Holographic nodal-antinodal dichotomy from infrared scaling

Ronnie Rodgers

with Jewel Kumar Ghosh and Alexander Krikun.

Based on arXiv:2212.09694

Fermi surfaces, free electrons

1

(Non)-Fermi liquids

Fermi liquid: weak electronic interactions

$$G(\omega,k) = \frac{1}{G_0(\omega,k)^{-1} - \Sigma(\omega,k)}$$

- $|\mathrm{Im}\,\Sigma|\ll 1$ near $\omega=0,\,k=k_F$
- Sharp quasiparticle peak
- Sharp Fermi surface

(Non)-Fermi liquids

Fermi liquid: weak electronic interactions

$$G(\omega,k) = \frac{1}{G_0(\omega,k)^{-1} - \Sigma(\omega,k)}$$

- $|\mathrm{Im}\,\Sigma|\ll 1$ near $\omega=0,\,k=k_F$
- Sharp quasiparticle peak
- Sharp Fermi surface

Non-Fermi liquid: No quasiparticles

- Strong interactions
- Experimental example: cuprates
- Holography

Nodal anti-nodal dichotomy in cuprates

Nodal anti-nodal dichotomy in cuprates

Heuristic mechanism

 Direction k_a: resonance peak

• Direction k_n : resonance peak + continuum

Heuristic mechanism

Heuristic mechanism

Disclaimer

- Will consider two-fold rotational symmetry only
- Four-fold symmetry tricky (More on this later)

Review: Fermion spectral functions in holography

Holographic fermions

Asymptotically-AdS₄

$$\mathrm{d}s^2 \stackrel{r \to \infty}{=} \frac{\mathrm{d}r^2}{r^2} + r^2 \left(-\mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}y^2 \right)$$

Black brane horizon in bulk (at r = 0)

Probe fermion

$$S = i \int \mathrm{d}^4 x \sqrt{-G} \, \bar{\Xi} \left(\not\!\!D - m
ight) \Xi + \text{(boundary terms)}$$

Dual to boundary fermion operator ("electron")

Holographic fermions

[lqbal, Liu, 0809.3808]

Define projectors $P_{\pm} = \frac{1}{2} \left(1 \pm \Gamma^{\underline{r}} \right)$

Projection	Field theory interpretation	
$\psi \propto P_+ \Xi$	$\lim_{r\to\infty}r^{\frac{3}{2}-m}\psi$	= source for fermionic operator
$\chi \propto -iP\Xi$	$\lim_{r \to \infty} r^{\frac{3}{2} + m} \chi$	$\propto \text{VEV}$ of fermionic operator

Green's function

$$G(\omega,k) = \lim_{r \to \infty} r^{2m} \Gamma^{\underline{0}} \frac{\chi}{\psi}$$

Retarded Green's function: ingoing boundary conditions [Son, Starinets, hep-th/0205051; Herzog, Son, hep-th/0212072]

Extremal AdS-Reissner-Nordström

$$ds^{2} = \frac{dr^{2}}{U(r)} - U(r) dt^{2} + V(r) \left[dx^{2} + dy^{2} \right]$$

$$A = \frac{\mu r}{r+1} dt$$

$$U(r) = \frac{r^{2}(r^{2} + 4r + 6)}{(r+1)^{2}}$$

$$V(r) = (r+1)^{2}$$

$$r = \infty$$

Chemical potental μ

Extremal horizon at r = 0

Extremal AdS-Reissner-Nordström

In appropriate basis: $\psi = (\psi_+, \psi_-)$, $\chi = (\chi_+, \chi_-)$ [Faulkner, Liu, McGreevy, Vegh, 0907.2694]

$$\left[\sqrt{U}\,\partial_r + m\sigma^3 - \frac{\omega + qA_t}{\sqrt{U}}(i\sigma^2) \pm \frac{k}{\sqrt{V}}\sigma^1\right] \begin{pmatrix} \chi_{\pm}(r) \\ \psi_{\pm}(r) \end{pmatrix} = 0$$

From now, will consider ψ_+ , χ_+ only and drop plusses

Extremal AdS-Reissner-Nordström

In appropriate basis: $\psi = (\psi_+, \psi_-), \chi = (\chi_+, \chi_-)$ [Faulkner, Liu, McGreevy, Vegh, 0907.2694]

$$\left[\sqrt{U}\,\partial_r + m\sigma^3 - \frac{\omega + qA_t}{\sqrt{U}}(i\sigma^2) \pm \frac{k}{\sqrt{V}}\sigma^1\right] \begin{pmatrix} \chi_{\pm}(r)\\ \psi_{\pm}(r) \end{pmatrix} = 0$$

From now, will consider ψ_+ , χ_+ only and drop plusses

Near Fermi surface: small ω — solve Dirac equation perturbatively?

