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Motivation

• Era of gravitational wave astronomy:


➡ New tests of the strong field regime of gravity 


➡ Understanding of fundamental nature of gravity

• Current GWs data indicates that deviations from GR are small



• Some issues in carrying out this program:


- Predictions from (the strong field regime of) alternative theories of gravity are 
needed


- No preferred alternative theory 


➡ So what should we be looking for?


- Many such alternative theories are not known to be well-posed 


➡ How do we extract their predictions?

Motivation



• Possible ways forward:


- Find a well-posed formulation of the desired theory [Barausse et al.; Kovacs; Kovacs 
and Reall; East, Ripley; Bezares et al.; Aresté-Saló, Clough and PF]  


- Linearise around GR [Okounkova et al; Witek et al;…]


- “Fix” the theory à la MIS [Lehner et al…; Cayuso, PF, França, Lehner, arXiv:2303.07246]

Motivation



• Consider higher derivative theories: well-motivated from microscopic  
theories of quantum gravity (analogous to hydrodynamics)


• Effects may be enhanced in the strong field regime


• Focus on black holes. Other gravitational objects (e.g., neutron stars,…) typically require 
other (non-gravitational) physics

Motivation:  
understand the fundamental nature of gravity



• Higher derivatives in the bulk  Finite coupling effects at the boundary


• Pre-hydrodynamic and “hydrodynamisation”

⇒

Holographic motivation 



Gravity as an EFT
• Add all possible terms (in a derivative expansion) to the Einstein-Hilbert 

Lagrangian, consistent with the symmetries

I =
1

16πG ∫ d4x |g | [R +
1

Λ2
UV

(α1R2 + α2RμνRμν) +
β

Λ3
UV

Riem3…]
• Some terms can be removed by field redefinitions and using the lower 

order eoms

• The coefficients in the expansion are determined by the microscopic 
theory

• The EFT is only reliable at distances L ≫ Λ−1
UV



EFT of inflation
• The early Universe also belongs to the strong field regime of gravity


• At some point, prior or during inflation modifications to GR had to be 
important 

ℒGB = R2 − 4 RμνRμν + RμνρσRμνρσ

• Leading correction to GR coupled [Weinberg; Trodden and Solomon]: 

I =
1

16π ∫ d4x −g [R + X − V(ϕ) + g2(ϕ) X2 + λ(ϕ)ℒGB]

X = − 1
2 (∇μϕ)(∇μϕ)

➡ 2nd order eoms! 



Outline

• Well-posedness of the initial value problem in gravity


• 4 derivative scalar-tensor theory (4 ST)


• Müller-Israel-Stewart for gravity: 8 derivative theory


• Conclusions

∂



Well-posedness of the initial value problem



Well-posedness
• Given suitable initial data, the solution exists, is unique and it depends 

continuously on the initial data

➡ Predictive power


➡ Control of the “size” of the solution from the initial data (for small times)

 Essential to hope to solve the equation(s) numerically ⇒

• In GR, establishing well-posedness depends on finding a suitable gauge 
and on the initial data



Well-posedness: GR
• Generalised harmonic coordinates:  [Choquet-Bruhat] Cμ = □g xμ − Hμ = 0

1
2

gαβgμν,αβ + gαβ
,(μgν)α,β + H(μ,ν) − HαΓα

μν + Γα
μβΓβ

να = 0

➡ Manifest wave-like nature of the Einstein equations


➡ Requires excision of singularities


➡ All modes propagate at the speed of light



• ADM-like formulations (BSSN/CCZ4) in singularity avoiding coordinates 
[Baumgarte, Shapiro, Shibata, Nakamura; Baker et al., Campanelli et al.]: 

Well-posedness: GR

ds2 = − α2dt2 + γij(dxi + βidt)(dxj + β jdt)

• Decompose the spacetime metric into space and time:

• Evolve the induced metric  and its “velocity”  (i.e., extrinsic 
curvature)

γij ∂tγij ∼ Kij

• Coordinate freedom: choice of  and  → equivalent to choosing α βi Hμ



∂tγ̃ij = …

∂χ = …
∂tK = …
∂t Ãij = …

∂tα = …

➡ Wave-like nature of the Einstein equations 
obscured


➡ No singularities in the computational domain


➡ Different modes propagate at different speeds 
(issues with constraint preserving BCs)

