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Ginzburg-Landau and Gross-Pitaevskii equations

• Complex (time-dependent) Ginzburg-Landau equation is one of the

most-studied nonlinear equations in physics

• Wide range of applications from nonlinear waves to second-order

phase transitions, superconductivity, (superfluidity) and

Bose-Einstein condensation

• Gross-Pitaevskii equation is the superfluid counterpart

• Both simple, phenomenological models are widely used

[Wells, Pan, Wang,

Fedoseev, Hilgenkamp; ’15]
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Relaxation to critical points

Homogeneous Superfluids: ∂tϕ ∼ δF
δϕ . F is free energy; ϕ order

parameter.

How is ∂tϕ governed if δF/δϕ = 0 (as it happens at the critical point)?

Holographic analogue: at zero wave vector, Quasi-normal mode

describing condensate/amplitude fluctuations becomes massless ⇒ No

exponential decay to equilibrium. Relaxation?

For final states near the critical point half-life time of exponential

falloff diverges as the end-state is taken towards critical point ⇒ critical

slowing down.
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Critical slowing down
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Relaxation towards critical point hard to engineer experimentally; try to

build phenomenological model to describe “near” critical relaxation

(power law → exponential decay).

Very timely due to recent interest in fluctuations of order parameter

which is usually neglected in hydrodynamics (recent experimental results

in context of strange metals) and push to employ holography for

phenomenological model building
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Plan

• Study phenomenology of critical quenches numerically in holographic

bulk model

• Build phenomenological model in the boundary theory describing the

homogeneous dynamics

• Determine input parameters in holographic model

• Make independent predictions and check them

⇒ use powerful toolkit of holography to gain insight into the universal

behavior of strongly coupled dynamics through the classical theory of

gravity with one additional dimension.

⇒ use holography to develop and test phenomenological models which

may be used in other areas of physics

Drawback: Fluctuations at critical point are suppressed in large N limit;

mean field limit
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Ginzburg-Landau

Time-dependent Ginzburg-Landau eqs [Schmid; ’66],[Aranson, Kramer; ’01]

1

γ
∂tψ = ∆ψ + αψ + β |ψ|2 ψ,

where ψ is complex function of time and space and β characterizes

nonlinear dispersion.

In presence of external vector potential A with effective potential Φ

1

γ
(∂t − iqΦ)ψ = (∇− iqA)2ψ + αψ + β |ψ|2 ψ
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Gross-Pitaevskii

At finite T : add dissipative terms [Yan, Lan, Tian, Yang, Yao, Zhang; ’22]

∂tψ = − (i + γ)

τ

(
−∇2

2
ψ + µ(|ψ|2 − 1)ψ

)
,

∂tψ +iηψ∂t |ψ|2 = − i

τ

[(
−∇2

2
ψ + µ(|ψ|2 − 1)ψ

)]
.

τ : characteristic time scale of dynamics, µ is the chemical potential,

dissipative parameter γ: Keldysh self-energy through the

fluctuation-dissipation theorem [Stoof; ’97], dissipative parameter η:

second law of thermodynamics holds [Carlson; ’96].
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Methodology



Holography as a blackbox

Quantum field theory ⇔ Quantum Gravity in AdS

large N limit ⇔ classical gravity

equilibrium state at finite T & ρ ⇔ black hole with T & ρ

linear response G ret ⇔ QNMs of black hole

real-time non-equilibrium dynamics ⇔ time-dependent gravity

[Maldacena; ’97], [Witten; ’98], [Kovtun, Starinets; ’05], [Chesler, Yaffe; ’08]
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Holography and Gross-Pitaevskii

State of the art:

[Wittmer, Schmied, Gasenzer, Ewerz; ’20], [Yan, Lan, Tian, Yang, Yao, Zhang; ’22]

Simulate the motion of a vortex dipole and matching the data with the

phenomenological dissipative Gross-Pitaeviskii models

Insights into holographic dissipation mechanism; Selection of

phenomenological models. Predictions? Fixed µ out-of-equilibrium?
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Holography and Kibble-Zurek

State of the art:

[Chesler, Garcia-Garcia Liu; ’14], [Sonner, del Campo, Zurek; ’14], [Bhaseen,

Gauntlett, Simons, Sonner, Wiseman; ’12], [del Campo, Gómez-Ruiz, Li, Xia, Zeng,

Zhang; ’21], [Li, Shi, Zhang; ’21]