Near horizon:

$$U(r) \approx r^2, \qquad V(r) \approx 1, \qquad A_t(r) \approx \mu r$$

 $\frac{\omega}{\sqrt{U}}$ always important at small enough r

[Faulkner, Liu, McGreevy, Vegh, 0907.2694] [Faulkner, Iqbal, Liu, McGreevy, Vegh, 1101.0597]

$$\psi(r) = Cf(r) + Dg(r) \qquad \Rightarrow \qquad G \propto \frac{D}{C} = \frac{\psi(r_0)f'(r_0) - \psi'(r_0)f(r_0)}{\psi(r_0)g'(r_0) - \psi'(r_0)g(r_0)}$$

Define (everything evaluated at r_0)

$$a = mf - f'\sqrt{U} \qquad b = f\left(qA_tU^{-1/2} - kV^{-1/2}\right)$$

$$c = mg - g'\sqrt{U} \qquad d = g\left(qA_tU^{-1/2} - kV^{-1/2}\right)$$

[Faulkner, Liu, McGreevy, Vegh, 0907.2694] [Faulkner, Iqbal, Liu, McGreevy, Vegh, 1101.0597]

Replace ψ' with χ using EOM:

$$G(\omega, k) = \frac{a + b\mathcal{G}}{c + d\mathcal{G}}, \qquad \mathcal{G} = \frac{\chi(r_0)}{\psi(r_0)}$$

 $\mathcal{G} = IR$ Green's function

Compute $\ensuremath{\mathcal{G}}$ using solution in inner region

[Faulkner, Liu, McGreevy, Vegh, 0907.2694] [Faulkner, Iqbal, Liu, McGreevy, Vegh, 1101.0597]

$$\rho(\omega, k) = \operatorname{Im} G(\omega, k) = \frac{bc - ad}{|c + d\mathcal{G}|^2} \operatorname{Im} \mathcal{G}$$

Low frequency scaling of $\operatorname{Im} \mathcal{G}$ determines low frequency scaling of ρ

Determine presence of continuum from $\operatorname{Im} \mathcal{G}$

[Faulkner, Liu, McGreevy, Vegh, 0907.2694] [Faulkner, Iqbal, Liu, McGreevy, Vegh, 1101.0597]

Inner region:

$$\left[r\,\partial_r + m\sigma^3 - \left(\frac{\omega}{r} + q\mu\right)(i\sigma^2) + k\sigma^1\right] \begin{pmatrix} \chi(r)\\ \psi(r) \end{pmatrix} = 0$$

Inner region, ingoing solution:

$$\psi(r) = \sqrt{r} \left[\left(2\kappa + m + ik + 2i\frac{\omega}{r} \right) W_{\kappa,\nu} \left(-2i\frac{\omega}{r} \right) - W_{\kappa+1,\nu} \left(-2i\frac{\omega}{r} \right) \right]$$
$$\chi(r) = -i\sqrt{r} \left[\left(2\kappa - m - ik + 2i\frac{\omega}{r} \right) W_{\kappa,\nu} \left(-2i\frac{\omega}{r} \right) + W_{\kappa+1,\nu} \left(-2i\frac{\omega}{r} \right) \right]$$

$$\kappa = \frac{1}{2} + iq\mu, \qquad \nu = \sqrt{m^2 + k^2 - q^2\mu^2}$$

[Faulkner, Liu, McGreevy, Vegh, 0907.2694] [Faulkner, Iqbal, Liu, McGreevy, Vegh, 1101.0597]

$$\operatorname{Im} \mathcal{G} = \operatorname{Im} \frac{\chi(r_0)}{\psi(r_0)} \sim \omega^{2\operatorname{Re}\nu}, \qquad \nu = \sqrt{m^2 + k^2 - q^2\mu^2}.$$

