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Introduction

In AdS/CFT, there is a system called holographic superconductor (HSC) 
which is dual to a superconductor.

This system has been studied extensively. For example, here is the list of 
citations of Maldacena’s original paper (presumably, it covers most of AdS/
CFT papers).

HSC is #23
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Introduction

One characteristic feature of superconductivity is the Meissner effect.

However, for HSCs,

Meissner effect was rarely discussed and

It has been shown only numerically.

The reason is simple: In most applications, the bdy. Maxwell field is 
added as an external source and is not dynamical (more later).

I explain how to implement the Meissner effect in HSCs and show the 
effect analytically.

The magnetic penetration length & GL parameter κ has a nontrivial 
dependence on the U(1) coupling e.
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Superconductivity

2 characteristic features of SC:

Zero resistivity/diverging conductivity

Meissner effect:  
Magnetic field cannot enter the material

Phenomenologically,  
Ginzburg-Landau theory describes SC well.

5

Wikipedia
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GL theory of superconductivity

 
The “macroscopic wave fn.” ψ has the familiar Higgs-like potential.  
“Mass term” is proportional to temperature

ψ = 0 for  
ψ ≠ 0 for              and SSB

Maxwell field then becomes massive  
(just like Higgs mechanism)

→ Meissner effect  
     Magnetic field cannot enter the SC.

6
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Type I & II

7

Wikipedia

weak strong
magnetic

SC       normal

weak strong
magnetic

SC       normalmagnetic field partly enters

There are 2 kinds of SCs:

Type I: magnetic field is completely expelled. The SC state is broken at 
high enough magnetic field.  
 
 
 
 

Type II: magnetic field can partly enter SC.
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In Type II SCs, magnetic field can enter SC keeping SC state.

The magnetic field enters by forming vortices.  
ψ =0 at vortex core and magnetic field enters there.

According to GL theory,

 
 
 
This is one way to see the Meissner effect. Note Maxwell field is 
dynamical.

8

∇ jF ij = −2e2 |ψ |2 Ai

Aφ ∝ re−r /λ

λ2 = 1
2e2 |ψ |2

→ supercurrent
(diamagnetic)
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We see analogous expression in HSC, but this is impossible in the 
standard HSC. 

The vortices create supercurrent from London eq: 

The Ampere law                  then tells the magnetic field is induced, and 
compensates the external magnetic field.

As we see below, in standard HSCs, the London eq holds, but there is no 
Ampere law because there is no dynamical Maxwell field on bdy.  
The magnetic field can always enter and no Meissner effect. In a sense, 
HSC is an “extreme” type II.  

9

∇ ×B = J

J = −2 |ψ |2 A
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Holographic superconductors

Typically, Einstein-Maxwell-complex scalar system:  

Phase structure

T>Tc: AdS BH w/ ψ = 0

T<Tc: AdS BH w/ ψ ≠ 0 → ψ: order parameter 
                                     ~ dual to “macroscopic wave fn”

Dual to some kind of superconductors → diverging conductivity

11

Hartnoll - Herzog - Horowitz, 0803.3295; 0810.1563
Gubser, 0801.2977

L = −g R − 2Λ − 1
g2

FMN
2 + ∇Mψ − iAMψ

2 +m2 ψ 2( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

M,N...: bulk indices  
μ,ν...: bdy indices
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Setup

Matter fields are coupled w/ gravity, and the system is hard to solve.  
So, we employ the “probe approx” g ≫1, where matter fields are 
decoupled from gravity. 

Then, one can simply use pure gravity solution (Schwarzschild-AdS BH) 
and solve matter fields in the background.

12

L = −g R − 2Λ − 1
g2

FMN
2 + ∇Mψ − iAMψ

2 +m2 ψ 2( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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SAdS4 BH

We first consider the 4-dim bulk (for simplicity):

13

ds42 = r 2(−fdt 2 + dx 2 + dy 2 )+
dr 2

r 2f

= 1
u2

(−fdt 2 + dx 2 + dy 2 )+ du
2

u2f

L = 1AdS radius:

u = 1 / r
r = u = 1:

u = 0,r = ∞ :

f = 1− r −3 = 1−u3

horizon
asymptotic infinity, “boundary”
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BH: only T as scale → no characteristic T/no phase transition 
                            → chemical potential μ
At high temp. phase,

System parametrized by μ/T. We fix T and vary μ.

