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confinement and bound states in regime where
coupling is LARGE. Cannot use perturbation theory

Using N � 1 for SU(N) could work, but we can’t
solve large N SU(N) either

Holographic models capture some properties, but hard
to know what results are model-independent
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Plan for this Talk

Properties of PT-symmetric field theories

Solving large N scalar theories

A wonderful solvable theory with asymptotic freedom

QFT in Wonderland: what’s next?
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PT -symmetric Quantum Mechanics

“Normal” Hamiltonian

H =
p2

2m
+ λx4 .

Hermitian; potential bounded from below; real and
positive eigenspectrum En > 0

PT -symmetric Hamiltonian

H =
p2

2m
− gx4 =

p2

2m
+ (ig)2x2 .

Less symmetry than Hermitian (only P ,T ); potential
unbounded; real and positive eigenspectrum
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PT -symmetric Field Theory (1/2)

“Normal” action

S =

∫
d4x

[
1

2
∂µφ∂

µφ + λφ4

]
.

Bounded action, renormalizable, positive β-function
(trivial for λ > 0)
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]
.

Unbounded action, renormalizable, negative
β-function
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PT -symmetric Field Theory (2/2): ABS conjecture

ABS conjecture:

lnZPT (g) = Re lnZ (λ = −g) .

Fantastically simple way to get results for λ < 0...

...but probably wrong for φ4 theory!

However: can be proven for large N scalar field theory!
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Lesson# 1: Hermitian and bounded action is sufficient,
but not necessary for consistent quantum field theory;

Theories with unbounded potential (negative coupling)
are physically acceptable if certain minimum conditions

are met

Consequence: Do not dismiss theories just because the potential seems
unbounded!



Lesson# 1: Hermitian and bounded action is sufficient,
but not necessary for consistent quantum field theory;
Theories with unbounded potential (negative coupling)
are physically acceptable if certain minimum conditions

are met

Consequence: Do not dismiss theories just because the potential seems
unbounded!



Lesson# 1: Hermitian and bounded action is sufficient,
but not necessary for consistent quantum field theory;
Theories with unbounded potential (negative coupling)
are physically acceptable if certain minimum conditions

are met

Consequence: Do not dismiss theories just because the potential seems
unbounded!



Solving large N scalar theories



Solving large N scalar theories



Solving large N scalar theories (1/2)

Euclidean field theory action

SE =

∫
d4x

[
1

2
∂µ~φ∂µ~φ+

λ

N

(
~φ2
)2
]

where ~φ = (φ1, φ2, . . . , φN)

Exact transform (Hubbart-Stratonovic)

e−
∫
x

λ
N (~φ2)

2

=

∫
Dζe

−
∫
x

[
iζ~φ2+Nζ2

4λ

]

leads to

Z =

∫
Dζe−

N
2
tr ln[−�+2iζ]− N

4λ

∫
x ζ

2
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Solving large N scalar theories (2/2)

At large N, can solve this path integral using method of steepest
descent; saddle is Fourier-zero mode of ζ; get

ln Z = NβVp(m) +O(N0) , p(m) = pfree(m) +
m4

16λ
,

and m is given by p′(m) = 0.

Very fruitful result for massless fields in d = 3 (no renormalization)

For years, I was stuck on d = 4: positive β function, Landau pole; the
resolution of this puzzle is what’s new in this talk
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Results for large N scalar theories in 3d

3d: massless interacting theory exists (can be put on the lattice), lot’s of
results about IR interacting CFT; exact non-perturbative thermodynamics
and transport, see (click on): [1904.09995],[2104.06435]

https://arxiv.org/abs/1904.09995
https://arxiv.org/abs/2104.06435


Problems for large N scalar theories in 4d

In 4d, large N pressure is (in dim-reg)

p(m) =
m4

16λ
+

m4

64π2

(
1

ε
+ ln

µ̄2e
3
2

m2

)
+

m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
.

Can be non-perturbatively renormalized:

1

λ
=

1

λR(µ̄)
− 1

4π2ε
.

Problem: β function is positive, coupling runs as

λR(µ̄) =
4π2

ln
Λ2
LP
µ̄2
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Problems for large N scalar theories in 4d

Above the Landau pole: negative λR(µ̄); potential unbounded



A wonderful solvable theory with asymptotic freedom



A wonderful solvable theory with asymptotic freedom

OK, so the coupling diverges at µ̄ = ΛLP and becomes negative for
µ̄ > ΛLP

Traditionally, people say:
this theory is sick for a continuum interacting theory; it can only

be useful as an effective theory with a cutoff

But we know from PT -symmetric field theory that negative coupling
can still give physically acceptable theories

So let’s check what happens to observables
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Reminder: αs(Q) is not an observable; it is inferred from matching
experiment to theory (here: pQCD)



A wonderful solvable theory with asymptotic freedom

Renormalized pressure of O(N) model in 3+1d:

p(m) =
m4

16λR(µ̄)
+

m4

64π2
ln
µ̄2e

3
2

m2
+

m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
.

or when using the exact running coupling λR(µ̄)

p(m) =
m4

64π2
ln

Λ2
LPe

3
2

m2
+

m2T 2

2π2

∞∑
n=1

K2(nβm)

n2
.

Note: no dependence on fictitious scale µ̄ (good observable)
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A wonderful solvable theory with asymptotic freedom

Actual pressure is p(m), with m the solution to saddle point condition

0 =
dp(m)

dm2
=

m2

32π2
ln

Λ2
LPe1

m2
− mT

4π2

∞∑
n=1

K1(nβm)

n
.

