Covariant Prescriptions for Holographic Entanglement

Veronika Hubeny

Physics Department \& center for Quantum Mathematics and Physics
In part supported by

Holo Tute oct.18, 2022

AdS/CFT after 25 years

String theory (gravity) \Longleftrightarrow field theory (no gravity)

"in bulk" = higher dimensions
describes gravitating systems, e.g. black holes

"on boundary" = lower dimensions describes experimentally accessible systems

Invaluable tool to:
~ Study strongly interacting field theory (hard, but describes many systems) by working with higher-dimensional gravity on AdS (easy).
~ Study quantum gravity in AdS (hard, but needed to understand spacetime) by using the field theory (easy for certain things)

Pre-requisite:

We need to understand the AdS/CFT dictionary...

- How does bulk spacetime emerge from the CFT?
- Which CFT quantities give the bulk metric?
- What determines bulk dynamics (Einstein's eq.)?
- How does one recover a local bulk operator from CFT quantities?
- What part of bulk can we recover from a restricted CFT info?
- What bulk region does a CFT state (at a given instant in time) encode?
- What bulk region does a spatial subregion of CFT state encode?
- (How) does the CFT "see" inside a black hole?
- (How) does it unitarily describe black hole formation \& evaporation process?
- How does it resolve curvature singularities?

Recent hints / expectations: entanglement plays a crucial role...

Entanglement Entropy (EE)

Suppose we only have access to a subsystem A of the full system $=A+B$. The amount of entanglement is characterized by Entanglement Entropy S_{A} :

- reduced density matrix $\quad \rho_{A}=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|$
(more generally, for a mixed total state, $\rho_{A}=\operatorname{Tr}_{B} \rho$)
- EE $=$ von Neumann entropy $S_{A}=-\operatorname{Tr} \rho_{A} \log \rho_{A}$
- e.g. in local QFT:
A and B can be spatial regions, separated by a smooth entangling surface

The good news \& the bad news

- But EE is hard to deal with...
- non-local quantity, intricate \& sensitive to environment
- difficult to measure
- difficult to calculate
... especially in strongly-coupled quantum systems
- AdS/CFT to the rescue?
~ Is there a natural bulk dual of EE?
(= "Holographic EE")

bulk ?

Yes! - described geometrically...

Motivation

- Holography:
- Tool to elucidate quantum gravity -- dictionary?
- Entanglement:
- Expected to underlie bulk spacetime emergence -- how?
- Usefully characterized via entanglement entropy -- underlying structure?
- \rightarrow Reformulate holographic entanglement entropy (HEE)
- General covariance:
- Required for any physical quantity
- Needed to probe time dependence
- Complementary toolkit; breaks degeneracy
- May yield crucial insights

OUTLINE

๔ Motivation

- Background
- Setup \& Toolkit

- Surfaces
- Threads
- Expectations
- Results
- Summary

RT and HRT

Proposal [RT=Ryu \& Takayanagi, 06] for static configurations:

In the bulk, entanglement entropy $S_{\mathcal{A}}$ for a boundary region \mathcal{A} is captured by the area of a minimal co-dimension-2 bulk surface \mathfrak{m} at constant t homologous to \mathcal{A}

$$
S_{\mathcal{A}}=\min _{\partial \mathfrak{m}=\partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{m})}{4 G_{N}}
$$

In time-dependent situations, RT prescription needs to be covariantized: [HRT = VH, Rangamani, Takayanagi $\left.{ }^{\circ} \mathrm{O}\right]$
minimal surface \mathfrak{m} at constant time

extremal surface \mathfrak{E} in the full bulk

Entanglement wedge

- Boundary spacetime partition from entangling surface $\partial \mathcal{A}$:

$$
\partial \mathcal{M}=D[\mathcal{A}] \cup D\left[\mathcal{A}^{c}\right] \cup I^{-}[\partial \mathcal{A}] \cup I^{+}[\partial \mathcal{A}]
$$