μc/T < (const) → Normal phase

μc/T > (const) → SC phase

14

At = µ(1−u )
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Bdy. Maxwell

We have the bulk Maxwell field, but on the bdy, the Maxwell field is added 
as an external source and is not dynamical.

This is because we usually impose the Dirichlet BC on the bdy.

Recall the standard dictionary. After solving the bulk EOM, extracting u→0 
behavior, one gets

 
 
 
or

In other words, the bdy Maxwell has the action  
but no kinetic term.

16

δS = ∫d 3xAµ J µ
Aµ bdy =Aµ

Aµ

J µ
: bdy Maxwell
: U(1) current

Aµ ~Aµ + J µ u +! (u→ 0)
fixed: Dirichlet ↓
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It is possible to make it dynamical. 

Simply consider the following bdy EOM:

 
All quantities are bdy ones including e. Here         is expectation value of 
bdy op computed by standard AdS/CFT recipes.

We call it “holographic semiclassical eq.”

In other words, add the following action to the bdy CFT:

17

Sbdy = − 1
4e2

∫d 3xFµνF µν

1
e2

∂νF
µν = J µ

J µ

Compere - Marolf, 0805.1902
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Then, what one should do is 

Solve the bulk EOM and obtain e.g.            by standard AdS/CFT 
recipes.

Impose the semiclassical eq as BC instead of the Dirichlet BC.

18

J µ

We show Meissner effect analytically by imposing the 
holographic semiclassical eq. on holographic superconductors.
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Previous studies

Actually, holographic Meissner effect was discussed in the past and I show 
you a few examples. They show the effect by constructing a single vortex 
numerically.

cf. Holographic vortex

19

Albash-Johnson, 0906.2396
Montull-Pomarol-Silva, 0906.2396

Maeda-Natsuume-Okamura, 0910.4475
Keranen-Keski-Vakkuri-Nowling-Yogendran, 0912.4280

…
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Previous studies 1

Probe limit, bulk 4-dim (Neumann BC) & 5-dim (holographic 
semiclassical eq.)

 
 
 

 

We have more to say about the Neumann BC.

20

Domenech-Montull-Pomarol-Salvio-Silva, 1005.1776

←vortex

←Meissner effect
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Previous studies 2

No probe limit, bulk 4-dim, Neumann BC

 

So, the Meissner effect has been shown, but it is desirable to show the 
effect more clearly.

21

Dias-Horowitz-Iqbal-Santos, 1311.3674

←vortex

←Meissner effect



2022/11 Holotube

Dirichlet BC case

First, let us check that standard HSC has no Meissner effect. 

For T<Tc, a uniform condensate is a solution, so add a small magnetic field 
there. 

Bulk EOM:

One can integrate the eq formally:

22

Ay =Yeiqx

0 = −∂u (f ∂u )+ q2 + 2 |ϕ0 |2{ }Y , ψ = uϕ

Y = Y −
0
u
∫

d ′u
f ( ′u ) ′u

1
∫ du ''(q2 + 2 |ϕ0 |2 )Y

= Y 1−
0
u
∫

d ′u
f ( ′u ) ′u

1
∫ du ''(q2 + 2 |ϕ0 |2 )+!

⎧
⎨
⎩

⎫
⎬
⎭
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The 1st term reps. the magnetic field.  
The magnetic field can enter SC (no matter how small) and no Meissner 
effect.  

The 2nd term reps. current.  
According to the standard AdS/CFT recipe,

 

23

Y = Y 1−
0
u
∫

d ′u
f ( ′u ) ′u

1
∫ du ''(q2 + 2 |ϕ0 |2 )+!

⎧
⎨
⎩

⎫
⎬
⎭

Jy = ∂uY u=0

= Y −q2 −
0
1
∫ du 2 |ϕ0 |2 +!⎛

⎝⎜
⎞
⎠⎟

B = ∂xY u=0 = iqY
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This is London eq. w/ added normal component. 

Supercurrent itself exists, but there is no Ampere law on the bdy  
              , so the magnetic field does not decrease and no Meissner effect.

