


Wonderland Physics

QFT in wonderland would not be possible without my wonderful group:

Max Weiner, Scott Lawrence, Seth Grable & Ryan Weller



Motivation



< hadron collisions




QCD: asymptotic freedom; confinement; low energy bound states
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Properties/Tools
« Asymptotic Freedom: Perturbation Theory
« Confinement: N/A

« Low energy bound states: Numerical (Monte Carlo)
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Problems with Tools
« confinement and bound states in regime where
coupling is LARGE. Cannot use perturbation theory
« Using N > 1 for SU(N) could work, but we can't
solve large N SU(N) either

« Holographic models capture some properties, but hard
to know what results are model-independent



Plan for this Talk

« Properties of PT-symmetric field theories
« Solving large N scalar theories
« A wonderful solvable theory with asymptotic freedom

« QFT in Wonderland: what's next?
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P T-symmetric Quantum Mechanics

« “Normal” Hamiltonian

2
Hzp—+)\x4.
2m

« Hermitian; potential bounded from below; real and
positive eigenspectrum E, > 0

« P T-symmetric Hamiltonian

2 2
H=F _gpr_ P

N2 2
= 2er(/g)x.

« Less symmetry than Hermitian (only P, T); potential
unbounded; real and positive eigenspectrum
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P T-symmetric Field Theory (1/2)

“Normal” action
S = /d4 [ u¢8“gb+)\¢]

Bounded action, renormalizable, positive 5-function
(trivial for A > 0)

« P T-symmetric action

s= [ [ 9,00 — gcb]

Unbounded action, renormalizable, negative
[B-function
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P T-symmetric Field Theory (2/2): ABS conjecture

[@ reference search %) 6 citations

ABS conjecture:
InZpr(g) = RelnZ(A = —g).
« Fantastically simple way to get results for A < O...

- ...but probably wrong for ¢* theory!

« However: can be proven for large N scalar field theory!
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Lesson# 1: Hermitian and bounded action is sufficient,

but not necessary for consistent quantum field theory;

Theories with unbounded potential (negative coupling)

are physically acceptable if certain minimum conditions
are met

Consequence: Do not dismiss theories just because the potential seems

unbounded!
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Solving large N scalar theories (1/2)

« Euclidean field theory action

se = [ atx |05+ 4 (#)]

where ¢ = (¢1, do, ..., dn)

« Exact transform (Hubbart-Stratonovic)
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Solving large N scalar theories (2/2)

« At large N, can solve this path integral using method of steepest
descent; saddle is Fourier-zero mode of (; get

0 m*
InZ = NaVp(m) + O(N°),  p(m) = prree(m) + 155 -

and m is given by p’(m) = 0.

« Very fruitful result for massless fields in d = 3 (no renormalization)

« For years, | was stuck on d = 4: positive 8 function, Landau pole; the
resolution of this puzzle is what's new in this talk



Results for large N scalar theories in 3d

Entropy density in O(N) model in 2+1d Shear viscosity in O(N) model in 2+1d

0.4 0.6 . . 0.4 0.6
VNM(14V1) NM/(14\2)

3d: massless interacting theory exists (can be put on the lattice), lot's of
results about IR interacting CFT; exact non-perturbative thermodynamics
and transport, see (click on):


https://arxiv.org/abs/1904.09995
https://arxiv.org/abs/2104.06435
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Problems for large N scalar theories in 4d

« In 4d, large N pressure is (in dim-reg)

4 4 1 —2e% 2T2 e K
plm) = T4 T L B 2nfm).
16\ 64w 15 m

« Can be non-perturbatively renormalized:

1 1 1

A Ar(i1)  4m2e’

« Problem: 3 function is positive, coupling runs as
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Running coupling for O(N) model at large N
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Above the Landau pole: negative Ag(f1); potential unbounded
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A wonderful solvable theory with asymptotic freedom

« OK, so the coupling diverges at i = A p and becomes negative for
m>NAp
« Traditionally, people say:
this theory is sick for a continuum interacting theory; it can only
be useful as an effective theory with a cutoff
« But we know from P T-symmetric field theory that negative coupling
can still give physically acceptable theories

« So let's check what happens to observables



< hadron collisions

B0 hea

T

QCD ¢s(M,) = 0.118 +0.003

Reminder: as(Q) is not an observable; it is inferred from matching
experiment to theory (here: pQCD)
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* Renormalized pressure of O(N) model in 3+1d:

m* n m* | ;7,26% . m? T2 S~ Ka(nBm)
n .
16\r() 6472 m? 2m2 = n?

p(m) =

« or when using the exact running coupling Ag(f2)

_ m* In /\%Pe% +m2T2 2. Ko(nBm)
6472 m? 2m? = 2 '

p(m)

« Note: no dependence on fictitious scale fi (good observable)
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A wonderful solvable theory with asymptotic freedom

« Actual pressure is p(m), with m the solution to saddle point condition

0— dp(m)  m? In A2 pet N 2. Ki(nBm)
- dm? 3272 m? e — n

« Deep infrared (T ~ 0): two solutions: m; =0, my = /eArp

« my = 0 is the perturbative vacuum

« mp = /el p corresponds to a spontaneously generated VEV

« Traditionally, people select m; = 0 on the basis that m, is too close
to the cutoff

« | beg to differ: you can’t pick and choose! Physics has a preferred
solution: A2

m)=0. o) = 15



https://arxiv.org/abs/2211.15683

Lesson #2: The perturbative vacuum is unstable; the true
vacuum is non-perturbative and has smaller free energy
than the perturbative vacuum.



