

Wonderland Physics

QFT in wonderland would not be possible without my wonderful group:

Max Weiner, Scott Lawrence, Seth Grable \& Ryan Weller

Motivation

QCD: asymptotic freedom; confinement; low energy bound states

Properties/Tools

Properties/Tools

- Asymptotic Freedom: Perturbation Theory

Properties/Tools

- Asymptotic Freedom: Perturbation Theory
- Confinement: N/A

Properties/Tools

- Asymptotic Freedom: Perturbation Theory
- Confinement: N/A
- Low energy bound states: Numerical (Monte Carlo)

Problems with Tools

- confinement and bound states in regime where coupling is LARGE. Cannot use perturbation theory

Problems with Tools

- confinement and bound states in regime where coupling is LARGE. Cannot use perturbation theory
- Using $N \gg 1$ for $S U(N)$ could work, but we can't solve large N SU(N) either

Problems with Tools

- confinement and bound states in regime where coupling is LARGE. Cannot use perturbation theory
- Using $N \gg 1$ for $S U(N)$ could work, but we can't solve large N SU(N) either
- Holographic models capture some properties, but hard to know what results are model-independent

Plan for this Talk

- Properties of PT-symmetric field theories
- Solving large N scalar theories
- A wonderful solvable theory with asymptotic freedom
- QFT in Wonderland: what's next?

$\mathcal{P T}$-symmetric Field Theories

$\mathcal{P T}$-symmetric Field Theories

FALL 2020

$\mathcal{P} T$-symmetric Quantum Mechanics

- "Normal" Hamiltonian

$$
\mathcal{H}=\frac{p^{2}}{2 m}+\lambda x^{4} .
$$

$\mathcal{P} T$-symmetric Quantum Mechanics
. "Normal" Hamiltonian

$$
\mathcal{H}=\frac{p^{2}}{2 m}+\lambda x^{4} .
$$

- Hermitian; potential bounded from below; real and positive eigenspectrum $E_{n}>0$
$\mathcal{P} T$-symmetric Quantum Mechanics
. "Normal" Hamiltonian

$$
\mathcal{H}=\frac{p^{2}}{2 m}+\lambda x^{4} .
$$

- Hermitian; potential bounded from below; real and positive eigenspectrum $E_{n}>0$
- $\mathcal{P T}$-symmetric Hamiltonian

$$
\mathcal{H}=\frac{p^{2}}{2 m}-g x^{4}=\frac{p^{2}}{2 m}+(i g)^{2} x^{2} .
$$

$\mathcal{P} T$-symmetric Quantum Mechanics
. "Normal" Hamiltonian

$$
\mathcal{H}=\frac{p^{2}}{2 m}+\lambda x^{4} .
$$

- Hermitian; potential bounded from below; real and positive eigenspectrum $E_{n}>0$
- PT-symmetric Hamiltonian

$$
\mathcal{H}=\frac{p^{2}}{2 m}-g x^{4}=\frac{p^{2}}{2 m}+(i g)^{2} x^{2} .
$$

- Less symmetry than Hermitian (only \mathcal{P}, T); potential unbounded;
$\mathcal{P} T$-symmetric Quantum Mechanics
. "Normal" Hamiltonian

$$
\mathcal{H}=\frac{p^{2}}{2 m}+\lambda x^{4} .
$$

- Hermitian; potential bounded from below; real and positive eigenspectrum $E_{n}>0$
- PT-symmetric Hamiltonian

$$
\mathcal{H}=\frac{p^{2}}{2 m}-g x^{4}=\frac{p^{2}}{2 m}+(i g)^{2} x^{2}
$$

- Less symmetry than Hermitian (only \mathcal{P}, T); potential unbounded; real and positive eigenspectrum

$\mathcal{P} T$-symmetric Field Theory (1/2)

"Normal" action

$$
S=\int d^{4} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\lambda \phi^{4}\right] .
$$

Bounded action, renormalizable, positive β-function (trivial for $\lambda>0$)
$\mathcal{P} T$-symmetric Field Theory (1/2)
. "Normal" action

$$
S=\int d^{4} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\lambda \phi^{4}\right]
$$

Bounded action, renormalizable, positive β-function (trivial for $\lambda>0$)

- PT-symmetric action

$$
S=\int d^{4} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-g \phi^{4}\right]
$$

Unbounded action, renormalizable, negative β-function

$\mathcal{P} T$-symmetric Field Theory (2/2): ABS conjecture

```
\mathcal{P}}\mathrm{ -symmetric -g每 theory
Wen-Yuan Ai (King's Coll. London), Carl M. Bender (Washington U., St. Louis), Sarben Sarkar (King's Coll. London) (Sep 16, 2022)
Published in: Phys.Rev.D 106 (2022) 12, 125016 • e-Print: 2209.07897 [hep-th]
& pdf & DOI E cite E Claim

\section*{\(\mathcal{P} T\)-symmetric Field Theory (2/2): ABS conjecture}
```