The 1st term exists even for pure bulk Maxwell theory. This is a 
diamagnetic current but should not be confused w/ the supercurrent 
(which is also diamagnetic). It can be interpreted as the magnetization 
current due to magnetization.

24

Jy = Y −q2 −
0
1
∫ du 2 |ϕ0 |2 +!⎛

⎝⎜
⎞
⎠⎟

normal current↓
(diamagnetic)

↓supercurrent 
(diamagnetic)

∇ ×B = J
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We now impose holographic semiclassical eq as the BC:

What is the role of the normal current?  
Consider only normal current & external current. The semiclassical eq 
gives

 
 

q2Y = −e2q2Y +e2Jext

q2Y = e2

1+e2
Jext

Holographic semiclassical eq case

25

∂ j F
ij = e2 J i

Ay =Yeiqx

cf. ∇ ×B = µmJ

It shifts magnetic const. from               to                            µ0 = e2 µm = e2 / (1+e2 )

Jy = Y −q2 −
0
1
∫ du 2 |ϕ0 |2⎛

⎝⎜
⎞
⎠⎟
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Magnetization current

Recall elementary EM.  
Magnetic moment produces magnetization M and steady magnetiz. current 
Jm.  
 
 
 
At linear order

 
So

26

∇ ×B = µ0(Jext + Jm )
= µ0(Jext +∇ ×M )

M = 1
µ0

χ
1+ χ

B

∇ ×B = µ0(1+ χ )Jext =: µmJext
χ :
µm :

magnetic susceptibility
magnetic const.
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Now include the supercurrent as well. w/ a delta-fn source,  
 
 
 
 
 
w/ the magnetic penetration length:  
 

 
cf. GL:  

At weak coupling e<<1, holographic result reduces to the GL result.

 In the limit e→∞, GL implies λ=0. Strong Meissner. “extreme type I”

For HSC, λ remains finite. “extreme type I” cannot be reached.

27

q2Y = −e2(q2 + 2I )Y +e2

Y ∝ 1
(1+e2 )q2 + 2e2I

→ e−x /λ
I =

0
1
∫ du |ϕ0 |2

λGL
2 = 1

2e2 |ψ |2

λ2 = 1
2µmI

= 1+e
2

2e2I
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Neumann BC

In previous studies, one typically imposes Neumann BC or J=0.  
 
 
 
 
In our language, Neumann BC corresponds to the e→∞ limit since the 
kinetic term is gone, but the nontrivial result even in the limit, so the BC is 
possible.  

What happens is

J=0 does not mean no supercurrent because J consists of normal 
current as well as supercurrent J=Jn+Js.

The normal current has “induced” kinetic term.

28

Ai ~Ai + J i u +! (u→ 0)

fixed: Dirichlet ↓ ↓fixed: Neumann

∂ j F
ij = e2 J i

q2Y = −e2(q2 + 2I )Y
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GL parameter

SC has 2 characteristic length scales: 

Magnetic penetration length λ (gauge field mass) → W-boson mass

Correlation length ξ (order parameter mass) → Higgs mass 

Then, SC is characterized by a dimensionless parameter, GL parameter:  
 
 
 
Whether SC is type I or II depends on κ:

In the bulk 4-dim, the analytic expression is not possible for κ, but in the bulk 5-dim, an 
analytic expression is possible.

29

κ 2 = λ2

ξ2

κ 2 < 1 / 2 :

κ 2 > 1 / 2 :

Type I

Type II→longer λ so magnetic penetration becomes possible 

λGL
2 = 1

2e2 |ψ |2
= 1
2e2

b
|T −Tc |

κGL
2 = b

2e2

ξGL
2 = 1

|T −Tc |
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SAdS5 case 

2 Differences from the SAdS4 case: 

Holographic renormalization is necessary for Maxwell field.

There exits a simple analytic solution when m2=-4  
 
 
 
 
 
w/ critical temperature  

The solution is a special case of a 1-parameter family of analytic solutions for “holographic 
Lifshitz superconductors.” 
 
Then, you can compute everything explicitly.

