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Introduction

• Relativistic hydrodynamics: EFT description of the infrared behavior of any

relativistic medium with a conserved stress-energy tensor.

• Key organizational principle: gradient expansion around local thermal equilibrium.

• Pivotal tool to model real-world phenomena: high-energy nuclear collisions, neutron

star mergers...

• Venerable subject with plenty of open problems to explore!

å In this talk: the nature of the gradient expansion.

ä Past studies: general fluid flows in linear response regime & nonlinear comoving

flows.
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Motivation: where is relativistic hydrodynamics applicable?

The gradient expansion, truncated to low orders, can work successfully away from

local thermal equilibrium

First principles AdS/CFT studies crucial!

[Chesler & Yaffe, ’08, ’10, ’15] [Heller, Janik & Witaszczyk, ’11 ’12] [van der Schee, ’12]

[Casalderrey-Solana, Heller, Mateos & van der Schee, ’13] [Jankowski, Plewa & Spalinski, ’14]

[Chesler, ’15, ’16] [Attems, Bea, Casalderrey-Solana, Mateos, Triana & Zilhao, ’17 ’18] ...

hydrodynamization time

6=
local equilibration time

[Casalderrey-Solana, Mateos,

Rajagopal & Liu, ’11]

From arXiv:1610.02023 by Heller

What is the mechanism setting the applicability regime of RH?
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The gradient expansion in the linear response regime: momentum space

A mode ω = ω(k) is a singularity of the retarded two-point function G(ω, k) (k ≡ |k|)

ρ(t, k) ⊃ e−iω(k)t+ik·xJ(k)

Two classes:

? Hydrodynamic mode, ωH(k)→ 0 for k → 0 → long-lived & slowly varying pert.

? Nonhydrodynamic mode, ωNH(0) finite → transient pert.

Hydrodynamics predicts the small-k expansion of ωH(k).

Is it convergent?

Intense scrutiny in recent years in AdS/CFT [Withers, ’18] [Grozdanov, Kovtun, Starinets &

Tadic, ’19] [Abbasi & Tahery, ’20] [Jansen & Pantelidou, ’20] [Areán, Davison, Goutéraux &

Suzuki, ’20] [Baggioli, Gran & Tornso, ’21] [Wu, Baggioli & Li, ’21] [Asadi, Soltanpanahi &

Taghinavaz, ’21] [Grozdanov, Starinets & Tadic, ’21] [Jeong, Kim & Sun, ’21] [Huh, Jeong, Kim &

Sun, ’21] [Liu & Wu, ’21] [Cartwright, Amano, Kaminski, Noronha & Speranza, ’21]...

Common observation: the small-k expansion has a finite r.o.c.
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What is the mechanism setting it?

Overarching picture for AdS/CFT, and also MIS-like models and RTA kinetic theory

([Romatchske, ’15] [Heller, AS, Spalinski, Svensson & Withers, ’20]):

ä ωH(k) has branch point singularities in the complex k-plane.

ä The r.o.c. of the small-k expansion of ωH(k) is set by the branch point closest to

k = 0.

ä This branch point appears at the k ∈ C for which ωH(k) first collides with a

nonhydrodynamic singularity of G(ω, k).

The large-order behavior of RH

and nonhydrodynamic modes are deeply intertwined!
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ä Useful viewpoint: think of ωH(k), ω
(1)
NH(k), ω

(2)
NH(k),. . . as different sheets of a

unique Riemann surface.

å Analytic continuation allows to reconstruct the transient modes from the

hydrodynamic data! [Withers, ’18], [Grozdanov & Lemut, ’22]

From arXiv:1803.08058 by Withers
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The gradient expansion in the linear response regime: position space

What is the counterpart of these results in position space?

[Heller, AS, Spalinski, Svensson & Withers, ’20]

• The finite r.o.c. of the small-k expansion of ωH(k) implies the factorial divergence

of the position-space gradient expansion for generic fluid flows.

