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Outline

Overture: black holes, scrambling, chaos, replicas,
factorization, (half-)wormholes... Connect the buzzwords!

Is the factorization problem more general than
holography?

Factorization in non-perturbative string theory: type IIB
(IKKT) matrix model [2203.10697]

Dynamics, chaos and OTOC in type IIB matrix model

Relation to proper quantum chaos and random matrices
[2202.09443]
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Hawking result _~

Page curve

Page curve of an Sum over saddles,
evaporating black hole including wormholes

Almheiri, Hartman, Maldacena, Shaghoulian,
Tajdini 1911.12333; Penington, Shenker,

Stanford and Yang 1911.11977
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The factorization puzzle

* Remember AdS/CFT:
gravity partition function = CFT partiton function

* Wormholes ruin the factorization:

| =n 0 = 0 o -

- We can live with but we do expect
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Factorization and averaging

* Remember AdS/CFT:
gravity partition function = CFT partiton function

* Wormholes ruin the factorization:

=] M 0 0 -

» We can easily have [/ineay A
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Where does averaging come from?

* Averaging over what?

* Is the average fundamental (over quenched disorder) or
emergent (coarse-graining or time binning)?

=] M 0 0 -
‘
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* Many ideas: 2008.08570, 2103.16754, 2105.02129, 2105.08270,
2107.13130, 2110.06221, 2111.07863, 2111.11705, 2202.01372,
2203.09537, 2211.09398 ...
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; Averaging and type |IB matrix model

¢
* The matrix formulation of type IIB string theory -
Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) model

* Perfect testing ground for our puzzle:

- rich dynamics, including brane configurations (full
nonpertrubative string theory?)

- 0-dimensional — no derivatives — simpler path integral
structure than dynamical models

* Inspired by the 0-dimensional (time-frozen) SYK model
(Saad, Shenker, Stanford & Yan [2103.16754])




4D

IKKT model

,_39 '

* Discretization of the Schild action for type IIB string theory
in O dimensionS'

C - - bosonic coordinates — NxN Hermitian matrices

— Majorana-Weyl spinors — NxN Hermitian matrices
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IKKT model

1\ Y \j \ .

* Discretization of the Schild action for type IIB string theory
in 0-dimensions

* Original papers: IKKT [hep-th/9612115]; H. Aoki, IKK & T. Tada [hep-
th/9802085]; I. Chepelev, Y. Makeenko & K. Zarembo
[he-pth/9701151]

°* Review: K. L. Zarembo, Yu. M. Makeenko, An introduction to matrix
superstring models, Physics-Uspekhi 41, 1, (1998).

)
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¥ Action and equations of motion

* Discretization of the Schild action for type IIB string
theory:

* Euclidean signature: well-defined partition function but not
always real in presence of fermions:

* Lorentzian signature: always real but not positive definite N

because of the time component — sign problem
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Dp-brane solutions

* Remember: IIB string theory has Dp brane excitations with
odd: - D-instantons, =88~ strings, etc.

* D-instantons - points in spacetime as elementary degrees
of freedom; any configuration is a collection of N
instantons

* Single Dp brane solution of the matrix model (IKKT 1997,
Aoki, IKK, Tada & Tsuchiya 1999):

- Hermitian random matrices with compactification
radius and eigenvalues bounded as [(ESNYESS

j=1...N
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D-string solutions

* For our purposes a D-string is good enough:
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Averaging regimes

* Divide the fields into slow (quenched, semi-classical) and
fast degrees of freedom (here given for bosons):

eXp IKKT [ AM + au ])

elliminate a,

elliminate 4,
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Averaging regimes

* Divide the fields into slow (quenched, semi-classical) and
fast degrees of freedom (here given for bosons):

elliminate a,

S wxrl A +a,]

elliminate 4,
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Averaging regimes

* Divide the fields into slow (quenched, semi-classical) and
fast degrees of freedom (here given for bosons):

7
d >
.

elliminate a,

elliminate 4,
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Annealed D branes

* Divide the fields into slow (quenched, semi-classical) and
fast degrees of freedom (here given for bosons):

exp

* Integrate over the slow pseudorandom matrices Bl —
study the configurations of averaged over "disorder"

: are random Hermitian matrices with eigenvalue cutoff
ESWWA (Gaussian or hard — no matter)

 Partition function summed first over slow and then over
fast variables:

= [ Dla,|[ D[4,]exp(-S[4,+a,]] > [ D|a,|exp(—S,q
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"‘ D branes in presence of disorder —

- v

8) | -

the big issue

* Big issue: Does the replica partition function factorize? This

Means.