31

ϕ0 =
24(µ − µc )

πT
u

1+u2

µc = 2πT Herzog, 1003.3278
Natsuume - Okamura, 1801.03154

BF bound

mean-field
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SAdS5 case 

In this case, one can evaluate I:

In bulk 5-dim., magnetic const:  

 
The correlation length:  
 
 
Then GL parameter:

32

I =
0
1
∫ du

|ϕ0 |
2

u
= 6(µ − µc )

πT
→ λ2 = 1

2µm (πT )2I
= 1
12µm

1
(µ − µc )πT

µm = e2

1−e2 ln(πT )

ξ2 = 1
2(µ − µc )πT

κ 2 = λ2

ξ2
= 1
6µm

= 1−e
2 ln(πT )
6e2

 from scalar QNM computation
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SAdS5: details

In (4+1)-dimensions, 

from the CT action:

33

Jy = 1
u
∂uY − q2Y lnε

u=ε

SCT = − ∫d 4x 1
4g2

−γ γ µνγ ρσFµρFνσ × lnu γ µν : bdy metric

ε :UV cutoff

log divergent↓ ↓counterterm
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In (4+1)-dimensions, 

Holographic semiclassical eq then gives (when no supercurrent)

34

Y = Y 1−
0
u
∫
u 'du '
f (u ') ′u

u0∫ du '' 1
u ''
(q2 + 2 |ϕ0 |2 )+!

⎧
⎨
⎩

⎫
⎬
⎭

Jy = 1
u
∂uY − q2Y lnε

u=ε

= Y −
ε

u0∫ du 1
u
(q2 + 2 |ϕ0 |2 )+!

⎧
⎨
⎩

⎫
⎬
⎭
− q2Y lnε

= Y −q2(lnu0 − lnε)− 0
u0∫ du 2

u
|ϕ0 |

2 −q2 lnε⎧
⎨
⎩

⎫
⎬
⎭

= Y −q2 lnu0 − 0
u0∫ du 2

u
|ϕ0 |

2⎧
⎨
⎩

⎫
⎬
⎭

q2Y = −e2q2 lnu0 ×Y +e2Jext

= e2

1+e2 lnu0
µm

! "# $#
Jext

u0 = 1 / r0
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cf. GL:  

 

Focus on πT<<1. At weak coupling e<<1, holographic result reduces to the GL result.

In the limit e→∞, GL implies κGL=0. Strong Meissner. “extreme type I.” For HSC, κ 
remains finite even in the limit. “extreme type I” cannot be reached. The Neumann-like BC 
should be possible even for 5-dim. bulk (in probe limit).

In general, type I or type II depends on temperature.  

As T→0,  κ→∞ (extreme type II). 

As one increases T, κ decreases.

35

κ 2 = λ2

ξ2
= 1
6µm

= 1−e
2 ln(πT )
6e2

κGL
2 = b

2e2

GL parameter of HSC is determined analytically for the first time.

b
2
|ψ |4
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κ 2 = λ2

ξ2
= 1
6µm

= 1−e
2 ln(πT )
6e2

0.2 0.4 0.6 0.8
T

0.2

0.4

0.6

0.8

1.0

1.2
κ2

Type II

Type I
0.2 0.4 0.6 0.8

T

2

4

6

8

10

χm

diamagnetic paramagnetic

e / g = 1
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Temperature dependence of GL parameter

Interestingly, many superconducting materials (including high-Tc) show similar behavior:  
As one increases T, κ decreases.

e.g. Tinkham, “Introduction to superconductivity” gives an empirical rough estimate (Sect. 4.2)  
      “Of course, this is only a rough approximation…”

37

0.0 0.2 0.4 0.6 0.8 1.0

T

Tc

0.2

0.4

0.6

0.8

1.0

κ2/κ(0)2

This does not imply the same physics. For this formula, it comes from T-dependence 
on “b.”

κ 2 ∝ 1
1+ t 2

⎛
⎝⎜

⎞
⎠⎟
2
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Dual GL theory

w/ all information we have, one can write down the dual GL theory:

Just like GL, this should be regarded as leading terms near the critical pt. e.g. 

Dynamic case: time-dependent Ginzburg-Landau eq at linear level (from QNM computation 
of scalar at high temp)  
 
 
 
 
 
Recently, several attempts to determine the dual theory numerically

38

F = d 3x 1
4∫ |Diφ |2 −

1
2
(µ − µc ) |φ |

2 + 1
96
|φ |4 +!− (φJ † +φ†J )+ 1

4µm
Fij
2

Di = ∂i − iAi

Natsuume - Okamura, 1801.03154

−Γ−1∂tφ = 1
4
∂i
2φ − aφ +!