• If the momentum-space support of the flow is capped, there is no factorial

divergence, just geometric growth.

å See Ben’s Holotube talk in 2020 for a detailed discussion of these results!
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The gradient expansion in the nonlinear regime

• Beyond the linear response regime, past studies have been restricted to

(0 + 1)-dimensional comoving flows: Gubser flow & Bjorken flow.

τ =
√

t2 − x2

〈Tµν 〉 = diag (−E(τ),PT (τ),PT (τ),PL(τ))

PL = −E − τ Ė PT = E +
1

2
τ Ė

• Relativistic hydrodynamics predicts E(τ) in a near-equilibrium large-τ expansion:

E(τ) = τ−
4
3

(
ε2 + ε3τ

− 2
3 + ε4τ

− 4
3 + . . .

)
Is this a convergent series?
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Heller, Janik & Witaszczyk, 2013: computed series to large-order in N = 4 SUSY YM

in the ’t Hooft limit using AdS/CFT.

End result: factorial divergence!∣∣∣∣ εnε2

∣∣∣∣ 1
n

∼ n, n→∞

The large-order behavior of the hydrodynamic gradient expansion is again deeply

intertwined with the nonhydrodynamic transient sector!

E(τ) =
∞∑
n=2

εnτ
− 2n

3
Borel transform−−−−−−−−−→ Ẽ(ζ) =

∞∑
n=2

εn

n!
ζn

Ẽ has a finite r.o.c. governed by the lowest NH QNM at

k = 0!
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(Almost) universal picture for comoving flows in Müller-Israel-Stewart theories, kinetic

theory and AdS/CFT

ä The gradient expansion is factorially divergent.

ä The large-order factorial growth is governed by nonhydrodynamic d.o.f.

[Aniceto, Basar, Baggioli, Behtash, Buchel, Casalderrey-Solana, Cruz-Camacho, Florkowski,

Denicol, Dunne, Gushterov, Heller, Kamata, Kurkela, Jankowski, Meiring, Martnez, Noronha,

Ryblewski, Shi, Spalinski, Svensson ...]

Natural language: transseries and resurgent analysis

E(τ) = EH(τ) +
∑
q

e
− 3i

2
ω

(q)
QNM

(k=0)τ
2
3
τα

(q)E(q)
NH(τ) + . . .

å Hydrodynamic attractors [Heller, Spalinski, Romatschke, Brewer, Jefferson, Mitra, Mondkar,

Mukhopadhayay, Rebhan, Soloviev, Strickland, van der Schee, Wiedemann, Wu, Yan, Yin ...]

9



Outline

We need to bridge the gap between the studies of generic flows in the linear

response regime and the studies of nonlinear comoving flows

Demands novel computational techniques & novel conceptual insights!

In this talk, I will report novel progress in this direction:

• Part I will present the first explicit computations of the gradient expansion at the

nonlinear level for non-comoving flows [arXiv:2110.07621] (PRL).

• Part II will discuss a new perspective into the large-order behavior of the gradient

expansion based on singulants [arXiv:2112.12794] (PRX).
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The question we will address

• We work in the Landau frame,

Tµν = Tµνideal + Πµν , Tµνideal = EUµUν + P(E)(ηµν + UµUν), Tµν U
ν = −EUµ.

• For a CFT, Tµµ = 0 and

P(E) =
1

d − 1
E, Πµµ = 0.

• Classical hydrodynamics as an EFT is defined by the constitutive relations

Πµν =
∞∑
n=1

Π
(n)
µν(E,U) = −η σµν + . . . ,

which express the dissipative tensor as a gradient expansion in terms of the

hydrodynamic fields: energy density E and fluid velocity Uµ.

• The operational question we will focus on is the large-order behavior of the

gradient-expanded constitutive relations when evaluated on a particular fluid flow.

11



New explicit computations of the
gradient expansion



Longitudinal flows

• I will describe a new computational method to obtain the gradient expansion in

MIS-like theories.