- Induces a corresponding partition into 4 bulk regions from $\mathfrak{E}_{\mathcal{A}}$:

$$
\mathcal{M}=\mathcal{W}_{E}[\mathcal{A}] \cup \mathcal{W}_{E}\left[\mathcal{A}^{c}\right] \cup I^{-}\left[\mathfrak{E}_{\mathcal{A}}\right] \cup I^{+}\left[\mathfrak{E}_{\mathcal{A}}\right]
$$

entanglement wedge of \mathcal{A}

Extremal surface reformulations

- $\mathfrak{E}=$ Extremal surface
\mathfrak{E}
\mathcal{A}
- (relatively) easy to find
- minimal set of ingredients required in specification
- need to include homology constraint as extra requirement
- $\Phi=$ Surface with zero null expansions [HRT]
- (cf. light sheet construction \& covariant entropy bound [Bousso, '99]:

Bulk entropy through light sheet of surface $\sigma \leq$ Area(σ)/4
$\Phi=$ surface admitting a light sheet closest to bdy

- Maximin surface [Wall, 'I2]
- maximize over minimal-area surface on a spacelike slice
- requires the entire collection of slices \& surfaces
- implements homology constraint automatically
- useful for proofs (e.g. SSA)
- Minimax surface -- discussed later...

Geometrically, all of these are ultimately the same construct...

Curiosities / drawbacks of surfaces

- Naively (from UV/IR intuition) over-localized
- Arbitrarily large jumps in entanglement wedge (at 'phase transitions')

- Does not elucidate the relation to quantum information...
- Where does the information live?
- Mutual information I(A:B) $=S(A)+S(B)-S(A B)$ is given by surfaces located in different spacetime regions.
- Geometric proof of SSA $(S(A B)+S(B C) \geq S(B)+S(A B C))$ obscures its meaning as monotonicity under inclusion of correlations...

Riemannian bit-threads

- Reformulate EE in terms of flux of flow v [Freedman \& Headrick, 'I 6]
- let v be a vector field satisfying $\nabla \cdot v=0$ and $|v| \leq 1$. Then EE is given by

$$
S_{\mathcal{A}}=\max _{v} \int_{\mathcal{A}} v
$$

- By Max Flow - Min Cut theorem, equivalent to RT: (bottleneck for flow = minimal surface)

- Useful reformulation of HEE:
- flow continuous under varying region (while bottlenecks can jump discontinuously)
- automatically implements homology constraint and global minimization of RT
- maximal flow defined even without a regulator (when flux has UV divergence)
- can be computed more efficiently (via linear programming methods)
- implements QI meaning of EE and its inequalities more naturally
- provides more intuition: think of each bit thread as connecting an EPR pair

Primary question:

How do Riemannian threads
ヨ 2 natural possibilities:
extend threads in time flow sheets

covariantize?

Naive expectations

- Extend in time:
- boundary EPR pair \rightarrow pair of worldlines
- bit thread \rightarrow "bit cloth" / "flow sheet" = timelike worldsheet \mathcal{F}

- But:
- norm bound too global
- generically no canonical way of "evolving" $\partial \mathcal{A}(t)$
- even for fixed $\{\mathcal{A}(t), \forall t\}, \mathcal{F}$ depends on t-foliation...

Naive expectations

- EE pertains to a given instant in time
- in strongly interacting QFT, EPR pair localizes only for short duration \leadsto bdy events
- cf. entanglement distillation

Suggests threads from $D[\mathcal{A}]$ to $D\left[\mathcal{A}^{c}\right]$

$$
S_{\mathcal{A}} \stackrel{?}{=} \# \text { threads from } D[\mathcal{A}]
$$

?: what are the restrictions on these threads?

- Are they localized to certain spacetime regions?
- Is their density bounded?
- Can they be timelike?