Γ = 2
5
(1+ 3i )

− 253− 336 ln2
82944
~0.00024

! "## $##
φ 6
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Magnetic susceptibility: QCD

Putting aside HSC, consider Einstein-Maxwell theory.  
The dual theory is N=4 SYM + U(1).  
Our computation of μ and χ themselves is valid there (in probe limit).

Just for fun, let us compare w/ QCD.

At high temp., paramagnetic like our case

But more careful comparison is necessary.

39
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Magnetic susceptibility: comparison

40

Bali et al., 1406.0269 [hep-lat]

0.2 0.4 0.6 0.8
T

2

4

6

8

10

χm

0.2 0.4 0.6 0.8
T

2

4

6

8

10

12
μm

diamagnetic paramagnetic
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Other applications of holographic semiclassical eq.

Similar story for bdy gravity. 

We have gravity in the bulk, but on the bdy., gravity is an external source and is not dynamical 
just like the Maxwell field:

Again, one can make it dynamical. Simply consider the following bdy EOM:

All quantities are bdy ones including G.

In general, it is not easy: one should solve the bulk eq and the semiclassical eq simultaneously.

But in principle, one can apply it to the probs of gauge theories w/ gravity, e.g. neutron star 
mergers and cosmology.

One recent application to cosmology:

41

δS = d 4∫ x hµν T µν hµν
T µν

: bdy graviton
: gauge theory EM tensor

Rµν − 1
2
gµνR = 8πG4 Tµν

Ecker - van deer Schee - Mateos - Casalderrey-Solana, 2109.10355
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Summary

In most applications of AdS/CFT, the Maxwell field is added as an 
external source.

One can make it dynamical by changing the BC on the AdS bdy 
(“holographic semiclassical eq”). 

As an application, we study the holographic Meissner effect.

In standard HSCs, there is no Meissner effect because the Maxwell 
field is nondynamical.

We show the Meissner effect analytically.

The magnetic penetration length & GL parameter take a nontrivial 
form due to the change of the magnetic const.

It is interesting to explore the other backreaction probs.

42

e.g. Ahn et al, 2211.01760
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Backup
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SAdS4 case

Restoring T, one gets

44

0.5 1.0 1.5 2.0
T

0.2

0.4

0.6

0.8

μm

0.2 0.4 0.6 0.8
T

- 1.0

- 0.8

- 0.6

- 0.4

χm

µm = e2

1+e2 / r0

χm = − e2 / r0
1+e2 / r0

e / g = 1
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Near upper critical magnetic field

We consider a small magnetic field. 

As one increases the magnetic field, more and more vortices are created, 
and they form a vortex lattice. 

Eventually, SC state is completely broken  
at the upper critical magnetic field Hc2. 

According to the GL theory,

 
B reduces by the amount | ψ |2 which implies Meissner effect. 

47

B = H −e2 |ψ |2
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Holographic semiclassical eq case

Impose the holographic semiclassical eq. I only quote the final result. 

For the bulk 4-dim (in the hydro limit q→0)  
 
 
 
cf. GL:

Once again,

At weak coupling e<<1, holographic result reduces to the GL result.

There is a nontrivial e→∞ limit unlike the GL theory.

This comes from the nontrivial magnetic const. The magnetic const. 
obtained here agrees w/ the small magnetic field case.

48

B = H − e2

1+e2
(numerical factors) O

2

B = H −e2 |ψ |2
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Critical magnetic field

Upper critical magnetic field:  
SC state is completely destroyed.

Critical magnetic field:  
 
Uniform |ψ| thermodynamically favored.

Lower critical magnetic field: Hc1 
Vortex begins to form.

For Type II or                 , Hc<Hc2 

For Type I, Hc>Hc2 
As one lowers H, ψ=0 remains as the supercooled state,  
and vortex is formed for H<Hc2.

51

Hc2 = a = 2κHc

Hc = e a
b

κ > 1 / 2

Hc

Type II
Hc2

Hc2

Type I
Hc

“supercool”

vortex

κ = b
2e2