Deep infrared (T ' 0): two solutions: m1 = 0, m2 =
√

eΛLP

m1 = 0 is the perturbative vacuum

m2 =
√

eΛLP corresponds to a spontaneously generated VEV

Traditionally, people select m1 = 0 on the basis that m2 is too close
to the cutoff

I beg to differ: you can’t pick and choose! Physics has a preferred
solution:

p(m1) = 0 , p(m2) =
Λ4
LPe2

128π2
.

[2211.15683]

https://arxiv.org/abs/2211.15683
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Lesson #2: The perturbative vacuum is unstable; the true
vacuum is non-perturbative and has smaller free energy

than the perturbative vacuum.

Consequence: much of the literature on 4d O(N) model is wrong or at
least incomplete (including some of my own papers!)



Lesson #2: The perturbative vacuum is unstable; the true
vacuum is non-perturbative and has smaller free energy

than the perturbative vacuum.

Consequence: much of the literature on 4d O(N) model is wrong or at
least incomplete (including some of my own papers!)



A wonderful solvable theory with asymptotic freedom

Deep infrared (T ' 0): two solutions: m1 = 0, m2 =
√

eΛLP

Track solutions numerically away from deep infrared T > 0

Solution with lower free energy is physically preferred

Leads to result for physical observable pressure p = p(m2(T ))
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A wonderful solvable theory with asymptotic freedom

For high energy T �
√

eΛLP , all solutions m as well as p(m) are
complex

This is the regime where the running coupling has flipped sign:
λR < 0

Traditionally, people throw up their hands and say: the theory is sick!

But we do have the ABS conjecture:

p = Re [p(m)] .

Let’s see what we get
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A wonderful solvable theory with asymptotic freedom

Running coupling in 4d O(N) model has Landau pole at µ̄ = ΛLP and
negative values for µ̄ > ΛLP

Observables in 4d O(N) model are well-defined, positive-definite and
show no sign of unphysical behavior

4d O(N) model does exhibit a second order phase transition at
T '

√
eΛLP , separating low- and high-temperature phases
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In the high temperature phase, λR < 0

One can view this as a particular PT -symmetric theory with
gR = −λR
In the high temperature phase, the PT -symmetric coupling gR is
positive and decreasing

The theory is asymptotically free in the UV!
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A wonderful solvable theory with asymptotic freedom



Lesson #3: The running coupling is not an observable,
and observables may turn out finite even if the coupling

diverges (has a Landau pole)

[2212.03254]

We knew this for a long time already: N=4 SYM has well-behaved
observables in the limit λ→∞; why should it be any different for φ4

theory?

The main difference in scalar theory is that we can “see around” the
Landau pole in the regime λR < 0 using the PT -symmetric ABS

conjecture. This is how we find two phases in scalar theory.

https://arxiv.org/abs/2212.03254
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A wonderful solvable theory with asymptotic freedom

Traditionally, people reject theories with a Landau pole on the basis
that

all relevant and irrelevant operators turn on near the cut-off,
qualitatively changing the results

This can be tested at large N by adding relevant/irrelevant operators
such as

m2~φ2, α
(
~φ2
)3

.

The resulting calculations are technical, but doable: [2212.03254]

One finds that the traditional view is incorrect; neither relevant nor
irrelevant operators change the results qualitatively at large N

https://arxiv.org/abs/2212.03254
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A wonderful solvable theory with asymptotic freedom

One can also consider 1/N corrections

Perhaps the most interesting result is that at 1/N, the 4d O(N)
model includes a stable bound state in the infrared

The bound state has a mass of

m ' 1.84m2 ' 3ΛLP

[2211.15683]

This is a singlet bound state of two vectors: ~φ · ~φ
It’s the QFT wonderland: this ’colorless’ state emerges from the
theory Lagrangian, and it’s the only such state at large N

https://arxiv.org/abs/2211.15683
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QFT in Wonderland: what’s next?

On linking 4d O(N) model and QCD

Beyond scalars: fermionic theories in 4d

Beyond wonderland theory: wonderland experimental consequences



QFT in Wonderland

QCD has two phases: IR (confined) and UV (asymptotically free);
running coupling is asymptotically free in UV

O(N) model has two phases: IR (with bound state), and UV
(asymptotically free); running coupling is asymptotically free in UV

O(N) model running coupling diverges at the Landau pole µ̄ = ΛLP

QCD also has a scale where coupling diverges: µ̄MS ' 0.3 GeV

Maybe the two theories are not so dissimilar after all?

Test: O(N) model has phase transition at Tc '
√

eΛLP . Plot pressure
vs. QCD pressure in temperature units of

√
e/Λ
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QFT in Wonderland: Running coupling

[2212.03254]

https://arxiv.org/abs/2212.03254


QFT in Wonderland: O(N) vs. QCD

[2212.03254]

https://arxiv.org/abs/2212.03254


QFT in Wonderland: Fermionic Theories

Solution techniques also work for N-component fermions in 4d

Look out for arXiv preprint by Seth Grable and Max Weiner very soon!



QFT in Wonderland: Experimental Consequences

The only known scalar in fundamental physics is the Higgs

Standard model physics has 4 parameters for EW physics: Higgs
mass, Higgs self-coupling, and two non-abelian couplings g , g ′

These are fixed by four measurements: the finestructure constant, the
Weinberg angle, the Z-mass and the Higgs mass

In Wonderland, the QFT doesn’t need a Higgs mass; the mass is
generated spontaneously from radiative corrections; one parameter
less than SM

At one-loop, the Higgs mass value is off from experimental value.
Stay tuned.
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Thanks for listening! I’m off now

to enjoy more of QFT in Wonderland!