OUTLINE

๔ Motivation
■ Background

- Setup \& Toolkit
- Results

- HEE regulator
- Beyond holography
- Lagrangian duality
- Summary

HEE regulator

- NB. finite HEE for multi-boundary wormholes for $\mathcal{A}=$ entire piece of connected bdy Cauchy slice

- Regulate HEE via entanglement wedge cross section [Dutta, Faukner,' 19]
- widen $\partial \mathcal{A}$ to separate \mathcal{A} and $\mathcal{A}^{c}:=\mathcal{B}$

$$
S_{\mathcal{A}}:=\frac{\operatorname{Area}\left(\gamma_{\mathcal{A}: \mathcal{B}}\right)}{4 G_{N}}
$$

- relevant part of ST inside EW of $\mathcal{A B}$

WLOG treat as de-facto boundaries, but full ST can be reinstated later.

Beyond holography

- Consider a Lorentzian $\mathrm{d} \geq 3$ dimensional spacetime, with:
- timelike spatial bdy $\mathcal{N}:=D[\mathcal{A}] \cup D[\mathcal{B}]$
- spacelike or null future/past bdy $\mathcal{I}^{ \pm}$

$$
\mathcal{I}=\mathcal{I}^{+} \cup \mathcal{I}^{-} \cup \mathcal{I}^{0}
$$

- optionally end of the world brane \mathcal{I}^{0}
- globally hyperbolic
- NEC not required
- E.eq. not imposed

Cauchy slice

Convex program \& Lagrangian duality

- Convex program:
- Convex program P : minimize $f_{0}(y)$ over $y \in \mathcal{D}$ such that $\forall i, f_{i}(y) \leq 0, \forall j, h_{j}(y)=0$

- More general problems may be converted to the requisite form via convex relaxation
- use Lagrange multipliers $L(y, \lambda, \nu) \equiv f_{0}(y)+\sum_{i} \lambda_{i} f_{i}(y)+\sum_{j} \nu_{j} h_{j}(y)$
- solution via convex optimization:

$$
p^{*}=\inf _{y} \sup _{\lambda, \nu} L(y, \lambda, \nu)
$$

- Lagrangian duality: swap order

- new extremization problem, in new variables
- strong duality: primal and dual solutions agree

ex: Max flow - min cut

- Max-flow/min-cut (MFMC) is an example of Lagrangian duality in theory of convex optimization
- Riemannian case:

Min cut (RT):
Max flow (Bit threads):

$$
\begin{aligned}
S & =\min [\operatorname{Area}(m)] \\
& =\int_{\mathcal{M}}\left|\partial_{\mu} \psi\right|+\cdots=\max \int_{\mathcal{A}} v^{\mu}
\end{aligned}
$$

Recast by introducing a Lagrange multiplier

$$
v^{\mu}\left(w_{\mu}-\partial_{\mu} \psi\right)
$$

OUTLINE

๔ Motivation

- Background
- Setup \& Toolkit
- Results
- Summary

Maximin

- Start w/ $S_{-}:=\sup \inf \operatorname{area}(\gamma)$

- Use Riemannian MFMC to reexpress in terms of slice flows \rightarrow "maximax":

$$
S_{-}=\sup _{\sigma \in S} \sup _{v \in \mathcal{F}_{\sigma}} \int_{A_{\sigma}} * v .
$$

- Put space \& time variations on equal footing:

$$
S_{-}=\sup _{\sigma \in \mathcal{S}} \inf _{\tau \in \mathcal{T}} \operatorname{area}(\sigma \cap \tau)
$$

codim.- | time-sheets homol. to $\mathrm{D}[\mathrm{A}]$ rel. to \mathcal{I}

Minimax

- Change order of extremizations from maximin:

$$
S_{+}:=\inf _{\tau \in \mathcal{T}} \sup _{\sigma \in \mathcal{S}} \operatorname{area}(\sigma \cap \tau)
$$

- Re-write more analogously to original maximin:

$$
S_{+}=\inf _{\tau \in \mathcal{J}}^{\tau} \sup _{\substack{\gamma \subset \tau \\ \text { achronal }}} \text { area }(\gamma)
$$

- Naively: apply Lorentzian min flow - max cut [VH, Headrick,' 17$]$ on time-sheet flow to convert to "minimin"?