• The method is valid for generic fluid flows. Case study: longitudinal flow in BRSSS

theory [Baier, Romatschke, Son, Starinets & Stephanov, ’07].

• Longitudinal flow: non-boost invariant dynamics confined to the t-x plane.

ds2 = −dt2 + dx2 + dy2 + dz2, E, Uµ = (cosh u, sinh u, 0, 0),

Πµν =


−2 sinh2(u)Π? sinh(2u)Π? 0 0

sinh(2u)Π? −2 cosh2(u)Π? 0 0

0 0 Π? 0

0 0 0 Π?

 .

• Three functions, E, u and Π? that only depend on t & x . For a conformal fluid, we

trade E for T ∝ E 1
4 .

• You can think of longitudinal fluid flows as nonlinear sound waves.
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BRSSS theory

Toy model: causal UV-completion of second-order RH.

Our perspective here: BRSSS as a mock microscopic theory.

Main idea: promote Πµν to a set of independent dynamical degrees of freedom,

(τΠ(T )UαDα + 1)Πµν = −η(T )σµν + . . .

Dµ: Weyl-covariant derivative [Loganayagam, ’08]

σµν : shear tensor (symmetric, transverse and traceless part of ∇µUν).

τΠ: relaxation time (∝ T−1)

η: shear viscosity (∝ T 3).

How do we compute the gradient expansion? å Recursion relations

t → t

ε
, x → x

ε
, Π?(t, x) =

∞∑
n=1

Π
(n)
? (t, x)εn

⇓

Π
(1)
? = −2

3
η∇·U, Π

(n+1)
? = −τΠ(U ·∇)Π

(n)
? −

3

2
(∇·U)τΠΠ

(n)
? −

λ1

η2

n∑
m=1

Π
(m)
? Π

(n+1−m)
? .
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The gradient expansion

Strategy:

1. Choose T (0, x), u(0, x) and Π?(0, x).

2. Solve BRSSS equations of motion numerically.

3. Evaluate gradient expansion using recursion relations and numerical solution.

We always find that the gradient expansion is always factorially divergent!
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The continuum limit

In practice, lattice discretization.

Recursion relation as matrix operation:

Π
(n)
? (t, x) −→ Π̃

(n)
? ij ≡ Π

(n)
? (ti , xj )

Π̃
(n+1)
? =MΠ̃

(n)
? , M =M(T , u)

Convergence:

• For fixed l.s., (Π̃
(n)
? )ij ∼ Λn. Λ:

largest M eigenvalue

• Λ→∞ as l.s. → 0: the factorial

growth at fixed n is recovered.

Nonlinear avatar of the

finite-momentum space support in

linear response!
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The case of the DN model

Denicol & Noronha, ’19: only known counterexample to gradient expansion being fact.

div. in Bjorken flow

When longitudinal boost-invariance is broken,

the gradient expansion becomes factorially divergent again
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Explanation: for Bjorken flow, Π
(1)
? is a linear combination of eigenfunctions of M!
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Take-home points

The nonlinear longitudinal flow results conform to the linear response insights!

ä The factorial growth of the gradient expansion does not need a factorial growth in

the number of transport coefficients with the order.

ä The factorial growth of the gradient expansion does need that the system supports

excitations of arbitrarily short wavelength: killed by k-space cutoff (linear) or

spacetime lattice (nonlinear).

Imposing special symmetries (e.g. boost-invariance)

might also halt the factorial growth
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Singulants: a new perspective on the
asymptotic behavior



The singulant field

In the previous example, the slope of |Π(n)
? |

1
n changes accross spacetime.

This slope is governed by an emergent collective field: the singulant (χ) [Dingle, ’74]

Π
(n)
? (t, x) ∼ A(t, x)

Γ(n + γ(t, x))

χ(t, x)n+γ(t,x)

|Π(n)
? (t, x)| 1n ∼ n

e|χ(t, x)| .

Remaining part of the talk:

1. Singulants obey simple equations of motion.

2. Singulants embody a duality between far-from-equilibrium relativistic

hydrodynamics and linear response around global equilibrium.