\mathcal{P}}\mathrm{ -symmetric -g}\mp@subsup{\varphi}{}{4}\mathrm{ theory
Wen-Yuan Ai (King's Coll. London), Carl M. Bender (Washington U., St. Louis), Sarben Sarkar (King's Coll. London) (Sep 16, 2022)
Published in: Phys.Rev.D 106 (2022) 12, 125016 • e-Print: 2209.07897 [hep-th]
B pdf \& DOI E cite E claim

ABS conjecture:

$$
\ln Z_{\mathcal{P} T}(g)=\operatorname{Re} \ln Z(\lambda=-g) .
$$

$\mathcal{P} T$-symmetric Field Theory (2/2): ABS conjecture

```
\mathcal{P}}\mathrm{ -symmetric -g}\mp@subsup{\varphi}{}{4}\mathrm{ theory
```

Wen-Yuan Ai (King's Coll. London), Carl M. Bender (Washington U., St. Louis), Sarben Sarkar (King's Coll. London) (Sep 16, 2022) Published in: Phys.Rev.D 106 (2022) 12, 125016 • e-Print: 2209.07897 [hep-th]
因 pdf © DOI 区 cite E claim

ABS conjecture:

$$
\ln Z_{\mathcal{P} T}(g)=\operatorname{Re} \ln Z(\lambda=-g) .
$$

- Fantastically simple way to get results for $\lambda<0 \ldots$
$\mathcal{P} T$-symmetric Field Theory (2/2): ABS conjecture

```
P\mathcal{T}}\mathrm{ -symmetric -g㤟 theory
```

Wen-Yuan Ai (King's Coll. London), Carl M. Bender (Washington U., St. Louis), Sarben Sarkar (King's Coll. London) (Sep 16, 2022)
Published in: Phys.Rev.D 106 (2022) 12, 125016 • e-Print: 2209.07897 [hep-th]
B pdf © DOI E cite Eo claim

ABS conjecture:

$$
\ln Z_{\mathcal{P} T}(g)=\operatorname{Re} \ln Z(\lambda=-g)
$$

- Fantastically simple way to get results for $\lambda<0 \ldots$
- ...but probably wrong for ϕ^{4} theory!
$\mathcal{P} T$-symmetric Field Theory (2/2): ABS conjecture

```
\mathcal{P}}\mathrm{ -symmetric -g}\mp@subsup{\varphi}{}{4}\mathrm{ theory
```

Wen-Yuan Ai (King's Coll. London), Carl M. Bender (Washington U., St. Louis), Sarben Sarkar (King's Coll. London) (Sep 16, 2022)
Published in: Phys.Rev.D 106 (2022) 12, 125016 • e-Print: 2209.07897 [hep-th]
因 pdf e DOI E cite E claim

ABS conjecture:

$$
\ln Z_{\mathcal{P} T}(g)=\operatorname{Re} \ln Z(\lambda=-g)
$$

- Fantastically simple way to get results for $\lambda<0 \ldots$
- ...but probably wrong for ϕ^{4} theory!
- However: can be proven for large N scalar field theory!

Lesson\# 1: Hermitian and bounded action is sufficient, but not necessary for consistent quantum field theory;

Lesson\# 1: Hermitian and bounded action is sufficient, but not necessary for consistent quantum field theory; Theories with unbounded potential (negative coupling) are physically acceptable if certain minimum conditions are met

Lesson\# 1: Hermitian and bounded action is sufficient, but not necessary for consistent quantum field theory; Theories with unbounded potential (negative coupling) are physically acceptable if certain minimum conditions are met

Consequence: Do not dismiss theories just because the potential seems unbounded!

Solving large N scalar theories

Solving large N scalar theories

| https://www.icts.res.in/discussion-meeting/exneqqcd2020/talks

(A) ABOUT RESEARCH	PROGRAMS OUTREACH	PEOPLE	ACADEMIC	VIDEOS	SUPPORT	RESOURCES	CAREERS		y
	India)								
18:00 to 19.00	Konrad Tywoniuk (University of Bergen, Norway)	Cone Size Dependence of Jets in Heavy-ion Collisions						(1)	
Friday, 09 October 2020									
time	SPEAKER	title							OURCES
14:00 to 15:00	Najmul Haque (NISER, India)	Gribov Quantization and its Effects on Deconfined Nuclear Matter						因	
15:00 to 16:00	Ayan Mukhopadhyay (IIT Madras, India)	Non-perturbative Models of QGP						因	
17:00 to 18:00	Paul Romatschke (University of Colorado Boulder, US)	From Weak to Strong Coupling Without Holography						(\square	
18:00 to 19:00	Bin Wu (CERN, Switzerland)	Jet Ouenching and Early-time Dynamics						(1)	

