion and subleading (non-singular) terms

m—v n m 1/ m— 1 —
r,m = lim (=1) nlz ’ — k)nTk
n—>00 (V_m)n — )nzin k
n 11— m— 1 _
¢ = lim [ (=1)"* kn'( Y k&k Z (- Vk)an]
nmoe |05 (Fv = m)n(n — k) 0 — m)p2f" "
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PUISEUX AND DARBOUX THEOREMS

(a) One critical point (b) Two complex
at dD,|. conjugated critical

Need generalisation to potats at 0D,
different configurations of
critical points

(¢) Two general critical (d) One critical point (e) J critical points at
points at D)., | at dD|;,| and another or near 9D, |.
in its vicinity.

Potential problem: need to know either location of the critical point or exponent...

but this is resolved by following Hunter and Guerrieri (1980), which we generalise

Moreover, assume we only know a finite number of coefficients: a,, n =10,..., N

Xg(y, 21) = ay,

(n4+v—2m-—1)

ng—i_l(yazl):XgL(V:Zl)_ e ?—1(”721)7 for m > 0
1
m —~ (_1)k+m_yk!(y_k)n—mrk v—2m—1
Xn (Vv Zl) ~ kzzm n'(k . m)!zvll—i—u—k ~ O(n )

iteration

Xy=0 Xp_ ;=0 — X0 =0, XV ,=0 21, V



PUISEUX AND DARBOUX THEOREMS

Similarly, define

V0, (v,) = an
(n+v—2m—4{—2)
nzq

Yﬁ??z—l_l(yazl) :}/EI)?;L(V72:1)_ YE?ZL—l(Vv'Zl)v for m > 0

~ i (=1) k Ym A+l — k) (v —k)n_mrk

—|—O v—32m—~—2
(€ — k)l F (n )

1 \—v, L £—1 —k(,, _
oy = il || D Rl v Z(m+€ k)( () (v — k) mrk]
k=0

v —0)p_ mzf &

subleading parts of the function (recall: g) follow
in an analogous way

We also extended this algorithm to several
critical points in different configurations
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RECONSTRUCTION OF "ALL” UV MODES

momentum space analogue of resurgence in position space — everything is

see related papers by Bender, et.al; Dunne, et.al.; Withers, JHEP (2019); ...

wo(2) = ) apz” i
° nz:% wo(z) = —’LZG

mn

2 by(z — 21)

n/2
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EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

No=300
start from 300 coefficients g (2) = Z anz", z=9q°=q>/4n’T?
n=1

analyse convergence and get a non-rigorous hint for the number of critical points

\&\100 150 200 250

logyg |an| = nlog,,(R1) +

-05 0.0 05 10 1.5 20

use algorithm with 2 complex conjugate critical points and ‘recover’ 12 coefficients

(N1=12)—1

(z) = Z bn(z — zl)”/2

n=0

the gap: analytic continuation within the same sheet

(e.g. Padé approximant, conformal maps...)

5 (0) = 1.23506 — 1.76338
tv(0) = 1.23455 — 1.77586i
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EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

this is not good enough to continue;

as a proof of principle, we (re)compute the first 300 coefficients b,,

analyse convergence and get a non-rigorous hint for the number of critical points

log o [bn|

A
~log,g |bn| = nlogo(R) + At

15°-

10_’

5 -

50 100 150 200 250

using algorithm with 2 general critical points and ‘recover’ 12 coefficients

(N2=12)—1

o(2) = Z cn(z — ZQ)”/2

n=0

the gap: analytic continuation within the same sheet

5¢(0) = 2.16275 — 3.253411
t(0) = 2.12981 — 3.28100i

... exploration continues ...
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EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

comparison with a Padé approximant from 300 coefficients [see also Withers, JHEP (2019)]

Darboux appears to be superior in recovering the location of critical points and subsequent

expansions

Darboux: 21 to 18 significant figures
Padé: 271 to 3significant figures

Padé appears to be superior in recovering the location of the gap

Darboux: m;(0) to 2 significant figures Note: we used Padé within the same sheet
Padé: m;(0) to 17 significant figures

if exact critical point is used, then Padé works spectacularly

Padé: tv(0) to 26 significant figures and 80 coefficients b,, to at least 10 significant figures

unsurprising conclusion: combination of numerical methods is best

is this useful for a reconstruction? conceptually yes, practically not quite (yet)...