• Dynamic after smooth quench across continuous transition from

disordered phase to ordered phase

• Formalism to predict rate of defect formation (smaller than the

Kibble-Zurek prediction)

• Breakdown of Kibble-Zurek scaling for sufficiently fast quenches
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Holographic Model



Building the holographic superconductor

Consider (probe approximation/large charge q expansion)

• Radial electric field on top of fixed AdS4 Schwarzschild background

• Massive scalar charged under gauge field

Action

S = Sgrav +
1

2κ2

∫
M

d4x
√
−g

[
−1

4
FµνF

µν − |Dψ|2 −m2|ψ|2
]
,

where F = dA, Dµ· = (∇µ − iqAµ)·, L = uh = 2κ2 = q = 1 and

A = Atdt, ψ = ψ1 + iψ2, ds2 =
1

u2
[
−f (u)dt2 − 2 dtdu + dx2 + dy2

]
,

with f (u) = 1− u3 ⇒ T = |f ′(1)|/(4π) = 3/(4π).

• Radial coordinate u ∈ [0, 1]

• At boundary (u = 0): field theory coordinates (t, x , y)
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Static holographic superconductor

Equations of motion:

∇mF
mn − iq(ψ⋆Dnψ − ψDnψ⋆) = 0 ,

Dm (Dmψ)−m2ψ = 0, (and c.c.) .

Simple solution: At = µ (1− u), ψ ≡ 0; (normal fluid)

Consider time dependent scalar fluctuation about this background:
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Shown: Quasi-normal modes of scalar fluctuations for µ ∈ [4, 4.1]

⇒ positive imaginary part above some µ indicating instability.
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Bulk picture

[Gubser; ’08]: Electrically charged black hole: effective mass of scalar

depends on radial direction: m2
eff = m2 + q2g ttA2

t ; may become

sufficiently negative near horizon ⇒ unstable to forming scalar hair

2,1
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[Gubser, Pufu; ’08]: Superconducting condensate floats above horizon

balanced by gravitational & electrostatic forces. Condensate carries finite

fraction of total charge density → more electric flux above condensate

than right at horizon.
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Building the holographic superconductor

Choose m2 = −2 ≥ m2
BF = − d2

4 . Asymptotic expansions (near u = 0)

ψi (t, x , u) = ψ
(l)
i (t, x)u + ψ

(s)
i (t, x)u2 + . . . , (i = 1, 2)

At(t, x , u) = µ(t, x) + ρ(t, x)u + . . .

At equilibrium & At(u = 1) = 0: µ chemical potential; ρ charge density

Superfluid: set ψ
(l)
i to zero ⇒ spontaneous symmetry breaking;

Condensate encoded in ψ
(s)
i
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Time dependent quenches
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The holographic model

S = Sgrav +
1

2κ2

∫
M

d4x
√
−g

[
−1

4
FµνF

µν − |Dψ|2 −m2|ψ|2
]
.

The radial Maxwell equation reads (we don’t consider spatial dependence)

∇mF
mu − iq(ψ⋆Duψ − ψDuψ⋆) = 0 ⇒ ρ̇ = 0 for u = 0, ψ

(l)
i = 0

Want: ρ̇ ̸= 0.

One way to achieve this is by quenching the scalar source ψ(l) (see e.g.

[Bhaseen, Gauntlett, Simons, Sonner, Wiseman; ’12])

In the case of ψ(l) = 0, we can quench the charge density with an

external source in terms of the Null fluid action

Snf =
1

2κ2

∫
d4x

√
−gAµJ

µ
ext ⇒ 2κ2Ju(nf) = ρ̇ext u

2

Snf is null-fluid action added by hand to obtain Vaidya-like solution.
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The holographic model

S = Sgrav +
1

2κ2

∫
M

d4x
√
−g

[
−1

4
FµνF

µν − |Dψ|2 −m2|ψ|2
]
+Snf .

The radial Maxwell equation reads

∇mF
mu−iq(ψ⋆Duψ−ψDuψ⋆) = 2κ2 Ju(nf) ⇒ ρ̇ = ρ̇ext for u = 0, ψ

(l)
i = 0

Quench Profile

ρ(t) = ρinitial +
1

2
(ρfinal − ρinitial)(1 + tanh[Ω(t − ts)]);

where Ω = 10 (rapidity), ts = 1.5 (center).