Solving large N scalar theories (1/2)

- Euclidean field theory action

$$
S_{E}=\int d^{4} x\left[\frac{1}{2} \partial_{\mu} \vec{\phi} \partial_{\mu} \vec{\phi}+\frac{\lambda}{N}\left(\vec{\phi}^{2}\right)^{2}\right]
$$

where $\vec{\phi}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right)$

Solving large N scalar theories (1/2)

- Euclidean field theory action

$$
S_{E}=\int d^{4} x\left[\frac{1}{2} \partial_{\mu} \vec{\phi} \partial_{\mu} \vec{\phi}+\frac{\lambda}{N}\left(\vec{\phi}^{2}\right)^{2}\right]
$$

where $\vec{\phi}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right)$

- Exact transform (Hubbart-Stratonovic)

$$
e^{-\int_{x} \frac{\lambda}{N}\left(\vec{\phi}^{2}\right)^{2}}=\int \mathcal{D} \zeta e^{-\int_{x}\left[i \zeta \vec{\phi}^{2}+\frac{N \zeta^{2}}{4 \lambda}\right]}
$$

leads to

$$
Z=\int \mathcal{D} \zeta e^{-\frac{N}{2} \operatorname{tr} \ln [-\square+2 i \zeta]-\frac{N}{4 \lambda} \int_{x} \zeta^{2}}
$$

Solving large N scalar theories (2/2)

- At large N, can solve this path integral using method of steepest descent; saddle is Fourier-zero mode of ζ; get

$$
\ln Z=N \beta V p(m)+\mathcal{O}\left(N^{0}\right), \quad p(m)=p_{\text {free }}(m)+\frac{m^{4}}{16 \lambda}
$$

and m is given by $p^{\prime}(m)=0$.

Solving large N scalar theories (2/2)

- At large N, can solve this path integral using method of steepest descent; saddle is Fourier-zero mode of ζ; get

$$
\ln Z=N \beta V p(m)+\mathcal{O}\left(N^{0}\right), \quad p(m)=p_{\text {free }}(m)+\frac{m^{4}}{16 \lambda}
$$

and m is given by $p^{\prime}(m)=0$.

- Very fruitful result for massless fields in $d=3$ (no renormalization)

Solving large N scalar theories (2/2)

- At large N, can solve this path integral using method of steepest descent; saddle is Fourier-zero mode of ζ; get

$$
\ln Z=N \beta \vee p(m)+\mathcal{O}\left(N^{0}\right), \quad p(m)=p_{\text {free }}(m)+\frac{m^{4}}{16 \lambda}
$$

and m is given by $p^{\prime}(m)=0$.

- Very fruitful result for massless fields in $d=3$ (no renormalization)
- For years, I was stuck on $d=4$: positive β function, Landau pole; the resolution of this puzzle is what's new in this talk

Results for large \mathbf{N} scalar theories in 3d

3d: massless interacting theory exists (can be put on the lattice), lot's of results about IR interacting CFT; exact non-perturbative thermodynamics and transport, see (click on):

Problems for large N scalar theories in 4d

- In 4d, large N pressure is (in dim-reg)

$$
p(m)=\frac{m^{4}}{16 \lambda}+\frac{m^{4}}{64 \pi^{2}}\left(\frac{1}{\varepsilon}+\ln \frac{\bar{\mu}^{2} e^{\frac{3}{2}}}{m^{2}}\right)+\frac{m^{2} T^{2}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}(n \beta m)}{n^{2}} .
$$

Problems for large N scalar theories in 4d

- In 4d, large N pressure is (in dim-reg)

$$
p(m)=\frac{m^{4}}{16 \lambda}+\frac{m^{4}}{64 \pi^{2}}\left(\frac{1}{\varepsilon}+\ln \frac{\bar{\mu}^{2} e^{\frac{3}{2}}}{m^{2}}\right)+\frac{m^{2} T^{2}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}(n \beta m)}{n^{2}} .
$$

- Can be non-perturbatively renormalized:

$$
\frac{1}{\lambda}=\frac{1}{\lambda_{R}(\bar{\mu})}-\frac{1}{4 \pi^{2} \varepsilon} .
$$

Problems for large N scalar theories in 4d

- In 4d, large N pressure is (in dim-reg)

$$
p(m)=\frac{m^{4}}{16 \lambda}+\frac{m^{4}}{64 \pi^{2}}\left(\frac{1}{\varepsilon}+\ln \frac{\bar{\mu}^{2} e^{\frac{3}{2}}}{m^{2}}\right)+\frac{m^{2} T^{2}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}(n \beta m)}{n^{2}} .
$$