Presence of continuum depends on k

IR geometries

$$\mathrm{d}s^2 = \frac{\mathrm{d}r^2}{U(r)} - U(r)\mathrm{d}t^2 + V(r)\left[\mathrm{d}x^2 + \mathrm{d}y^2\right]$$

 $r \rightarrow 0$: suppose $U \approx r^{\alpha_U} \text{, } V \approx r^{\alpha_V} \text{,}$

$$ds^{2} \approx \zeta^{\theta/z} \left(\frac{-dt^{2} + d\zeta^{2}}{\zeta^{2}} + \frac{dx^{2} + dy^{2}}{\zeta^{2/z}} \right), \qquad \zeta = r^{1-\alpha_{U}}$$
$$z = \frac{2(\alpha_{U} - 1)}{\alpha_{U} + \alpha_{V} - 2}, \qquad \theta = \frac{2(\alpha_{U} - 2)}{\alpha_{U} + \alpha_{V} - 2}$$

AdS-RN: $\alpha_U = 2, \, \alpha_V = 0 \qquad \Rightarrow \qquad z \to \infty$

IR geometries

$$\mathrm{d}s^2 \approx \zeta^{\theta/z} \left(\frac{-\mathrm{d}t^2 + \mathrm{d}\zeta^2}{\zeta^2} + \frac{\mathrm{d}x^2 + \mathrm{d}y^2}{\zeta^{2/z}} \right)$$

Lifshitz scaling

$$(t,\zeta) \to \lambda(t,\zeta), \qquad (x,y) \to \lambda^{1/z}(x,y), \qquad \mathrm{d}s^2 \to \lambda^{\theta/z} \mathrm{d}s^2$$

Hyperscaling violation [Huijse, Sachdev, Swingle, 1112.0573]

 $S \propto T^{(2-\theta)/z}$

Spectral functions in Lifshitz geometries

$$ds^{2} \approx \zeta^{\theta/z} \left(\frac{-dt^{2} + d\zeta^{2}}{\zeta^{2}} + \frac{dx^{2} + dy^{2}}{\zeta^{2/z}} \right)$$
$$\left[\zeta \,\partial_{\zeta} + \bar{m}\zeta^{\theta/2z}\sigma^{3} - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\theta/z-\nu_{A}} \right) (i\sigma^{2}) + \bar{k}\zeta^{1/z}\sigma^{1} \right] \begin{pmatrix} \chi(\zeta) \\ \psi(\zeta) \end{pmatrix} = 0$$

 $\nu_A \ge 0$ related to scaling of A_t at small r

Null energy condition + non-divergent entropy as $T \rightarrow 0$:

• Positive z: $z \ge 1$, $\theta \le 1$

Spectral functions in Lifshitz geometries

$$ds^{2} \approx \zeta^{\theta/z} \left(\frac{-dt^{2} + d\zeta^{2}}{\zeta^{2}} + \frac{dx^{2} + dy^{2}}{\zeta^{2/z}} \right)$$
$$\left[\zeta \,\partial_{\zeta} + \bar{m}\zeta^{\theta/2z}\sigma^{3} - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\theta/z-\nu_{A}} \right) (i\sigma^{2}) + \bar{k}\zeta^{1/z}\sigma^{1} \right] \begin{pmatrix} \chi(\zeta) \\ \psi(\zeta) \end{pmatrix} = 0$$

 $\nu_A \ge 0$ related to scaling of A_t at small r

Null energy condition + non-divergent entropy as $T \rightarrow 0$:

- Positive z: $z \ge 1$, $\theta \le 1$
- Negative $z: z \le 0, \theta \ge 1$

Spectral functions in Lifshitz geometries

$$ds^{2} \approx \zeta^{\theta/z} \left(\frac{-dt^{2} + d\zeta^{2}}{\zeta^{2}} + \frac{dx^{2} + dy^{2}}{\zeta^{2/z}} \right)$$
$$\left[\zeta \,\partial_{\zeta} + \bar{m}\zeta^{\theta/2z}\sigma^{3} - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\theta/z-\nu_{A}} \right) (i\sigma^{2}) + \bar{k}\zeta^{1/z}\sigma^{1} \right] \begin{pmatrix} \chi(\zeta) \\ \psi(\zeta) \end{pmatrix} = 0$$