(Z") ?2=~? (Z)" + small corrections

* Relevant both in the context of AdS/CFT and in general

*The plan: compute vs. (ARVARVA,

* Quenched or annealed it doesn't matter here — can detect

the nonfactorization either way (see Engelhardt, Fischetti,
Maloney 2007.07444)

!
a
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Collective field formalism

* The trick: collective fields - used for SYK and similar
models (Sachdev et al 2017, Saad-Shenker-Stanford-Yao
2103.16754)

(z)=[ Da, [ Dn,| Dgexp|—a! P’a,~ 4

_2(Trg—TraLaM) 6(g—aztau
<Z>=f DaMJ.DkJDgJ.DseXp —aiPzau— 2N_2(Trg—Trazlau)—is(g—ala‘u)

1
<Z>:f Dgf Ds exp —Elogdets—isg—LzN_zTrg



Four replicas

Replicas L, R, L', R’

Two- and four-field combinations for bosons:

- _ [ 1 ' r—[ 711 1
G pp=0,0,05 05 A, BeEL R, A B'EL R

Two-field combinations for fermions: yABE%alaB,yAB,E—

Effective action:

1 8
. ng—_logdetS4B+_10gdetSA gt logdetSAAB 318 448 8'G 445 +L 211 g, Tr gpp—

« Hubbard-Stratonovich fields BEYE TR TRy Y

*Wormhole coupllngs O;p, O ip
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Four replicas - solutions

Trivial solution:
Wormbhole:

Half-wormhole:
Wormhole + half wormhole:

Full expressions for solutions and partition functions +
fermionic contributions can be found in [2203.10697]
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M The factorizing solution is prefered

Trivial saddle: trivially factorizing

WH saddle: non-factorizing
HWH saddle: factorizing
WH+HWH saddle: factorizing

" b
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L Numerical check: the four-replica actlon % (blue - analytical, red -
8 numerical) vs. 4 single copies (black dashed)
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Non-BPS effective actions and
factorization

* Single-replica:

2(1+cos’0)  [?

Siff:—%logdetsz(sz—sin26K2§2)+Tr isg+iCj+2mj+ TN g+Esin26K2g

j=sin6(agK a3+aOKaz)

S!e=2 N*log L+ N*log 4 L|(1+cos>0+/*sin’6)sin 6|
* Four replicas: YRR NIy

! . 1 :
Sf:f‘f' 1>=—§10g detsiB(SjB—mnzGKszB)

(4,2) _ . . . ) 2 ( o) a2 2 )
Ser =Tr|is,, 8.u*iCup JustiS 1up 5 G aupgp ¥ Siup 5 \Saupp—SIN 0K T, pp

2 4
:WTrgAATrgBIB 72N —v=7 11 G 55

)| S =2 nN?log L+nN> 10g4L[ 1+cos*0+/"sin G)Sine} o
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3: factorization

v
’ &
.

o

* Single-replica:

1 202 .2 2.2 : e . . 2(1+C0829) I ., 2
S &——logdets (s —sin"O K" T D Tr ng+lC]+2w]+Tg+Esm 0K g

j=sin6(agK a3+aOKaz)

S.:=2 N’log L+ N’log 4L[(1+cosze+lzsin26)sine] DomlpanF
. BT - contribution to
Four I‘ep|lcaS- Seit =S off +Seff +Seff for any n

: Elog dets’z(s25—sin’0K>Top)
S =T 90008 G S e @ i S il i = B LG
9 I
Seff 2nN’log L+nN° log4L[ 1+cos”0+/°sin G)Sine} Q

2 4

Seff _L2N_2 TrgAATrgB’B' LzN 4TrGAABB




¥/)

-
3 "

<

S

¥

. Interacting vs. non-interacting

* Non-interacting [ER case is nearly identical to the
) (£ single-string case
i
:
* Outcome: in all cases the optimal (minimal-action)
solution factorizes.

* Trivial factorization in interacting systems vs. nontrivial in
a BPS-protected system
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The confusing terminology of
gquantum chaos

Anyone who uses words "quantum*
and "chaos" in the same sentence
should be hung on a tree in the park
behind the Niels Bohr institute!