- Can be non-perturbatively renormalized:

$$
\frac{1}{\lambda}=\frac{1}{\lambda_{R}(\bar{\mu})}-\frac{1}{4 \pi^{2} \varepsilon} .
$$

- Problem: β function is positive, coupling runs as

$$
\lambda_{R}(\bar{\mu})=\frac{4 \pi^{2}}{\ln \frac{\Lambda_{L P}^{2}}{\bar{\mu}^{2}}} .
$$

Problems for large N scalar theories in 4d

Running coupling for $\mathrm{O}(\mathrm{N})$ model at large N

Problems for large N scalar theories in 4d

Large N exact; positive β-function; Landau pole

Problems for large N scalar theories in 4d

Above the Landau pole: negative $\lambda_{R}(\bar{\mu})$; potential unbounded

A wonderful solvable theory with asymptotic freedom

A wonderful solvable theory with asymptotic freedom

- OK, so the coupling diverges at $\bar{\mu}=\Lambda_{L P}$ and becomes negative for $\bar{\mu}>\Lambda_{L P}$

A wonderful solvable theory with asymptotic freedom

- OK, so the coupling diverges at $\bar{\mu}=\Lambda_{L P}$ and becomes negative for $\bar{\mu}>\Lambda_{L P}$
- Traditionally, people say: this theory is sick for a continuum interacting theory; it can only be useful as an effective theory with a cutoff

A wonderful solvable theory with asymptotic freedom

- OK, so the coupling diverges at $\bar{\mu}=\Lambda_{L P}$ and becomes negative for $\bar{\mu}>\Lambda_{L P}$
- Traditionally, people say:
this theory is sick for a continuum interacting theory; it can only be useful as an effective theory with a cutoff
- But we know from $\mathcal{P} T$-symmetric field theory that negative coupling can still give physically acceptable theories

A wonderful solvable theory with asymptotic freedom

- OK, so the coupling diverges at $\bar{\mu}=\Lambda_{L P}$ and becomes negative for $\bar{\mu}>\Lambda_{L P}$
- Traditionally, people say:
this theory is sick for a continuum interacting theory; it can only be useful as an effective theory with a cutoff
- But we know from $\mathcal{P} T$-symmetric field theory that negative coupling can still give physically acceptable theories
- So let's check what happens to observables

Reminder: $\alpha_{s}(Q)$ is not an observable; it is inferred from matching experiment to theory (here: pQCD)

A wonderful solvable theory with asymptotic freedom

- Renormalized pressure of $\mathrm{O}(\mathrm{N})$ model in 3+1d:

$$
p(m)=\frac{m^{4}}{16 \lambda_{R}(\bar{\mu})}+\frac{m^{4}}{64 \pi^{2}} \ln \frac{\bar{\mu}^{2} e^{\frac{3}{2}}}{m^{2}}+\frac{m^{2} T^{2}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}(n \beta m)}{n^{2}} .
$$

A wonderful solvable theory with asymptotic freedom

- Renormalized pressure of $\mathrm{O}(\mathrm{N})$ model in 3+1d:

$$
p(m)=\frac{m^{4}}{16 \lambda_{R}(\bar{\mu})}+\frac{m^{4}}{64 \pi^{2}} \ln \frac{\bar{\mu}^{2} e^{\frac{3}{2}}}{m^{2}}+\frac{m^{2} T^{2}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}(n \beta m)}{n^{2}} .
$$

- or when using the exact running coupling $\lambda_{R}(\bar{\mu})$

$$
p(m)=\frac{m^{4}}{64 \pi^{2}} \ln \frac{\Lambda_{L P}^{2} e^{\frac{3}{2}}}{m^{2}}+\frac{m^{2} T^{2}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}(n \beta m)}{n^{2}} .
$$

A wonderful solvable theory with asymptotic freedom

- Renormalized pressure of $\mathrm{O}(\mathrm{N})$ model in 3+1d:

$$
p(m)=\frac{m^{4}}{16 \lambda_{R}(\bar{\mu})}+\frac{m^{4}}{64 \pi^{2}} \ln \frac{\bar{\mu}^{2} e^{\frac{3}{2}}}{m^{2}}+\frac{m^{2} T^{2}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}(n \beta m)}{n^{2}} .
$$

- or when using the exact running coupling $\lambda_{R}(\bar{\mu})$

$$
p(m)=\frac{m^{4}}{64 \pi^{2}} \ln \frac{\Lambda_{L P}^{2} e^{\frac{3}{2}}}{m^{2}}+\frac{m^{2} T^{2}}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}(n \beta m)}{n^{2}} .
$$