∂tβi = …

• But it is a bit more complicated: rescale , use the constraints in the 
eoms, find “good” evolution equations for  and 

γij, Kij
α βi

∂tΓ̃i = …



• Horndeski and Lovelock theories are not well posed in harmonic gauge 
due to degeneracies [Papallo, Reall,…]

Well-posedness: beyond GR

• Solution: break the degeneracies → modified harmonic gauge [Kovacs and Reall]

➡ Introduce auxiliary metrics so that different modes propagate on the light 
cone of a different metric



Rμν− 1
2 Rgμν − ̂P βμν

α ∇βCα = 0

Cμ = Hμ + g̃ρσ Γμ
ρσ

̂P βμν
α = δ(μ

α ̂gν)β− 1
2 δβ

α ̂gμν

image borrowed from [Kovacs and Reall]



• Modified harmonic gauge: g̃αβΓμ
αβ = Hμ

• Modified BSSN/CCZ4: find suitable  that generalise the usual evolution 
equations for the lapse and the shift (1+log slicing and Gamma driver) [Aresté-Saló, 
Clough, PF] 

Hμ



Most general 4-derivative scalar-tensor theory of gravity
w/ Llibert Aresté Saló, Katy Clough 



• Most general general scalar-tensor theory of gravity up to 4 derivatives [Weinberg]:

Most general scalar-tensor theory of gravity up to 
4 derivatives

I =
1

16π ∫ d4x −g [R + X − V(ϕ) + g2(ϕ) X2 + λ(ϕ)ℒGB]

• Our choices:

V(ϕ) = 0, g2(ϕ) = g2 λ(ϕ) = λGB

4 ϕ or λ(ϕ) =
λGB

γ
(1 − e−γϕ2)

X = − 1
2 (∇μϕ)(∇μϕ) ℒGB = R2 − 4 RμνRμν + RμνρσRμνρσ



• We take an EFT approach: 


➡ We consider the full theory but in a regime where the higher derivative 
terms in the eoms are small at all times


➡ Compatible with non-linearities being important and consistent to 
neglect higher derivative terms in the action 


➡ Well-posedness holds

Weak vs Strong coupling

• In practice we monitor that the weak coupling condition is satisfied

|g2 L−2 | ≪ 1 , |λ(ϕ) L−2 | ≪ 1 , L−1 = sup{ |Rμνρσ |
1
2 , |∇μϕ | , |∇μ ∇νϕ |

1
2 }



• The evolution of the scalar field is controlled by an effective metric:
hμν = gμν(1 + g2 X) − 2g2 (∇μϕ)(∇νϕ)

➡ Hyperbolicity can break down in the strongly coupled regime 


➡ Shocks can form from smooth initial data
[Ripley and Pretorius; Bernard et al; PF and França; Bezares et al. ]

Weak vs Strong coupling
• Cases:  


- : shift-symmetric case → Kerr is not a solution, only hairy black 
holes


- : Kerr and hairy black holes are solutions

hμν ∇μ ∇νϕ = λ′ (ϕ)ℒGB

λ(ϕ) = λGB

4 ϕ

λ(ϕ) = λGBγ−1(1 − e−γϕ2)
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Black hole binaries

• Initial data corresponding to two superposed GR black holes → small 
initial constraint violations


• Initial configuration is in the weakly coupled regime


• ~11 quasi-circular orbits


• Monitor the weak coupling condition


• “Excise” a portion of the interior of the AH



 theoryλ(ϕ) =
λGB

4
ϕ



 theoryλ(ϕ) =
λGB

γ
(1 − e−γϕ2)







Müller-Israel-Stewart (MIS) for an 8-derivative theory of gravity
w/ Ramiro Cayuso, Tiago França and Luis Lehner 



I = ∫ dx4 −g (R −
1

Λ6
𝒞2 −

1
Λ̃6

�̃�2 −
1

Λ6
−

𝒞�̃�)
• Most general higher derivative theory of gravity (in vacuum) up to 8 derivatives:

Eight derivative theory of gravity

𝒞 = RμνρσRμνρσ , �̃� = RμνρσR̃μνρσ

➡ EOMs with 4th order derivatives ( ):ϵ ≡ Λ−6

Gμν = 8ϵ{𝒞[ □ Rμν−
1
2 ∇μ ∇νR− 1

16 𝒞 gμν − Rμλ Rλ
ν

+RαβRμανβ+ 1
2 RμσρλR

σρλ
ν ]

+2(∇α𝒞)[∇αRμν − ∇(μRν)α] + R α β
μ ν ∇α ∇β𝒞}



• No mathematical theory for general higher than 2nd order PDEs


• How is one to approach the study of this theory and its physical 
predictions?