 $\nu_A \ge 0$ related to scaling of A_t at small r

Null energy condition + non-divergent entropy as $T \rightarrow 0$:

- Positive z: $z \ge 1$, $\theta \le 1$
- Negative z: $z \le 0, \theta \ge 1$

When z > 1: Im $\mathcal{G}(\omega, k) \sim \exp\left[-c \left(k^z/\omega\right)^{1/(z-1)}\right]$

[Faulkner, Polchinski, 1001.5049]

No continuum \Rightarrow sharp quasiparticle peaks

What about negative z?

Negative z

IR EOM:

$$\left[\zeta \,\partial_{\zeta} + \bar{m}\zeta^{\theta/2z}\sigma^3 - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\theta/z-\nu_A}\right)(i\sigma^2) + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix}\chi(\zeta)\\\psi(\zeta)\end{pmatrix} = 0$$

Deep IR $\zeta \to \infty$

- $\bar{\omega}$ term dominates
- Suppose $\theta > 2$ and $z < 0 \Rightarrow \overline{k}$ term is first subleading

Negative z

IR EOM:

$$\left[\zeta \,\partial_{\zeta} + \bar{m}\zeta^{\theta/2z}\sigma^3 - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\theta/z-\nu_A}\right)(i\sigma^2) + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix}\chi(\zeta)\\\psi(\zeta)\end{pmatrix} = 0$$

Deep IR $\zeta \to \infty$

- $\bar{\omega}$ term dominates
- Suppose $\theta > 2$ and $z < 0 \Rightarrow \overline{k}$ term is first subleading

$$\left[\zeta \,\partial_{\zeta} - i\bar{\omega}\zeta\sigma^2 + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix} \chi(\zeta)\\ \psi(\zeta) \end{pmatrix} = 0$$

Can't solve IR equation exactly: two-step matching

$$\left[\zeta \,\partial_{\zeta} - i\bar{\omega}\zeta\sigma^2 + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix} \chi(\zeta)\\ \psi(\zeta) \end{pmatrix} = 0$$

Outer region:

$$\left[\sqrt{U}\,\partial_r + m\sigma^3 - \frac{\varkappa + qA_t}{\sqrt{U}}(i\sigma^2) + \frac{k}{\sqrt{V}}\sigma^1\right] \begin{pmatrix} \chi(r)\\ \psi(r) \end{pmatrix} = 0$$

Mid-IR region: $\zeta = r^{1-\alpha_U}$

$$\left[\zeta \,\partial_{\zeta} + \bar{k}\zeta^{1/z}\sigma^{1}\right] \begin{pmatrix} \chi(\zeta) \\ \psi(\zeta) \end{pmatrix} = 0$$

Deep-IR region: $\zeta = r^{1-\alpha_U}$

$$\left[\partial_{\zeta} - i\bar{\omega}\sigma^2\right] \begin{pmatrix} \chi(\zeta)\\ \psi(\zeta) \end{pmatrix} = 0$$

Solutions in the IR regions

Deep IR:
$$\begin{bmatrix} \zeta \partial_{\zeta} - i \bar{\omega} \zeta \sigma^2 \end{bmatrix} \begin{pmatrix} \chi(\zeta) \\ \psi(\zeta) \end{pmatrix} = 0$$

Ingoing solution: $\psi_R(\zeta) = e^{i\bar{\omega}\zeta}, \qquad \chi_R(\zeta) = -ie^{i\bar{\omega}\zeta}.$

Solutions in the IR regions

Deep IR:
$$\begin{bmatrix} \zeta \partial_{\zeta} - i\bar{\omega}\zeta\sigma^2 \end{bmatrix} \begin{pmatrix} \chi(\zeta) \\ \psi(\zeta) \end{pmatrix} = 0$$

Ingoing solution: $\psi_R(\zeta) = e^{i\bar{\omega}\zeta}, \qquad \chi_R(\zeta) = -ie^{i\bar{\omega}\zeta}.$

Mid-IR: $\left[\zeta \partial_{\zeta} + \bar{k}\zeta^{1/z}\sigma^{1}\right] \begin{pmatrix} \chi(\zeta) \\ \psi(\zeta) \end{pmatrix} = 0$