- Note: no dependence on fictitious scale $\bar{\mu}$ (good observable)

A wonderful solvable theory with asymptotic freedom

- Actual pressure is $p(m)$, with m the solution to saddle point condition

$$
0=\frac{d p(m)}{d m^{2}}=\frac{m^{2}}{32 \pi^{2}} \ln \frac{\Lambda_{L P}^{2} e^{1}}{m^{2}}-\frac{m T}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{1}(n \beta m)}{n} .
$$

A wonderful solvable theory with asymptotic freedom

- Actual pressure is $p(m)$, with m the solution to saddle point condition

$$
0=\frac{d p(m)}{d m^{2}}=\frac{m^{2}}{32 \pi^{2}} \ln \frac{\Lambda_{L P}^{2} e^{1}}{m^{2}}-\frac{m T}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{1}(n \beta m)}{n} .
$$

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \Lambda_{L P}$

A wonderful solvable theory with asymptotic freedom

- Actual pressure is $p(m)$, with m the solution to saddle point condition

$$
0=\frac{d p(m)}{d m^{2}}=\frac{m^{2}}{32 \pi^{2}} \ln \frac{\Lambda_{L P}^{2} e^{1}}{m^{2}}-\frac{m T}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{1}(n \beta m)}{n} .
$$

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \Lambda_{L P}$
- $m_{1}=0$ is the perturbative vacuum

A wonderful solvable theory with asymptotic freedom

- Actual pressure is $p(m)$, with m the solution to saddle point condition

$$
0=\frac{d p(m)}{d m^{2}}=\frac{m^{2}}{32 \pi^{2}} \ln \frac{\Lambda_{L p}^{2} e^{1}}{m^{2}}-\frac{m T}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{1}(n \beta m)}{n} .
$$

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \Lambda_{L P}$
- $m_{1}=0$ is the perturbative vacuum
- $m_{2}=\sqrt{e} \Lambda_{L P}$ corresponds to a spontaneously generated VEV

A wonderful solvable theory with asymptotic freedom

- Actual pressure is $p(m)$, with m the solution to saddle point condition

$$
0=\frac{d p(m)}{d m^{2}}=\frac{m^{2}}{32 \pi^{2}} \ln \frac{\Lambda_{L P}^{2} e^{1}}{m^{2}}-\frac{m T}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{1}(n \beta m)}{n} .
$$

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \Lambda_{L P}$
- $m_{1}=0$ is the perturbative vacuum
- $m_{2}=\sqrt{e} \Lambda_{L P}$ corresponds to a spontaneously generated VEV
- Traditionally, people select $m_{1}=0$ on the basis that m_{2} is too close to the cutoff

A wonderful solvable theory with asymptotic freedom

- Actual pressure is $p(m)$, with m the solution to saddle point condition

$$
0=\frac{d p(m)}{d m^{2}}=\frac{m^{2}}{32 \pi^{2}} \ln \frac{\Lambda_{L P}^{2} e^{1}}{m^{2}}-\frac{m T}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{K_{1}(n \beta m)}{n} .
$$

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \Lambda_{L P}$
- $m_{1}=0$ is the perturbative vacuum
- $m_{2}=\sqrt{e} \Lambda_{L P}$ corresponds to a spontaneously generated VEV
- Traditionally, people select $m_{1}=0$ on the basis that m_{2} is too close to the cutoff
- I beg to differ: you can't pick and choose! Physics has a preferred solution:

$$
p\left(m_{1}\right)=0, \quad p\left(m_{2}\right)=\frac{\Lambda_{L}^{4} e^{2}}{128 \pi^{2}} .
$$

Lesson \#2: The perturbative vacuum is unstable; the true vacuum is non-perturbative and has smaller free energy than the perturbative vacuum.

Lesson \#2: The perturbative vacuum is unstable; the true vacuum is non-perturbative and has smaller free energy than the perturbative vacuum.

Consequence: much of the literature on $4 \mathrm{~d} \mathrm{O}(\mathrm{N})$ model is wrong or at least incomplete (including some of my own papers!)