MIS: relativistic viscous hydro
• 2nd order stress tensor of a relativistic viscous (conformal) fluid:

Tμν =
ρ

d − 1
(d uμ uν + ημν) + Πμν

Πμν = −2 η σμν + 2 η τΠ (⟨uα∂ασμν⟩+ 1
d − 1 σμν ∂αuα) + ⟨λ1 σμασ α

ν + λ2 σμαω α
ν + λ3 ωμαω α

ν ⟩

➡  are third order PDEs. How does one solve them?∂μTμν = 0

• MIS formulation: promote  to a new dynamical variable with eomΠμν

Πμν = − 2 η σμν − τΠ (⟨uα∂αΠμν⟩+ d
d − 1 Πμν ∂αuα) + ⟨ λ1

η2 ΠμαΠ α
ν − λ2

η Πμαω α
ν + λ3 ωμαω α

ν ⟩
➡ the eoms are 1st order and  on a timescale set by Πμν → − 2 η σμν τΠ



MIS for gravity
• Order reduction: keep only the  terms in the EOMsRic ∼ 𝒪(ϵ) ⇒ 𝒪(ϵ)

Gμν = ϵ (4 𝒞 W αβγ
μ Wναβγ−

1
2 gμν 𝒞2 + 8 W α β

μ ν ∇α ∇β𝒞) , 𝒞 = WμνρσWμνρσ

• Want: 


- Well-posed equations


- Consistently incorporate the small corrections at long wavelengths 
whilst controlling to flow of energy to the UV


- Capture non-linearities whilst remaining in the regime of validity of EFT



MIS for gravity

• Solution for the model problem: □ ϕ = − ϵ ∂2
t Ĉ

τ∂0Ĉ + σ(∂2
t − 2βi∂ti + βiβ j∂ij)Ĉ = C(ϕ) − Ĉ

-  on a timescale 


-  can be chosen to minimise the difference and dependence of the solution 
on them while preserving numerical stability 

Ĉ → C(ϕ) σ/τ
σ and τ

• Model problem: 


- Option A:  with 


- Option B: 

□ ϕ = − ϵ ∂4
t ϕ

∂4
t ϕ = ∂2

t C(ϕ) C(ϕ) = ∂2
xϕ

∂4
t ϕ = ∂4

xϕ

➡ Both options lead to blow up



MIS for gravity
• Our solution: Gμν = ϵ(4 �̂� W αβγ

μ Wναβγ−
1
2 gμν �̂�2 + 8 W α β

μ ν ∇α ∇β�̂�)
(∂2

t − 2βi∂ti + βiβ j∂ij)�̂� = 1
σ (𝒞 − �̂� − τ∂0�̂�)

• Reduction of order to replace time derivatives on the RHS

•  on a time scale set by �̂� → 𝒞 σ/τ



MIS for gravity: results
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Ĉ, æ = 0.15

0.050 0.075 0.100 0.125 0.150
æ

0.02

0.04

0.06

0.08

0.10

T

ø = 0.0005

ø = 0.005

ø = 0.01

ø = 0.02



MIS for gravity: results
ϵ = 10−5

σ = 0.0625
τ = 0.005

�̂�



MIS for gravity: results
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Conclusions and outlook



Conclusions

• We have performed simulations of black hole binary mergers in the 4 ST 
and higher derivative theories of gravity treating them fully non-linearly 


• The waveforms exhibit a generic O(1) de-phasing compared to the GR 


• Applications: EFT of inflation, endpoint of the GL instability of black 
strings, finite coupling effects in holography

∂



Thank your for your attention!