Subtlety: that only requires achronality within time-sheet; for S_{+}we have a stronger condition of achronality in bulk... (but OK in holography [Grimaldi, Grado-White, Headrick, VH:W.I.P])
?: What is the relation between S_{-}and S_{+}?

Minimax theory

- Consider a function $f: X \times Y \rightarrow \mathbf{R}$
- Q: what is the relation between maximin \& minimax?

$$
\sup _{x \in X} \inf _{y \in Y} f(x, y) \quad \inf _{y \in Y} \sup _{x \in X} f(x, y)
$$

- Not necessarily equal;

$$
\text { e.g. } X, Y=\{0,1\}, f(x, y)=(-1)^{x+y} \quad \Rightarrow \quad-1
$$

Minimax theory

- Consider a function $f: X \times Y \rightarrow \mathbf{R}$
- Q: what is the relation between maximin \& minimax?

$$
\begin{array}{r}
\sup _{x \in X} \inf _{y \in Y} f(x, y) \leq \inf _{y \in Y} \sup _{x \in X} f(x, y) \\
\text { since } \inf _{y \in Y} f\left(x_{0}, y\right) \leq f\left(x_{0}, y_{0}\right) \leq \sup _{x \in X} f\left(x, y_{0}\right)
\end{array}
$$

- Q: when is the inequality saturated?
- when \exists a global saddle point (x_{0}, y_{0}) saturating both inequalities
- when X and Y are convex subsets of affine spaces, and f is concave-convex

Toy spacetime

- Easy to find example of spacetime (in our generalized setting) wherein maximin $=$ minimax:

$$
a_{-}<a_{+}
$$

- However, this ST does not satisfy NEC.
- Already if bottom region has $a_{b}>a_{+}$, then maximin $=\operatorname{minimax}=a_{b}$

Convex relaxation

- Instead of area $(\sigma \cap \tau)$, we want to define concave-convex f
- convex-relax hypersurfaces to level sets of scalar fields ϕ, ψ

$$
\begin{aligned}
& \sigma \rightsquigarrow \quad \mathcal{S}_{\mathrm{c}}:=\left\{\phi: \overline{\mathcal{M}} \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]|\phi|_{\mathcal{I}^{ \pm}}= \pm \frac{1}{2}, d \phi \in \mathfrak{j}^{+}\right\} \\
& \\
& \\
& \text {} \text { future-directed causal I-form } \\
& \tau \rightsquigarrow \quad \mathcal{J}_{\mathrm{c}}:=\left\{\psi: \overline{\mathcal{M}} \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]|\psi|_{D(A)}=-\frac{1}{2},\left.\psi\right|_{D(B)}=\frac{1}{2}\right\}
\end{aligned}
$$

- generalize the area of intersection of hypersurfaces:

$$
\begin{aligned}
& f[\phi, \psi]:=\int_{\mathcal{M}} \sqrt{g}|d \phi \wedge d \psi| \quad\left(\phi \in \mathcal{S}_{\mathrm{c}}, \psi \in \mathcal{T}_{\mathrm{c}}\right) \\
& \underbrace{}_{\text {wedgedot pairing }}|W \wedge X|:=\max \{|W \wedge X|,|W \cdot X|\}
\end{aligned}
$$

$$
f[\phi, \psi]=\int_{-1 / 2}^{1 / 2} d t \int_{-1 / 2}^{1 / 2} d s \text { area' }\left(\sigma_{t}, \tau_{s}\right) \quad \text { with } \quad \operatorname{area}^{\prime}(\sigma, \tau):=\int_{\sigma \cap \tau} \sqrt{h} \times \begin{cases}1 & (\tau \text { timelike or null at } \sigma) \\ \operatorname{coth} \chi & (\tau \text { spacelike at } \sigma)\end{cases}
$$