A wonderful solvable theory with asymptotic freedom

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \Lambda_{L P}$

A wonderful solvable theory with asymptotic freedom

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \Lambda_{L P}$
- Track solutions numerically away from deep infrared $T>0$

A wonderful solvable theory with asymptotic freedom

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \Lambda_{L P}$
- Track solutions numerically away from deep infrared $T>0$
- Solution with lower free energy is physically preferred

A wonderful solvable theory with asymptotic freedom

- Deep infrared $(T \simeq 0)$: two solutions: $m_{1}=0, m_{2}=\sqrt{e} \wedge_{L P}$
- Track solutions numerically away from deep infrared $T>0$
- Solution with lower free energy is physically preferred
- Leads to result for physical observable pressure $p=p\left(m_{2}(T)\right)$

Pressure per component for $\mathrm{O}(\mathrm{N})$ model at large N

A wonderful solvable theory with asymptotic freedom

- For high energy $T \gg \sqrt{e} \Lambda_{L P}$, all solutions m as well as $p(m)$ are complex

A wonderful solvable theory with asymptotic freedom

- For high energy $T \gg \sqrt{e} \Lambda_{L P}$, all solutions m as well as $p(m)$ are complex
- This is the regime where the running coupling has flipped sign: $\lambda_{R}<0$

A wonderful solvable theory with asymptotic freedom

- For high energy $T \gg \sqrt{e} \Lambda_{L P}$, all solutions m as well as $p(m)$ are complex
- This is the regime where the running coupling has flipped sign: $\lambda_{R}<0$
- Traditionally, people throw up their hands and say: the theory is sick!

A wonderful solvable theory with asymptotic freedom

- For high energy $T \gg \sqrt{e} \Lambda_{L P}$, all solutions m as well as $p(m)$ are complex
- This is the regime where the running coupling has flipped sign: $\lambda_{R}<0$
- Traditionally, people throw up their hands and say: the theory is sick!
- But we do have the ABS conjecture:

$$
p=\operatorname{Re}[p(m)]
$$

A wonderful solvable theory with asymptotic freedom

- For high energy $T \gg \sqrt{e} \Lambda_{L P}$, all solutions m as well as $p(m)$ are complex
- This is the regime where the running coupling has flipped sign: $\lambda_{R}<0$
- Traditionally, people throw up their hands and say: the theory is sick!
- But we do have the ABS conjecture:

$$
p=\operatorname{Re}[p(m)]
$$

- Let's see what we get

A wonderful solvable theory with asymptotic freedom

Pressure per component in $\mathrm{O}(\mathrm{N})$ model at large N

A wonderful solvable theory with asymptotic freedom

A wonderful solvable theory with asymptotic freedom

- Running coupling in $4 \mathrm{~d} \mathrm{O}(\mathrm{N})$ model has Landau pole at $\bar{\mu}=\Lambda_{L P}$ and negative values for $\bar{\mu}>\Lambda_{L P}$

A wonderful solvable theory with asymptotic freedom

- Running coupling in $4 \mathrm{~d} O(\mathrm{~N})$ model has Landau pole at $\bar{\mu}=\Lambda_{L P}$ and negative values for $\bar{\mu}>\Lambda_{L P}$
- Observables in 4d O(N) model are well-defined, positive-definite and show no sign of unphysical behavior

A wonderful solvable theory with asymptotic freedom

- Running coupling in $4 \mathrm{~d} O(\mathrm{~N})$ model has Landau pole at $\bar{\mu}=\Lambda_{L P}$ and negative values for $\bar{\mu}>\Lambda_{L P}$
- Observables in 4d O(N) model are well-defined, positive-definite and show no sign of unphysical behavior
- 4d $\mathrm{O}(\mathrm{N})$ model does exhibit a second order phase transition at $T \simeq \sqrt{e} \Lambda_{L P}$, separating low- and high-temperature phases

A wonderful solvable theory with asymptotic freedom

- In the high temperature phase, $\lambda_{R}<0$

A wonderful solvable theory with asymptotic freedom

- In the high temperature phase, $\lambda_{R}<0$
- One can view this as a particular $\mathcal{P} T$-symmetric theory with $g_{R}=-\lambda_{R}$

A wonderful solvable theory with asymptotic freedom

- In the high temperature phase, $\lambda_{R}<0$
- One can view this as a particular $\mathcal{P} T$-symmetric theory with $g_{R}=-\lambda_{R}$
- In the high temperature phase, the $\mathcal{P} T$-symmetric coupling g_{R} is positive and decreasing

A wonderful solvable theory with asymptotic freedom

- In the high temperature phase, $\lambda_{R}<0$
- One can view this as a particular $\mathcal{P} T$-symmetric theory with $g_{R}=-\lambda_{R}$
- In the high temperature phase, the $\mathcal{P} T$-symmetric coupling g_{R} is positive and decreasing
- The theory is asymptotically free in the UV!

A wonderful solvable theory with asymptotic freedom

Lesson \#3: The running coupling is not an observable, and observables may turn out finite even if the coupling diverges (has a Landau pole)

Lesson \#3: The running coupling is not an observable, and observables may turn out finite even if the coupling diverges (has a Landau pole)

We knew this for a long time already: $\mathcal{N}=4 \mathrm{SYM}$ has well-behaved observables in the limit $\lambda \rightarrow \infty$; why should it be any different for ϕ^{4} theory?