POLE-SKIPPING AND
THE RECONSTRUCTION
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C o AN O S \ Lyapunov exponent N butterfly velocity
\

IAZ(t,x)| ~ |AZ(t;,%x;)| et xl/ve)
classical chaos means extreme

sensitivity to initial conditions
L= U

"what is quantum chaos?”

a measure: "out-of-time-ordered” correlation functions [Larkin, Ovchinnikov; Kitaev]

C(tv X) — <[W(t7 X)v V(Ov O)]T [W(tv X)v V(Ov O)]>T ~ e L ltlxl/ve)

R

the Maldacena-Shenker-Stanford bound on

OTOC of

~ AL (t—xz/vp) < 27T
O(t. z) C(t,z) ~ee AL < 2xT/h

in finite-N systems, quantum chaos spreads polynomially with a bounded rate of growth —
[Kukuljan, SG, Prosen, PRB (2017)]

OTOC of

[ 00,0 c(t) < At ~—O—O—O——O—0—0)—
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CHAOS FROM HYDRODYNAMICS: POLE-SKIPPING

[SG, Schalm, Scopelliti, PRL (2017); Blake, Lee, Liu, JHEP (2018); Blake, Davison,
SG, Liu, JHEP (2018); SG, JHEP (2019)]

resumed all-order hydrodynamic series (e.g. sound) w(q) = Z an, (T, i, (O;), \) ¢"
n=1

passes through a “chaos point” at
w(q — i)\L/UB) — i)\L — 27"

where the associated 2-pt function is

Res G% (w =iAp,q =itAp/vp) =0

infinite constraints on correlators .
[SG, Kovtun, Starinets, Tadi¢, JHEP (2019); wWn(qn) = =27 T'in
Blake, Davison, Vegh, JHEP (2019)]

[from Blake,
Davison,
Vegh,
JHEP (2019)]




DIFFUSION AND SPECIAL POLE-SKIPPING POINTS

consider diffusion in a neutral 3d CFT dual to AdSs-Schwarzschild

Wshenr = —1 Z cn (4%)" = —iDq® + . .. wn(qn) = —21Tin

n=1

[from Blake, Davison,
Vegh, JHEP (2019)]

analytic result known for 4d bulk
[Grozdanov, PRL(2021)]

47l
qn:Ln1/4, n=20,1,2,...
V3

for increasing real g

why not in 5d or higher?

25



POLE-SKIPPING
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IN 4D GRAVITY

gravity in 4d has a special duality structure between sound/shear (even/odd)

channels of perturbations [Chandrasekhar (1983); ..

relation (

. SG, Vrbica (2023)]

) between fluctuations of 4d black holes with arbitrary

maximally symmetric horizon topology (spherical, flat, hyperbolic) and arbitrary

cosmological constant (dS, Minkowski, AdS)

L Lyt = (w* = &%) 1
w— — L—¢+7
algebraically special L ¢y =0, Loy
solutions: > 5
W =w

pole-skipping points split into two categories:

and

d _  p(p—2K)
Li_W(T)j:dr*’ W=
WE =1)=Ll+1), p(K=0)=qg"

>
_|_
j
o
S

p=K++VK?+3nt
p=K—+vK2+3nt

2 common pole-skipping points with p < 0

2
|
o
s
ﬂ
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RECONSTRUCTION FROM POLE-SKIPPING

if all modes are connected via level-crossing, then just the knowledge of any one wi(q)

in general, | do not know, but...

[SG, Lemut, Pedraza, to appear]

wn(qn) = —27Tin Wghear = —14 Z cn (0°)" = —iDq® + . ..

[from Blake, Davison, Vegh,
JHEP (2019)]




SUMMARY AND
FUTURE DIRECTIONS



SUMMARY AND FUTURE DIRECTIONS

complex analytic structures of transport are a powerful tool for exploring physics
claim: in some QFTs reconstruction of a spectrum is possible all the way from IR to UV

in momentum space we can deal with convergent series, but, ‘morally’, this is equivalent

to resurgence in position space

useful not only in QFTs but also for QNM reconstructions and other similar problems

improve practical aspects of reconstructions given a limited number of known coefticient

can these techniques be used in realistic QFTs (Euler-Heisenberg, chiral Lagrangian)?

new ‘classification’ of pole-skipping points in 3d CFTs

extensions to higher dimensions?

claim: reconstruction is possible from a discrete set of pole-skipping points

29



THANK YOU!