Convex relaxed "entropy"

$$
\begin{gathered}
S_{\mathrm{c}}:=\sup _{\phi \in \mathcal{S}_{\mathrm{c}}} \inf _{\psi \in \mathcal{T}_{\mathrm{c}}} f[\phi, \psi]=\inf _{\psi \in \mathcal{T}_{\mathrm{c}}} \sup _{\phi \in \mathcal{S}_{\mathrm{c}}} f[\phi, \psi] \\
\text { convex-maximin } \\
\text { convex-minimax }
\end{gathered}
$$

- must lie between non-convex values: $S_{-} \leq S_{\mathrm{c}} \leq S_{+}$
- More suggestive formulation? Lagrange dualize!
(various possibilities...)
dualize on ψ for fixed ϕ
\leadsto V-flow program (\rightarrow covariant bit threads)

V-flows \& U-flows

$$
S_{\mathrm{c}}:=\sup _{\alpha \in \mathcal{s}} \inf _{\inf } f[\phi, \psi]=\inf _{\sup _{\alpha \in \mathcal{s}}} f[\phi, \psi]
$$

V-flow:

$$
\begin{aligned}
& S_{\mathrm{c}}=\sup _{V \in \mathcal{F}} \int_{D(A)} * V \\
& \quad d * V=0,\left.\quad * V\right|_{\mathcal{I}}=0 \\
& \exists \phi \in \mathcal{S}_{\mathrm{c}} \text { s.t. } d \phi \pm V \in \mathfrak{j}^{+}
\end{aligned}
$$

\forall bulk timelike curve,

$$
\int d t\left|V_{\perp}\right| \leq 1
$$

U-flow:

$$
\begin{gathered}
S_{\mathrm{c}}=\inf _{U \in \mathcal{G}} \int_{\mathcal{I}^{+}} * U \\
d * U=0,\left.\quad * U\right|_{\mathcal{I}^{0} \cup \mathcal{N}}=0, \\
\exists \psi \in \mathcal{T}_{\mathrm{c}} \text { s.t. } U \pm d \psi \in \mathfrak{j}^{+}
\end{gathered}
$$

\forall bulk spacelike curve from $D(A)$ to $D(B)$,

$$
\int d s\left|U_{\perp}\right| \geq 1
$$

\vee and U threads

- Define "threads"
- integral curves of vector field dual to V , or ($\mathrm{D}-\mathrm{I}$)-form *V (oriented, can't intersect)
- unoriented curves obeying a density bound

$$
\Delta(q, p):=\int_{q} d t \int_{p} d s \delta(x(t), y(s))|(-\dot{x}) \wedge \dot{y}|
$$

- V-thread = curve between $D(A)$ and $D(B)$

Maximize $\quad \mu(\mathcal{P}) \quad$ over measure μ on \mathcal{P} subject to: $\quad \forall q \in \mathcal{Q}, \quad \int_{\mathcal{P}} d \mu(p) \Delta(q, p) \leq 1$

- U-thread $=$ causal curve between \mathcal{I}^{-}and \mathcal{I}^{+}

Minimize $\quad v(\mathbb{Q}) \quad$ over measure v on Q subject to: $\quad \forall p \in \mathcal{P}, \quad \int_{Q} d v(q) \Delta(q, p) \geq 1$

- density bounds are non-local, and reinforce each other
- U-threads effectively form a barrier separating $D(A)$ from $D(B)$
- V-threads covariantize the original bit threads

Holographic coincidence

- For general ("beyond holography") spacetimes, $S_{-} \leq S_{\mathrm{c}} \leq S_{+}$ (= globally hyperbolic w/ timelike parts of bdy but no energy conditions or field equations...)
 convex relaxed m.m.
- BUT for holographic spacetimes, $\quad S_{-}=S_{\mathrm{c}}=S_{+}=S_{\mathrm{HRT}}$
- NEC \rightarrow congruence from HRT surf. has non-positive \& generically decreasing expansion
- AdS b.c. \rightarrow no null generators emanate from EOWB.