General solution:

$$\psi_L(\zeta) = a \exp\left(z\bar{k}\zeta^{1/z}\right) + b \exp\left(-z\bar{k}\zeta^{1/z}\right)$$
$$\chi_L(\zeta) = a \exp\left(z\bar{k}\zeta^{1/z}\right) - b \exp\left(-z\bar{k}\zeta^{1/z}\right)$$

Fix a, b by matching $\psi_L(\zeta_1) = \psi_R(\zeta_1)$ and $\chi_L(\zeta_1) = \chi_R(\zeta_1), \quad \zeta_1 = (\bar{\omega}/\bar{k})^{z/(z-1)}$

Matching solutions

Leading order, low frequency:

$$\psi(\zeta) \approx \begin{cases} e^{i\bar{\omega}\zeta}, & \zeta \ge \zeta_1, \\ \sqrt{2}\cosh\left(z\bar{k}\zeta^{1/z} - i\pi/4\right), & \zeta \le \zeta_1 \end{cases}$$

$$\chi(\zeta) \approx \begin{cases} -ie^{i\bar{\omega}\zeta}, & \zeta \ge \zeta_1, \\ -\sqrt{2}\sinh\left(z\bar{k}\zeta^{1/z} - i\pi/4\right), & \zeta \le \zeta_1 \end{cases}$$

$$\mathcal{G}(\omega,k) \equiv \frac{\chi(\zeta_0)}{\psi(\zeta_0)} \approx i.$$

Continuum \Rightarrow no sharp peaks

Example:
$$z = -2$$
, $\theta = 4$

$$U(r) = r^2 + \frac{r^{4/3}}{(1+r)^4}, \qquad V(r) = r^2 + \frac{r^{1/3}}{(1+r)^4}.$$

Set $\bar{m} = \bar{q} = 0$

Negative z

IR EOM:

$$\left[\zeta \,\partial_{\zeta} + \bar{m}\zeta^{\theta/2z}\sigma^3 - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\theta/z-\nu_A}\right)(i\sigma^2) + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix}\chi(\zeta)\\\psi(\zeta)\end{pmatrix} = 0$$

Similar conclusion for \bar{m} or \bar{q} dominant, as long as z < 0 and $\theta > 0$.

Key feature: zero-derivative terms other than $\bar{\omega}$ decay as $\zeta \to \infty$

Nodal-antinodal dichotomy

Anisotropy

$$ds^{2} = \frac{dr^{2}}{U(r)} - U(r) dt^{2} + V(r) dx^{2} + W(r) dy^{2}$$

 $r \rightarrow 0$: suppose $U \approx r^{\alpha_U}, \, V \approx r^{\alpha_V}, \, W \approx r^{\alpha_W}$

$$\mathrm{d}s^2 \approx \zeta^{\theta/\bar{z}} \left(\frac{-\mathrm{d}t^2 + \mathrm{d}\zeta^2}{\zeta^2} + \frac{\mathrm{d}x^2}{\zeta^{2/z_x}} + \frac{\mathrm{d}y^2}{\zeta^{2/z_y}} \right), \qquad \zeta = r^{1-\alpha_U}$$

$$z_x = \frac{2(\alpha_U - 1)}{\alpha_U + \alpha_V - 2} \qquad \qquad z_y = \frac{2(\alpha_U - 1)}{\alpha_U + \alpha_W - 2}$$
$$\bar{z} = \left(\frac{1}{z_x} + \frac{1}{z_y}\right)^{-1} \qquad \qquad \theta = \frac{4(\alpha_U - 2)}{2\alpha_U + \alpha_V + \alpha_W - 4}$$

Anisotropy

$$ds^{2} = \frac{dr^{2}}{U(r)} - U(r) dt^{2} + V(r) dx^{2} + W(r) dy^{2}$$

 $r \to 0$: suppose $U \approx r^{\alpha_U}$, $V \approx r^{\alpha_V}$, $W \approx r^{\alpha_W}$

$$\mathrm{d}s^2 \approx \zeta^{\theta/\bar{z}} \left(\frac{-\mathrm{d}t^2 + \mathrm{d}\zeta^2}{\zeta^2} + \frac{\mathrm{d}x^2}{\zeta^{2/z_x}} + \frac{\mathrm{d}y^2}{\zeta^{2/z_y}} \right), \qquad \zeta = r^{1-\alpha_U}$$