Boris A. Chirikov, Ups. Fiz.
" Nauk 71, 112, (1973).
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<) Factorizing solutions have chaotic
X level statistics

* Trivial saddle: trivially self-averaging, factorizing, regular

* WH saddle: self-averaging, regular

« HWH saddle: factorizing, chaotic

* WH+HWH saddle: self-averaging+factorizing, chaotic

‘lllli{iﬁii!inﬂ..-l 10 0

e |

A

1

S

WH - regular HWH - chaotic WH+HWH - chaotic

Black - Poisson, Red - Gaussian Unitary Ensemble
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Dynamics in the IKKT model

Lorentzian signature EAa3NWaIERIRARIRRACSIAHAPRETRIN]

1,
‘( * Zero-dimensional — no time. How to introduce dynamics?
= |+ Type IIB * Quenched Eguchi-Kawai

* Annealed regime * Quenched regime

The correlations between * The commutator
the eigenvalues of and acts as discretized time
lead to dynamics derivative:
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2 Dynamics in the IKKT model

- Lorentzian signature EENIEENEINERE A

17,
‘!: * Zzro-dimensional =.no time. How to introduce dynamics?
= |+ Type IIB » Quenched Eguchi-Kawai

* Annealed regime * Quenched regime

* The correlations between * The commutator
the eigenvalues of and acts as discretized time
lead to dynamics derivative:
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Dynamics in type |IB string regime

* Proposed originally for cosmological applications
(Nishimura, Tsuchiya, Kim, Ito, 1108.1540; 1311.5579)

- Consider as the "time operator” and its eigenvalues
as discrete time increments:
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Dynamics in type |IB string regime

Proposed originally for cosmological applications
(Nishimura, Tsuchiya, Kim, Ito, 1108.1540; 1311.5579)

Consider as the "time operator” and its eigenvalues
as discrete time increments:
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Dynamics in type |IB string regime

- 'Can consider dynamics as the series [I(BEINEN

nXxn

* Numerical result (first found in 1108.1540): off-diagonal
elements in a typical operator g decay rapidly

when for some
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Dynamics in type |IB string regime

- 'Can consider dynamics as the series [(BEINEN

nXxn

* Numerical result (first found in 1108.1540): off-diagonal
elements in a typical operator g decay rapidly

when for some
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4

* Theusual definition of TOC and OTOC applied to matrices
Qelelo]geigEIIS X =4,, Y=4, )k
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(O)TOC intype IIB regime

* Crucial analytical trick: separation into diagonal elements
=941 and off-diagonal elements EffpZ

* Schematically:
TOC :Zl:l |QI+i|2|pi|2+Z

OTOC=2, _ lgq,.L|p.l+

+Z, ,j=1 (Q}k+ip]+j_C'C°)(r)\é'?)1+i,i+

g, Pl P+

V2T

i,j=1 i,j=1
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(O)TOC in type IIB regime

* Crucial analytical trick: separation into diagonal elements
=941 and off-diagonal elements EffpZ

* Schematically:
TOC :Zl:l |QI+i|2|pi|2+Z

OTOC=2, _ g, |p.l+

+),

g, Pl P+

|p | |xl+l I+ 2+"'

i,j=1 i, j=1

(q;z'puj_C-C-)(rf'y)]ﬂ',i"'Z-, =

i,j=1
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0 Non-equilibrium dynamics and no
maximal chaos

n .
"|2+2 Zi, i=1 |pi|2 |xl+i,]+j|2+ subleading

From numerics and large N
CIEe TN (| ,..|°), (| p,..I") ~exp(rt,)

* Tempting to claim g as the Lyapunov exponent but...

*This is completely wrong! Remember the exponentially
growing term comes from TOC, not OTOC!

* Non-stationary TOC: no equilibrium solution, the
geometry is non-stationary (in some contexts interpreted
cosmologically)




*- Non-maximal chaos from Monte
| Carlo numerics

-1.5 -1 —05 0 05 : -15-1-05 0 05 1 1.5
t t
Regular exponential growth of Zoom-in onto the slow
TOC ([H@l, blue), absence of (sub-exponential) growth
exponential growth of OTOC of OTOC, the signature of
(feH@). red) and their (doubled) weak chaos
| difference ([&l@l, violet)
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. Non-maximal chaos from Monte
Carlo numerics

;

e " C, (t)~const.

I I
N}

|
oo

=
~~
)
ht
O
-
)
~
=
O
O
o0
o
—

Log-linear plot confirming the Log-log plot of OTOC and
exponential trend (black rescaled TOC (by the
dashed line - exponential fit) exponential growth
' function) - power-law
B growth of OTOC appears

OUrmss e R o5 3y
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Annealed or quenched?

Saddle points and factorization can equivalently be
considered either in annealed or in quenched regime but
the OTOC differs!

* Reason: OTOC is an expectation value!

* Saddle-point solutions:

* Correlation functions:

° Annealed: effectively sum over all saddle point solutions
for FJ and

Quenched case = Eguchi-Kawai discrete Yang-Mills
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Is there a morale to the story?