Lesson \#3: The running coupling is not an observable, and observables may turn out finite even if the coupling diverges (has a Landau pole)

We knew this for a long time already: $\mathcal{N}=4$ SYM has well-behaved observables in the limit $\lambda \rightarrow \infty$; why should it be any different for ϕ^{4} theory?

The main difference in scalar theory is that we can "see around" the Landau pole in the regime $\lambda_{R}<0$ using the $\mathcal{P} T$-symmetric ABS conjecture. This is how we find two phases in scalar theory.

A wonderful solvable theory with asymptotic freedom

- Traditionally, people reject theories with a Landau pole on the basis that
all relevant and irrelevant operators turn on near the cut-off, qualitatively changing the results

A wonderful solvable theory with asymptotic freedom

- Traditionally, people reject theories with a Landau pole on the basis that
all relevant and irrelevant operators turn on near the cut-off, qualitatively changing the results
- This can be tested at large N by adding relevant/irrelevant operators such as

$$
m^{2} \vec{\phi}^{2}, \alpha\left(\vec{\phi}^{2}\right)^{3} .
$$

A wonderful solvable theory with asymptotic freedom

- Traditionally, people reject theories with a Landau pole on the basis that
all relevant and irrelevant operators turn on near the cut-off, qualitatively changing the results
- This can be tested at large N by adding relevant/irrelevant operators such as

$$
m^{2} \vec{\phi}^{2}, \alpha\left(\vec{\phi}^{2}\right)^{3}
$$

- The resulting calculations are technical, but doable:

A wonderful solvable theory with asymptotic freedom

- Traditionally, people reject theories with a Landau pole on the basis that
all relevant and irrelevant operators turn on near the cut-off, qualitatively changing the results
- This can be tested at large N by adding relevant/irrelevant operators such as

$$
m^{2} \vec{\phi}^{2}, \alpha\left(\vec{\phi}^{2}\right)^{3}
$$

- The resulting calculations are technical, but doable:
- One finds that the traditional view is incorrect; neither relevant nor irrelevant operators change the results qualitatively at large N

A wonderful solvable theory with asymptotic freedom

- One can also consider $1 / \mathrm{N}$ corrections

A wonderful solvable theory with asymptotic freedom

- One can also consider $1 / \mathrm{N}$ corrections
- Perhaps the most interesting result is that at $1 / \mathrm{N}$, the $4 \mathrm{~d} \mathrm{O}(\mathrm{N})$ model includes a stable bound state in the infrared

A wonderful solvable theory with asymptotic freedom

- One can also consider $1 / \mathrm{N}$ corrections
- Perhaps the most interesting result is that at $1 / \mathrm{N}$, the $4 \mathrm{~d} O(\mathrm{~N})$ model includes a stable bound state in the infrared
- The bound state has a mass of

$$
m \simeq 1.84 m_{2} \simeq 3 \Lambda_{L P}
$$

A wonderful solvable theory with asymptotic freedom

- One can also consider $1 / \mathrm{N}$ corrections
- Perhaps the most interesting result is that at $1 / \mathrm{N}$, the $4 \mathrm{~d} O(\mathrm{~N})$ model includes a stable bound state in the infrared
- The bound state has a mass of

$$
m \simeq 1.84 m_{2} \simeq 3 \Lambda_{L P}
$$

- This is a singlet bound state of two vectors: $\vec{\phi} \cdot \vec{\phi}$

A wonderful solvable theory with asymptotic freedom

- One can also consider $1 / \mathrm{N}$ corrections
- Perhaps the most interesting result is that at $1 / \mathrm{N}$, the $4 \mathrm{~d} O(\mathrm{~N})$ model includes a stable bound state in the infrared
- The bound state has a mass of

$$
m \simeq 1.84 m_{2} \simeq 3 \Lambda_{L P}
$$

- This is a singlet bound state of two vectors: $\vec{\phi} \cdot \vec{\phi}$
- It's the QFT wonderland: this 'colorless' state emerges from the theory Lagrangian, and it's the only such state at large N

QFT in Wonderland: What's next?

QFT in Wonderland: what's next?