Anisotropic Lifshitz scaling:

$$(t,\zeta) \to \lambda(t,\zeta), \qquad x \to \lambda^{1/z_x} x, \qquad y \to \lambda^{1/z_y} y$$

Anisotropy

$$ds^{2} = \frac{dr^{2}}{U(r)} - U(r) dt^{2} + V(r) dx^{2} + W(r) dy^{2}$$

 $r \rightarrow 0$: suppose $U \approx r^{\alpha_U} \text{, } V \approx r^{\alpha_V} \text{, } W \approx r^{\alpha_W}$

$$\mathrm{d}s^2 \approx \zeta^{\theta/\bar{z}} \left(\frac{-\mathrm{d}t^2 + \mathrm{d}\zeta^2}{\zeta^2} + \frac{\mathrm{d}x^2}{\zeta^{2/z_x}} + \frac{\mathrm{d}y^2}{\zeta^{2/z_y}} \right), \qquad \zeta = r^{1-\alpha_U}$$

Hyperscaling violation:

$$S \propto T^{(2-\theta)/\bar{z}}, \qquad \bar{z} = \left(\frac{1}{z_x} + \frac{1}{z_y}\right)^{-1}$$

Fermions in anisotropic backgrounds

Momentum in x direction

$$\left[\zeta\partial_{\zeta} + \bar{m}\zeta^{\theta/2\bar{z}}\sigma^3 - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\frac{\theta}{\bar{z}}-\nu_A}\right)(i\sigma^2) + \bar{k}_x\zeta^{1/z_x}\sigma^1\right] \begin{pmatrix}\chi(\zeta)\\\psi(\zeta)\end{pmatrix} = 0$$

Momentum in *y* direction

$$\left[\zeta\partial_{\zeta} + \bar{m}\zeta^{\theta/2\bar{z}}\sigma^{3} - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\frac{\theta}{\bar{z}}-\nu_{A}}\right)(i\sigma^{2}) + \bar{k}_{y}\zeta^{1/z_{y}}\sigma^{1}\right] \begin{pmatrix}\chi(\zeta)\\\psi(\zeta)\end{pmatrix} = 0$$

Nodal-antinodal dichotomy:

$$heta/ar{z} < 0, \quad z_x < 0, \quad z_y > 0$$

Anisotropic Q-lattices

$$S = \frac{1}{16\pi G_{\rm N}} \int d^4x \sqrt{-g} \left[R - \frac{1}{4} \cosh^{1/3}(3\phi) F^2 + 6 \cosh\phi - \frac{3}{2} (\partial\phi)^2 - 6 \sinh^2\phi (\partial\eta)^2 \right]$$

$$F = dA$$

Have fixed parameters in model to some nice values

Admits anisotropic, extremal black brane solutions

$$ds^{2} = \frac{dr^{2}}{U(r)} - U(r) dt^{2} + V(r) dx^{2} + W(r) dy^{2}$$
$$A = A_{t}(r) dt$$
$$\phi = \phi(r)$$
$$\eta = px$$

Black brane backgrounds

UV $r \to \infty$

$$U(r) \approx V(r) \approx W(r) \approx r^2$$
 $A_t \approx \mu$ $\phi(r) \approx \lambda r^{-1}$

Will set $p = 0.1\mu$ and $\lambda = \mu$

Black brane backgrounds

UV $r \to \infty$

$$U(r) \approx V(r) \approx W(r) \approx r^2$$
 $A_t \approx \mu$ $\phi(r) \approx \lambda r^{-1}$

Will set $p = 0.1\mu$ and $\lambda = \mu$ IR $r \to 0$

$$U(r) \approx U_0 r^{7/4}, \qquad V(r) \approx V_0 r^{-1/4}, \qquad W(r) \approx W_0 r^{3/4},$$

 $A_t(r) \approx A_0 r, \qquad e^{\phi(r)} \approx e^{\phi_0} r^{-1/4}$

Black brane backgrounds

UV $r \to \infty$

$$U(r) \approx V(r) \approx W(r) \approx r^2$$
 $A_t \approx \mu$ $\phi(r) \approx \lambda r^{-1}$