3. Singulants provide a proxy for optimal truncation order & error.
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Singulant equation of motion: the governing principles

1. Recursion relation approach: large order linearization & eikonalization

f =
∑∞

n=0 f
(n)εn (f k )(n) ∼ (kf (0))k−1f (n)

⇒
f (n) ∼ A Γ(n+γ)

χn+γ (εk∂α1 . . . ∂αk f )(n) ∼ f (n)(−1)k∂α1χ . . . ∂αkχ

2. Transseries approach: singulants as non-perturbative actions

f =
∞∑
n=0

f (n)εn +
∑
s

e−
χs
ε

∑
n=0

f̃ (s,n)εn + ....

Equivalent to 1., singulant e.o.m as WKB eikonal equation.

Important consequence: multiple singulants! f (n) ∼∑q Aq
Γ(n+γq)

χ
n+γq
q
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Singulants in phenomenological models: the BRSSS case

For longitudinal flows in BRSSS theory,

Uµ(t, x)∂µχ(t, x) = 1
τΠ(T (t,x))

χ(τ, σ) = χ(0, σ) +
∫ τ

0
dτ ′

τΠ(T (τ ′,σ))

Flow to thermal equilibrium: the real part of χ always increases!

Cross-check: use numerical computation of the gradient expansion.

Π? =
∞∑
n=1

Π
(n)
?

B.T.−−−→ Π
(B)
? =

∞∑
n=1

Π
(n)
?

n!
ζn

A.C.−−−→ Π̃
(B)
? (ζ)

Singulant: branch-point singularity of Π̃
(B)
? .

In practice: use Padé approximants to perform analytic continuation.
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Singulants and the optimal truncation of the gradient expansion

|χd | ≤ |χ2| ≤ |χ3| ≤ . . . χd : dominant singulant

Estimate: nopt.,est. = [|χd |]

• Dominant singulant moves toward the right in the Borel plane: nopt.,est. increases.

• Leads to a truncation order & error that tracks down the optimal ones correctly!

Singulants govern the optimal truncation of the gradient expansion in BRSSS theory

ξ(t) =
∫ t

0
dt′

τΠ(T (t′,0))
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Singulants in phenomenological models & and linear response

The singulant equation of motion is dual to linear response theory problem

e.o.m Π? + Π? = λδΠ?e iqµX
µ

+ T (t, x) & Uµ(t, x) → T0 & Uµ0
⇓

Dispersion relation for qµ, q0 = q0(q).

The map

T0 → T (t, x), u0 → u(t, x), iqµ → −∂µχ

transforms this dispersion relation into the singulant equation of motion!

Important: might or might not be equivalent to the computation of the sound modes
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Singulants and linear response in BRSSS theory

• Π? fluctuations @ fixed T0 & u0 ,

iτΠ(T0)Uµ0 qµ + 1 = 0
map−−−−−−→ τΠ(T (t, x))Uµ(t, x)∂µχ(t, x)− 1 = 0

• Sound channel modes,

T0(iτΠ(T0)ω + 1)(3ω2 − k2)− 4i
η

s
ωk2 = 0, ω = −Uµ0 qµ, k = −Zµ0 qµ.

• One NH mode with ωNH(k = 0) = − i
τΠ(T0)

: solves original Π? fluctuation problem!

For any longitudinal flow in BRSSS theory, singulants are governed by the

nonhydrodynamic sound mode evaluated at k = 0 and at the local temperature.

The movement of χ toward the right in the Borel plane is the far-from-equilibrium

counterpart of the decay of the nonhydrodynamic fluctuations around thermal

equilibrium.
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Towards AdS/CFT: a new phenomenological model

• BRSSS theory: singulant dynamics determined by ω(NH)(k = 0). Reason: e.o.m for

Πµν contains only UµDµ.

å Not generic: it will not happen in AdS/CFT!