* ~Factorization is obtained generically in the IKKT matrix
model of type IIB string theory, independently of AdS/CFT

7
/ é
(

* There are non-factorizing (wormhole) solutions but the
dominant saddle is always factorizing (half-wormhole)

* Eigenvalue spectrum: chaotic < factorizing saddle

* OTOC: maximal chaos « quenched -» dominant saddle -
factorizing — realized in Eguchi-Kawai discrete Yang-Mills

* OTOC: weak chaos < annealed —» sum over saddles -
factorizing and non-factorizing
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Dynamics in the IKKT model

- Lorentzian signature EENIEENEINERE NI

17,
‘!: * Zero-dimensional — no time. How tJ introduce dynamics?
= |+ Type IIB » AQuenched Eguchi-Kawai

* Annealed regime * Quenched regime

* The correlations between * The commutator
the eigenvalues of and acts as discretized time
lead to dynamics derivative:
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OTOC in quenched EK regime

i

* Collective field formalism in fixed background allows the
analytical treatment of the Schwinger-Dyson formalism
(Kitaev 2015 and many others):

S:Tr[—%ai(Pzéw+2FHV a\,—Ech—2(P“‘azu_)(a!v a\,)—%[au, a\,}z >

1 2 3 c 0 1 1 2
- Tr|——logdet|P"+2 F + +i2|—iXog——— (P + P) +log det P
4 0% 2L *® 8=2VI € “av Te*s =

* Collective field @ and the Hubbard-Stratonovich field

 Original fields integrated out

* ~Saddle-point equations:
aSeff

og
aSeff

. 3 2 3 .
=i >+——det|P 2 F+——o+i>
8V L 2JL®

—ig—z det| P +2F+23_
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OTOC in quenched EK regime

* Saddle-point equations:

* Large-N solution along similar lines as SYK model
(perturbatively in large N and the cutoff):
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haos in quenched EK
regime

* OTOC from the sum of ladder diagrams:
1/4

Ol s 27|:LTt £(1)

7

4
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Maximal ¢
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* In IKKT/EK model this is a zero-temperature calculation.

No clear way to put IKKT at finite temperature. But...

* Duality with BFSS model at temperature compactified
along one direction on radius 4 :

B,~»B' =B [L"

’ 1 L N
Susi=fydt[-(0.8,F+4[8, 8|S BF 80, 5 P

B=N/L, T=LIN
C(t)=exp2nTt|f(t)
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- aximal chaos in quenched EK
regime

* Maximal chaos reconstructed for the discretized strongly
coupled Yang-Mills:

C(t)=exp2nTt|f(t)

* The N/L (i.e. T) scaling of the result hinges crucially on
not integrating over the couplings
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Few body systems: chaos VS
statistics

Large N quantum field theory is
not quantum mechanics!

Dragan Markovic

[arXiv:2202.09443[hep-th]] FF Belgrade
Large N QFT: mean field QM: no mean field:
Gravity dual No gravity dual
Self-averaging over the chaotic Self-averaging only possible
dynamics or over background over the chaotic dynamics
fields
Factorization expected Factorization expected

'

———7_
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Bose-Hubbard chain

The motivation: is gravity crucial for (non)factorization?

* Apparently no! As long as the system is big and level
statistics is Wigner-Dyson the n-replica partition function

factorizes: [4N304

« The Hamiltonian:
+ U
b, +b, by, +72k n,(n,—1)

« The appropriate regime to compare to the large-N IKKT
model: quasiclassical limit ERENATYIN NSNSV S T

e~ . O
H==T %, [iawlr— 2wl 2w f=1

H=-J), |b;

k+1
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Bose-Hubbard chain

« The motivation: is gravity crucial for (non)factorization?

* Apparently no! As long as the system is big and level
statistics is Wigner-Dyson the n-replica partition function

factorizes: [4N304

FittedModel | 1.445721¢' 221472

Light green:

Dark green:

U=10
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; Strong chaos in the BH model
P

W Factorizing solution is the chaotic solution

!’{.,
1 * High-U regime, strongly nonintegrable

FittedModel | 14452125147

Red: Wigher-Dyson

N(s)~s’exp(—mns’)

Black: Poisson

N(s)~exp(—s)
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Bose-Hubbard chain

= ° LowU, near-integrable regime

fo
y

* No factorization

Blue:

Magenta:

U=1
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OTOC for strong vs weak chaos

Strong chaos Weak chaos

log OTOC,=c,+c,/T" log OTOC, =c, +c,/T
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