Pf:

- HRT surf. is area-maximizing within entanglement horizon (= time-sheet τ)
- HRT surf. is area-minimizing within maximin slice (= Cauchy slice σ)
- \rightarrow HRT surf. is a global saddle point $\Rightarrow S_{-}=S_{+}=S_{\text {HRT }}$
-
- Alt:: $S_{+} \leq S_{\mathrm{HRT}}$ [minimax], $S_{-} \leq S_{+}$[min-max ineq.] \& $S_{-}=S_{\mathrm{HRT}} \quad$ [Wall]

Optimal flows

- General V-flows and U-flows are quite floppy and spread out
- just subject to b.c.s and norm bound (\rightarrow U-flow lines are timelike everywhere)
- Optimal flows in holographic ST are more restricted (though still floppy):
- V-flow lines are confined to entanglement wedges \mathcal{W}_{A} and \mathcal{W}_{B}
- U-flow lines are expelled from (interior of) entanglement wedges \mathcal{W}_{A} and \mathcal{W}_{B}
- Both flows pass through HRT surface:

Optimal flows

- In full (unregulated) spacetime:

OUTLINE

๔ Motivation
ब Background
ब Setup \& Toolkit
a Results

- Summary

New covariant HEE prescriptions:

S_{-}

$$
\inf _{\tau \in \mathcal{T}} \sup _{\substack{\gamma \subset \tau \\ \text { achronal }}} \text { area }(\gamma)
$$

$$
\inf \sup \operatorname{area}(\sigma \cap \tau)
$$

$$
\tau \in \mathcal{T} \quad \sigma \in \mathcal{S}
$$

$$
\sup _{\phi \in \mathcal{S}_{\mathrm{c}}} \inf _{\psi \in \mathcal{T}_{\mathrm{c}}} \int_{\mathcal{M}} \sqrt{g}|d \phi A d \psi| \quad \underset{\text { theorem }}{\text { minimax }} \underset{\psi \in \mathcal{T}_{\mathrm{c}}}{ } \inf _{\phi \in \mathcal{S}_{\mathrm{c}}} \int_{\mathcal{M}} \sqrt{g}|d \phi A d \psi|
$$

$$
\begin{aligned}
& \psi \leftrightarrow V \\
& \text { duality }
\end{aligned}
$$

$$
\sup _{V \in \mathcal{F}} \int_{D(A)} * V
$$

$$
\stackrel{(V, \phi) \leftrightarrow(U, \psi)}{\text { duality }}
$$

Lessons

- Power of Lagrangian duality \& reformulations
- New hints re. nature of HEE (perhaps V-threads ~ entanglement distillation; U-threads ~ entanglement of formation)
- Important geometrical quantities (HRT surface, entanglement wedge) emerge naturally
- Dependence on region switches between objective and constraint
- Dual formulations for proofs (e.g. S_{c} obeys SA) -- looks different, has different advantages, so may be useful in establishing further properties of HEE...
- Convex programs, so computationally convenient
- Simpler structure for holographic spacetimes
- HRT surface (= localized on intersection of slice and time-sheet) is a global saddle point, so maximin $=$ minimax even without convex relaxation
- Convex-relaxed expressions (V-flows, U-flows) retain this via the optimized flows collimated through the HRT surface

Extensions \& future directions

- Easy extensions (developed in paper)
- Embedding into full ST \& removing the regulator
- Multiple regions
- HEE properties from minimax
- Covariant formulations for quantum and stringy corrections to HEE
- Inspire formulations for tensor networks w/ time
- Covariant formulations for generalizations / other contexts
- weaker norm bounds for multiflows
- thread / hyperthread constructions for multipartite entanglement measures
- non-AdS backgrounds