• Toy model example of the general case: generalization of the HJSW model

[Heller, Janik, Spalinski & Witaszczyk, ’14]((D
T

)2

+2ΩI

(D
T

)
+|Ω|2− cL

2T 2

[
∆α
µ∆β

ν+∆α
ν∆β

µ−
2

3
∆µν∆αβ

]
(∆ρσDρDσ)

)
Πµν=

−η(T )|Ω|2σµν + . . .

å Causal and stable for linearized perturbations of thermal equilibrium (all channels)!

å Phenomenological utility?
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ä Singulant e.o.m. in a longitudinal flow & dispersion relation of associated linear

response problem,

U(χ)2−cLZ(χ)2−2ΩITU(χ)+|Ω|2T 2=0 & −ω2+cLq2−2iΩIT0ω+|Ω|2T 2
0 = 0.

Z = Zµ∂µ : unit-normalized & orthogonal to U

ä Sound channel dispersion relation,

(
−ω2−2iT0ΩIω+cLq2+T 2

0 |Ω|2
)(

ω2−1

3
q2

)
+

4

3

η

s

(
T0|Ω|2−icσω

)
iωq2 = 0.

å Equivalent iff Z(χ) = 0 (q = 0 under the map).

In general MIS-like models, the singulant dynamics is not governed by ω(NH)(k = 0)

for general longitudinal flows!

Exception: Bjorken flow
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We have confirmed our predictions by explicit numerical computations:

factorial divergence with right singulant e.o.m
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Singulants and γs

What is the physical meaning of the linear response problem?

• In any four-dimensional conformal fluid, sound channel modes obey

[Grozdanov, Kovtun, Starinets & Tadic, ’19]

ω2 + iωq2γs(ω, q2)− q2

3
= 0.

ä γs : momentum-dependent sound attenuation length. Microscopic theory observable!

δΠ̂?(ω, q) =
2

3
E0γs(ω, q2)iqδû(ω, q).

In MIS-like models, the singulant e.o.m is set by the poles of γs

γBRSSS
s =

4
3
η
s

T0(1− iτΠ(T0)ω)
, γgHJSW

s =
4
3
η
s

(
T0|Ω|2 − icσω

)
−ω2 − 2iT0ΩIω + cLq2 + T 2

0 |Ω|2
.

In the final part of the talk, we will argue that this is also true in AdS/CFT...
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AdS/CFT: the geometry dual to a longitudinal flow

What is the bulk dual to a longitudinal flow?

å The gradient expansion of Π? follows directly from the near-boundary behavior of

the gradient expansion of the metric: fluid/gravity.

ä Metric ansatz [Bhattacharyya, Loganayagam, Mandal, Minwalla & Sharma, ’08],

ds2=−2Uµ(X )dXµ(dr+Vν(r ,X )dXν)+Gµν(r ,X )dXµdXν , GµνUµ = 0.

ä Flow-adapted boundary coordinate system, X = (τ, σ, x1
⊥, x

2
⊥),

dh2 = −e2a(τ,σ)dτ2+e2b(τ,σ)dσ2+d~x2
⊥, Uµ∂µ = e−a(τ,σ)∂τ & Zµ∂µ = e−b(τ,σ)∂σ .

Vµdxµ = Vτdτ + Vσdσ, Gµνdxµdxν = Σ2

(
e−2Bdσ2 + eBd~x2

⊥

)
ä IR b.c.: infalling. UV b.c.: dh2 boundary metric + Landau frame (Vσ,2 = 0).

ä Holo. ren.: Π? = B4.
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AdS/CFT: the gradient expansion of the metric

1. Divide Einstein equations into dynamical equations & constraint equations.

ä Dynamical equations: Πµν = Πµν [E,U]. AdS/CFT analogue of Πµν e.o.m. in

MIS-like models.

ä Constraint equations: ∇µTµν = 0.

2. Introduce the auxiliary bookkeeping parameter ε into the dynamical equations,

τ → τ

ε
, σ → σ

ε
, ~x⊥ →

~x⊥
ε
, r → r .