- On linking 4d $O(N)$ model and QCD
- Beyond scalars: fermionic theories in 4d
- Beyond wonderland theory: wonderland experimental consequences

QFT in Wonderland

- QCD has two phases: IR (confined) and UV (asymptotically free); running coupling is asymptotically free in UV

QFT in Wonderland

- QCD has two phases: IR (confined) and UV (asymptotically free); running coupling is asymptotically free in UV
- $\mathrm{O}(\mathrm{N})$ model has two phases: IR (with bound state), and UV (asymptotically free); running coupling is asymptotically free in UV

QFT in Wonderland

- QCD has two phases: IR (confined) and UV (asymptotically free); running coupling is asymptotically free in UV
- O(N) model has two phases: IR (with bound state), and UV (asymptotically free); running coupling is asymptotically free in UV
- $\mathrm{O}(\mathrm{N})$ model running coupling diverges at the Landau pole $\bar{\mu}=\Lambda_{L P}$

QFT in Wonderland

- QCD has two phases: IR (confined) and UV (asymptotically free); running coupling is asymptotically free in UV
- $\mathrm{O}(\mathrm{N})$ model has two phases: IR (with bound state), and UV (asymptotically free); running coupling is asymptotically free in UV
- $\mathrm{O}(\mathrm{N})$ model running coupling diverges at the Landau pole $\bar{\mu}=\Lambda_{L P}$
- QCD also has a scale where coupling diverges: $\bar{\mu}_{\overline{\mathrm{MS}}} \simeq 0.3 \mathrm{GeV}$

QFT in Wonderland

- QCD has two phases: IR (confined) and UV (asymptotically free); running coupling is asymptotically free in UV
- $\mathrm{O}(\mathrm{N})$ model has two phases: IR (with bound state), and UV (asymptotically free); running coupling is asymptotically free in UV
- $\mathrm{O}(\mathrm{N})$ model running coupling diverges at the Landau pole $\bar{\mu}=\Lambda_{L P}$
- QCD also has a scale where coupling diverges: $\bar{\mu} \overline{\mathrm{MS}} \simeq 0.3 \mathrm{GeV}$
- Maybe the two theories are not so dissimilar after all?

QFT in Wonderland

- QCD has two phases: IR (confined) and UV (asymptotically free); running coupling is asymptotically free in UV
- $\mathrm{O}(\mathrm{N})$ model has two phases: IR (with bound state), and UV (asymptotically free); running coupling is asymptotically free in UV
- $\mathrm{O}(\mathrm{N})$ model running coupling diverges at the Landau pole $\bar{\mu}=\Lambda_{L P}$
- QCD also has a scale where coupling diverges: $\bar{\mu}_{\overline{\mathrm{MS}}} \simeq 0.3 \mathrm{GeV}$
- Maybe the two theories are not so dissimilar after all?
- Test: $\mathrm{O}(\mathrm{N})$ model has phase transition at $T_{c} \simeq \sqrt{e} \Lambda_{L P}$. Plot pressure vs. QCD pressure in temperature units of \sqrt{e} / Λ

QFT in Wonderland: Running coupling

QFT in Wonderland: $\mathrm{O}(\mathrm{N})$ vs. QCD

QFT in Wonderland: Fermionic Theories

- Solution techniques also work for N -component fermions in 4d
- Look out for arXiv preprint by Seth Grable and Max Weiner very soon!

QFT in Wonderland: Experimental Consequences

- The only known scalar in fundamental physics is the Higgs

QFT in Wonderland: Experimental Consequences

- The only known scalar in fundamental physics is the Higgs
- Standard model physics has 4 parameters for EW physics: Higgs mass, Higgs self-coupling, and two non-abelian couplings g, g^{\prime}

QFT in Wonderland: Experimental Consequences

- The only known scalar in fundamental physics is the Higgs
- Standard model physics has 4 parameters for EW physics: Higgs mass, Higgs self-coupling, and two non-abelian couplings g, g^{\prime}
- These are fixed by four measurements: the finestructure constant, the Weinberg angle, the Z-mass and the Higgs mass

QFT in Wonderland: Experimental Consequences

- The only known scalar in fundamental physics is the Higgs
- Standard model physics has 4 parameters for EW physics: Higgs mass, Higgs self-coupling, and two non-abelian couplings g, g^{\prime}
- These are fixed by four measurements: the finestructure constant, the Weinberg angle, the Z-mass and the Higgs mass
- In Wonderland, the QFT doesn't need a Higgs mass; the mass is generated spontaneously from radiative corrections; one parameter less than SM

QFT in Wonderland: Experimental Consequences

- The only known scalar in fundamental physics is the Higgs
- Standard model physics has 4 parameters for EW physics: Higgs mass, Higgs self-coupling, and two non-abelian couplings g, g^{\prime}
- These are fixed by four measurements: the finestructure constant, the Weinberg angle, the Z-mass and the Higgs mass
- In Wonderland, the QFT doesn't need a Higgs mass; the mass is generated spontaneously from radiative corrections; one parameter less than SM
- At one-loop, the Higgs mass value is off from experimental value. Stay tuned.

to enjoy more of QFT in Wonderland!