Will set $p = 0.1\mu$ and $\lambda = \mu$ $\mathsf{IR} r \to 0$ $U(r) \approx U_0 r^{7/4}, \qquad V(r) \approx V_0 r^{-1/4}, \qquad W(r) \approx W_0 r^{3/4},$ $A_t(r) \approx A_0 r, \qquad e^{\phi(r)} \approx e^{\phi_0} r^{-1/4}$ IR scaling: $\theta/\bar{z} = -1/3$, $z_n = -3$, $z_n = 3$ $\theta/\bar{z} < 0, \quad z_x < 0, \quad z_y > 0$

Fermion spectral functions, m = 0, q = 1

Fermion spectral functions, m = 0, q = 1

Fermion spectral functions, m = 1/4, q = 1

Fermion spectral functions, m = 1/4, q = 1

Discussion

Summary

Minimally coupled fermion, IR scaling with $\theta/\overline{z} < 0$, $z_x < 0$, $z_y > 0$:

- \Rightarrow fermion continuum in only one direction
- \Rightarrow nodal-antinodal dichotomy

Independent of precise method of generating anisotropic scaling

Robustness

$$\left[\zeta\partial_{\zeta} + \bar{m}\zeta^{\theta/2\bar{z}}\sigma^{3} - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\frac{\theta}{\bar{z}}-\nu_{A}}\right)(i\sigma^{2}) + \bar{k}_{i}\zeta^{1/z_{i}}\sigma^{1}\right] \begin{pmatrix}\chi(\zeta)\\\psi(\zeta)\end{pmatrix} = 0$$

Relied on \bar{m} , \bar{q} , \bar{k}_x terms decaying as $\zeta \to \infty$

What about non-minimal interactions?

Dipole interaction [Edalati, Leigh, Phillips, 1010.3238]

$$S_{\text{bulk}} = i \int \mathrm{d}^4 x \sqrt{-G} \,\bar{\Xi} \left(D - m - ig F \right) \Xi + \text{(boundary terms)}$$

- Adds term to EOM $\sim \zeta^{-\nu_A}$
- Decays as $\zeta \to \infty$ since $\nu_A \ge 0$ 🗸

Robustness

$$\left[\zeta\partial_{\zeta} + \bar{m}\zeta^{\theta/2\bar{z}}\sigma^{3} - \left(\bar{\omega}\zeta + \bar{q}\zeta^{\frac{\theta}{\bar{z}}-\nu_{A}}\right)(i\sigma^{2}) + \bar{k}_{i}\zeta^{1/z_{i}}\sigma^{1}\right] \begin{pmatrix}\chi(\zeta)\\\psi(\zeta)\end{pmatrix} = 0$$

Relied on $\bar{m}, \bar{q}, \bar{k}_x$ terms decaying as $\zeta \to \infty$

What about non-minimal interactions?

Yukawa interaction with scalar Φ

$$S_{
m bulk} = i \int {
m d}^4 x \, \sqrt{-G} \, ar{\Xi} \left(
ot\!\!/ - m - g \Phi
ight) \Xi + ext{(boundary terms)}$$

- Depends on IR scaling of Φ
- Q-lattice: $\Phi \propto \phi^n \checkmark$
- Q-lattice: $\Phi \propto e^{n\phi} \times \text{ for } n \geq 1/2$

Outlook

Classify effects of non-minimal interactions?

Four-fold rotational symmetry?

- Lattice?
- Spin-two field?

Bosonic spectral functions?

- Minimally coupled scalar: $ho_{
 m scalar}\propto\omega$ when $ho_{
 m fermion}\propto\omega^0$
- · Dichotomy in density-density two-point function?

Non-holographic model?

Outlook

Classify effects of non-minimal interactions?

Four-fold rotational symmetry?

- Lattice?
- Spin-two field?

Bosonic spectral functions?

- Minimally coupled scalar: $\rho_{\rm scalar}\propto\omega$ when $\rho_{\rm fermion}\propto\omega^0$
- Dichotomy in density–density two-point function?

Non-holographic model?

Thank you!