3. Introduce the formal power series ansatze

Vτ =
∞∑
n=0

V
(n)
τ εn, Vσ =

∞∑
n=0

V
(n)
σ εn, Σ =

∞∑
n=0

Σ(n)εn, B =
∞∑
n=0

B(n)εn,

into 2. and expand around ε = 0.

1+2+3: recursion relations for the gradient expansion of the metric.
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Singulants in AdS/CFT

• We solve the recursion relations for the metric with the singulant ansatz

V
(n)
τ (r , τ, σ) ∼

∑
q

V̄τ,q(r , τ, σ)
Γ(n + γVτ ,q(r , τ, σ))

χq(r , τ, σ)n+γVτ ,q(r,τ,σ)
, etc.

• Main assumption: same χ for Vτ , Vσ , Σ & B.

å Main consequence: χ is independent of r .

End result: eigenvalue problem for U(χ)!

∂
2
r V̄τ+

4∂r V̄τ

r
+

2V̄τ

r2
− 2ea−bZ(χ)

3r2
∂r V̄σ−

2ea−bZ(χ)

3r3
V̄σ−

eaZ(χ)2

3r2
B̄ = 0,

∂
2
r B̄+

(
1

r
+

4r

f (0)
− 2U(χ)

f (0)

)
∂r B̄−

(
3U(χ)

rf (0)
+

Z(χ)2

3r2f (0)

)
B̄− 2e−bZ(χ)

3r2f (0)
∂r V̄σ−

2e−bZ(χ)

3r3f (0)
V̄σ = 0,

∂
2
r V̄σ +

∂r V̄σ

r
− 4V̄σ

r2
+ 2ebZ(χ)∂r B̄ = 0.

f (0): (part of) 0-th order solution, set by local E
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Analogous properties to MIS-like models!

ä Ultralocal in the boundary directions: at (r ,X ): depend on collective fields @ X , do

not depend on their boundary spacetime derivatives.

ä Provided that E, U, and Z(χ) are known at X , the eigenvalue problem can be

solved to find U(χ).

Is this eigenvalue problem related to the poles of γs?

å How do we compute γs in Holography?
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The computation of γs in AdS/CFT

γs can be computed in all-orders linearized hydrodynamics

[Bu & Lublinsky, ’14]

• Exact constitutive relations of shear & sound channel in linear response:

E = E0 + δE, U = ∂t + δ~u · ~∂, Πµνdx
µdxν = δΠijdx

idx j ,
δE
E0
, |δu|, δΠij

E0
� 1

δΠ̂ij = −η(ω, k2)σ̂ij − ξ(ω, k2)π̂ij ,

σ̂ij =
i

2

(
kiδûj + kjδûi −

2

3
δijklδû

l

)
, π̂ij = −i

(
kikj −

1

3
δijklk

l

)
kmδû

m,

ä η & ξ: momentum-dependent transport coefficients. Computed by solving a system

of four coupled radial ODEs in a black brane background.

ä 2E0γs = η − k2ξ.

å Bu & Lublinsky construction can be adapted right away!
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New results for γs @ complex ω & k

ä γs : meromorphic function of ω @ fixed k. Real k: Christmass tree of poles.

ä ∼ but 6= QNM (agreement at k = 0 only).
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Poles of γs : a new eigennvalue problem

P′′ +
P′

r
− 4P

r2
− 2ikQ′ = 0,

Q′′ +
f + 4r2 − 2irΩp

rf
Q′ +

k2 − 9iΩpr

3r2f
Q +

2ik

3r2f
P′ +

2ik

3r3f
P = 0,

f = r2 − µ4r−2

Dual to the singulant e.o.m!

Map: P → ±e−bV̄σ, Q → B̄, µ→ rh, Ωp → −iU(χ), k → ±iZ(χ)

å Large-order factorial growth for the gradient expansion in longitudinal flows is

self-consistent in AdS/CFT.