Lesson #2: The perturbative vacuum is unstable; the true
vacuum is non-perturbative and has smaller free energy
than the perturbative vacuum.

Consequence: much of the literature on 4d O(N) model is wrong or at
least incomplete (including some of my own papers!)
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A wonderful solvable theory with asymptotic freedom

« Deep infrared (T ~ 0): two solutions: m; =0, my = /el p
« Track solutions numerically away from deep infrared T > 0
« Solution with lower free energy is physically preferred

« Leads to result for physical observable pressure p = p(my(T))



Pressure per component for O(N) model at large N
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« For high energy T > \/e/A.p, all solutions m as well as p(m) are
complex

« This is the regime where the running coupling has flipped sign:
AR <0
« Traditionally, people throw up their hands and say: the theory is sick!

« But we do have the ABS conjecture:

p=Re[p(m)] .

« Let's see what we get



A wonderful solvable theory with asymptotic freedom

Pressure per component in O(N) model at large N
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A wonderful solvable theory with asymptotic freedom

Susceptibilities near T, in O(N) model at large N

s(T)/AG
0.1*cy(T)/AZ

L L L 1 L L
0.61 0.615 0.62 0.625 0.63 0.635
TIA
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A wonderful solvable theory with asymptotic freedom

« Running coupling in 4d O(N) model has Landau pole at i = A;p and
negative values for i > Ay p

« Observables in 4d O(N) model are well-defined, positive-definite and
show no sign of unphysical behavior

« 4d O(N) model does exhibit a second order phase transition at
T ~ \/elp, separating low- and high-temperature phases
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A wonderful solvable theory with asymptotic freedom

« In the high temperature phase, A\g < 0

« One can view this as a particular P T-symmetric theory with
8R = —AR

« In the high temperature phase, the P T-symmetric coupling gg is
positive and decreasing

« The theory is asymptotically free in the UV!



A wonderful solvable theory with asymptotic freedom

Running coupling for O(N) model at large N
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Lesson #3: The running coupling is not an observable,
and observables may turn out finite even if the coupling
diverges (has a Landau pole)

We knew this for a long time already: N'=4 SYM has well-behaved
observables in the limit A — oo; why should it be any different for ¢*
theory?

The main difference in scalar theory is that we can “see around” the
Landau pole in the regime Ag < 0 using the P T-symmetric ABS
conjecture. This is how we find two phases in scalar theory.


https://arxiv.org/abs/2212.03254
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A wonderful solvable theory with asymptotic freedom

« Traditionally, people reject theories with a Landau pole on the basis
that
all relevant and irrelevant operators turn on near the cut-off,
qualitatively changing the results

« This can be tested at large N by adding relevant/irrelevant operators

such as 5
w0 ()

« The resulting calculations are technical, but doable:

« One finds that the traditional view is incorrect; neither relevant nor
irrelevant operators change the results qualitatively at large N


https://arxiv.org/abs/2212.03254
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A wonderful solvable theory with asymptotic freedom

+ One can also consider 1/N corrections

« Perhaps the most interesting result is that at 1/N, the 4d O(N)
model includes a stable bound state in the infrared

« The bound state has a mass of

m~ 1.84my ~ 3\, p

« This is a singlet bound state of two vectors: gg gg

« It's the QFT wonderland: this 'colorless’ state emerges from the
theory Lagrangian, and it's the only such state at large N


https://arxiv.org/abs/2211.15683

QFT in Wonderland: What's next?
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QFT in Wonderland: what's next?

« On linking 4d O(N) model and QCD
« Beyond scalars: fermionic theories in 4d

« Beyond wonderland theory: wonderland experimental consequences
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QFT in Wonderland

« QCD has two phases: IR (confined) and UV (asymptotically free);
running coupling is asymptotically free in UV

« O(N) model has two phases: IR (with bound state), and UV
(asymptotically free); running coupling is asymptotically free in UV
« O(N) model running coupling diverges at the Landau pole i = A p
« QCD also has a scale where coupling diverges: iy ~ 0.3 GeV

« Maybe the two theories are not so dissimilar after all?

« Test: O(N) model has phase transition at T. ~ \/eA;p. Plot pressure
vs. QCD pressure in temperature units of /e/A
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QFT in Wonderland: Running coupling

Running Coupling

a<(H) Ne, pPQCD, A=0.3 GeV
ag(p) N, lattice QCD, A=0.3 GeV —Jl—— =
PT sym O(N), gr(p)/(4m)

(M), QED st =
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QFT in Wonderland: O(N) vs. QCD

Pressure per Component
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QFT in Wonderland: Fermionic Theories

« Solution techniques also work for N-component fermions in 4d

« Look out for arXiv preprint by Seth Grable and Max Weiner very soon!
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« The only known scalar in fundamental physics is the Higgs

« Standard model physics has 4 parameters for EW physics: Higgs
mass, Higgs self-coupling, and two non-abelian couplings g, g’

+ These are fixed by four measurements: the finestructure constant, the
Weinberg angle, the Z-mass and the Higgs mass

« In Wonderland, the QFT doesn’t need a Higgs mass; the mass is

generated spontaneously from radiative corrections; one parameter
less than SM

« At one-loop, the Higgs mass value is off from experimental value.
Stay tuned.
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