Backup slides

$$\left[\zeta\partial_{\zeta} - i\bar{\omega}\zeta\sigma^2 + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix} \chi(\zeta)\\ \psi(\zeta) \end{pmatrix} = 0$$

- Mid-IR: neglect $\bar{\omega}$
- Deep-IR: neglect \bar{k}

Both terms same size at $\zeta = \zeta_1 = (\bar{\omega}/\bar{k})^{z/(z-1)}$?

$$\left[\zeta\partial_{\zeta} - i\bar{\omega}\zeta\sigma^2 + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix} \chi(\zeta)\\ \psi(\zeta) \end{pmatrix} = 0$$

- Mid-IR: neglect $\bar{\omega}$
- Deep-IR: neglect \bar{k}

Both terms same size at $\zeta = \zeta_1 = (\bar{\omega}/\bar{k})^{z/(z-1)}$?

Deep-IR: Let $s = \zeta/\zeta_1$, $\kappa = \bar{k}^{z/(z-1)} \bar{\omega}^{1/(1-z)} \ll 1$

$$\psi(s) = e^{i\kappa s} + \delta\psi(s), \qquad \chi(\zeta) = -ie^{i\kappa s} + \delta\chi(s)$$

Sub into EOM:

$$\left[s\partial_s - i\kappa s\sigma^2 + \kappa s^{1/z}\sigma^1\right] \begin{pmatrix}\delta\chi(s)\\\delta\psi(s)\end{pmatrix} = \begin{pmatrix}-1\\i\end{pmatrix}\kappa s^{1/z}\exp(i\kappa s)$$

$$\left[\zeta\partial_{\zeta} - i\bar{\omega}\zeta\sigma^2 + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix} \chi(\zeta)\\ \psi(\zeta) \end{pmatrix} = 0$$

- Mid-IR: neglect $\bar{\omega}$
- Deep-IR: neglect \bar{k}

Both terms same size at $\zeta = \zeta_1 = (\bar{\omega}/\bar{k})^{z/(z-1)}$?

Deep-IR: Let $s = \zeta/\zeta_1$, $\kappa = \bar{k}^{z/(z-1)} \bar{\omega}^{1/(1-z)} \ll 1$

$$s\partial_s \begin{pmatrix} \delta\chi(s)\\ \delta\psi(s) \end{pmatrix} \approx \begin{pmatrix} -1\\ i \end{pmatrix} \kappa s^{1/z} \exp(i\kappa s)$$

Solution:

$$\delta\chi(s) \approx -i\delta\psi(s) \approx \kappa(-i\kappa)^{1/z} \Gamma\left(\frac{1}{z}, -i\kappa s\right)$$

$$\left[\zeta\partial_{\zeta} - i\bar{\omega}\zeta\sigma^2 + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix} \chi(\zeta)\\ \psi(\zeta) \end{pmatrix} = 0$$

- Mid-IR: neglect $\bar{\omega}$
- Deep-IR: neglect \bar{k}

Both terms same size at $\zeta = \zeta_1 = (\bar{\omega}/\bar{k})^{z/(z-1)}$?

Deep-IR: Let $s = \zeta/\zeta_1$, $\kappa = \bar{k}^{z/(z-1)} \bar{\omega}^{1/(1-z)} \ll 1$

$$s\partial_s \begin{pmatrix} \delta\chi(s)\\ \delta\psi(s) \end{pmatrix} \approx \begin{pmatrix} -1\\ i \end{pmatrix} \kappa s^{1/z} \exp(i\kappa s)$$

Solution:

$$\delta\chi(s) \approx -i\delta\psi(s) \approx z\kappa s^{1/z} + \mathcal{O}(\kappa^{1+1/|z|})$$

Vanishes when $\kappa \to 0$

$$\left[\zeta\partial_{\zeta} - i\bar{\omega}\zeta\sigma^2 + \bar{k}\zeta^{1/z}\sigma^1\right] \begin{pmatrix} \chi(\zeta)\\ \psi(\zeta) \end{pmatrix} = 0$$

- Mid-IR: neglect $\bar{\omega}$
- Deep-IR: neglect \bar{k}

Both terms same size at $\zeta = \zeta_1 = (\bar{\omega}/\bar{k})^{z/(z-1)}$?

Similar in mid-IR