ä Natural expectation based on MIS-like models results: factorial growth would show

up!

ä Still needs to be checked (any volunteers?)
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Take-home points

• The asymptotic behavior of the gradient expansion simplifies dramatically at large

order: singulants.

• Useful notion in MIS-like models and holography (see the paper for RTA kinetic

theory).

• Singulants generalize nonhydrodynamic QNM far-away from thermal equilibrium:

simple e.o.m dictated by linear response.

• Singulants are intimately connected to the emergence of an optimal truncation of

the gradient expansion.
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Open questions

Many open questions & avenues for further exploration!

New explicit computations and analytic insights required!

• Is there a systematic way of relating the initial conditions for the singulant fields to
the initial data?

å Partial progress in the linear response regime (see backup slides!).

Can we utilize this putative relationship to place constraints on the

hydrodynamization time at a given spacetime point?

• Singulants beyond longitudinal flows.

• Singulants in other formulations of the hydrodynamic gradient expansion? Map

between singulants in different formulations?

• Singulants in non-relativistic hydrodynamics.

• Novel uses of singulants in other perturbative expansions (e.g. large D)?
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Many thanks for your time!
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Backup slides
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Backup slides for singulants



AdS/CFT: γs for real ω and k
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Matching singulants to initial data in the linear response regime: a BRSSS
example

• The fluctuations,

T (t, x) = T0 + λ δT (t, x), u(t, x) = λ δu(t, x), Π?(t, x) = λ δΠ?(t, x),

• The recursion relations,

δΠ
(1)
? =

2

3
η(T0)∂xδu, δΠ

(n+1)
? =−τΠ(T0)∂tδΠ

(n)
? .

• The solution in Fourier space,

δu(t, x) =

∫
R
dk e ikx

∑
q=+,−,NH

δuq(k)e−iωq(k)t , . . .

• Individual modes decouple at the level of the recursion relations,

δΠ
(1)
? (k) =

2

3
η(T0)ikδuq(k), δΠ

(n+1)
? (k) = iτΠ(T0)ωq(k)δΠ

(n)
? (k).

• Closed-form solution,

δΠ
(n)
? (k) =

2

3
η(T0)inτΠ(T0)n−1ωq(k)n−1kδuq(k).
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• Assumption: the analytical continuation of the Borel transform of the gradient

expansion,

δΠ
(B)
? (t, x ; ε) =

∞∑
n=1

δΠ
(n)
? (t, x)

n!
εn,

has a well-defined Fourier transform, δΠ
(B)
? (t, k; ε).

– The contribution of the q-th mode is

δΠ
(B)
?,q(t, k; ε) =

2η(T0)(e iετΠ(T0)ωq(k)−1)

3τΠ(T0)ωq(k)
kδuq(k).

• Main hypothesis: when the Fourier integral∫
R
dk e ikx

∑
q=+,−,NH

δΠ
(B)
?,q(t, k; ε)e−iωq(k)t

ceases to exist for a particular ε = εs , the original analytically continued Borel

transform δΠ
(B)
? (t, x ; ε) becomes singular. εs gives the value of the singulant.

• The convergence depends on: i) the large-k behaviour of the initial data, which

determines the large-k behaviour of δuq(k) and ii) the large-k behaviour of the

mode frequencies.
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• Example: Lorentzian initial data

δu(0, x) = δΠ?(0, x) = 0, δT (0, x) =
α

π(x2 + α2)
, δT (0, k) =

1

2π
e−α|k|.

– The Fourier integral ceases to be well-defined whenever the argument of

exp(i(ετΠ(T0)− t)ωq(k) + ikx − α|k|)

vanishes as |k| → ∞ along the real axis.

– Prediction: εs = χ+, χ−, χ?+, χ
?
−,

χ± =
T0t

τΠ,0
± T0x

τΠ,0cUV
+ i

αT0

τΠ,0cUV
.
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The prediction matches precisely the singulants extracted from an explicit

computation of the gradient expansion!
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