Comments:

• Shortly after quench (ts ∼ 2) ρ(t) =const and thus ρ̇ = 0

• Intermediate and late time behavior independent of quench protocol

• Solve system of PDEs numerically

• Monitor that all equations and constraint are satisfied at all times
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Quench Profile

Quench Profile

ρ(t) = ρinitial +
1

2
(ρfinal − ρinitial)(1 + tanh[Ω(t − ts)]);

where Ω = 10 (rapidity), ts = 1.5 (center).

Shortly after quench (ts ∼ 2) ρ(t) =const and thus ρ̇ = 0
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Numerical methods

Usually: Combine pseudo-spectral methods in spatial directions with 4th

order Runge-Kutta or Adams-Bashforth (both explicit time-marching

algorithms)

Problem: Our problem requires stable simulation over large time

intervals ⇒ implicit algorithm needed (for example Crank-Nicolson, not

subject to CFL condition like explicit schemes)

Here: (Pseudo)-spectral methods in space in time (highly implicit)

• Highly accurate (in space and time) and stable

• Divide time interval in multiple domains (size dynamically

adjustable)

• Use Chebychev-Lobatto grid in radial direction, right-sided Radau

grid in time direction (which does not include initial time slice).

• For more details see [Hennig, Ansorg; ’08], [Flory, SG, Tejera-Morales;

’22],[Ammon, SG, Jimenez-Alba, Macedo, Melgar; ’16],[SG; ’17]
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Critical Quenches
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Critical Quenches
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• For exactly critical quenches starting from the superfluid phase (red)

onto the critical point (green): Quasi-normal mode which usually

drives system to equilibrium (Higgs mode/Amplitude mode)

becomes massless.

• No exponential decay!

• How does the system relax?

• Relaxation purely encoded in nonlinearity of the equations
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Power law decay amplitude
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Observation

At late times, all quenches: power law decay with exponent − 1
2

(instead of exp.) |⟨O⟩| ∼ 4.07√
t
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Log-periodic oscillations
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Observation

Phase falloff φ̇ ∼ 1/t means φ(t) ∼ log(t), i.e. log-periodic oscil-

lations ⇒ discrete scale invariance?

Power law and log periodic oscillations also observed in crit. quenches in

Kondo model [Erdmenger, Flory, Newrzella, Strydom, Wu; ’16]
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Dicrete scale invariance
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Order parameter: power law decay with oscillations in logarithmic time

⇒ characteristic for discrete scale invariance and complex critical

exponents ⟨O⟩ ∼ tα+iβ ⇒ Self similar systems and fractal structure
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Decay gauge field
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Observation

At late times, all quenches: power law decay with exponent −1

(instead of exp.)

φ̇− (At(0)− ρc) ∼
0.93

t

Found both solutions as scaling solutions; analytical solution possible?
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Boundary model

Postulate the phenomenological equation (for homogeneous case)[
∂t − iC1

(
At(t)− ρ+ C5|Ψ(t)|2

)]
Ψ(t)

≡ −(C2 + iC3)
[
|Ψ(t)|2 − C4(ρ− ρc)

]
Ψ(t),

where Ψ = ϕe iφ, ρ, ρc , φ,At ,Ci ∈ R, ϕ > 0.

• Complex pre-factor (C2 + iC3) dissipation, phase rotation

• Neglect spatial derivatives or higher orders of Ψ and (ρ− ρc)

• Eq for ϕ decouples ⇒ analytical solution

• Assume that ρ(t) ≡ ρ (constant in time)

• Set charge of complex scalar under gauge field to unity: C1 = 1.

Validity: Since we neglect higher order of Ψ and (ρ− ρc), the equation

should describe the dynamics near the critical points, i.e. small enough

condensates and small enough deviations from the critical charge density.
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Determining parameters

Claim:

• Phenomenological model describes full non-linear dynamics after

quench (where ρ =const) if initial and final state are sufficiently

close to critical point

• All parameters are fixed within linear response theory and from the

properties of the equilibrium states

Advantage: Equilibrium solutions and linear response properties are

(computationally) much easier to obtain than full real time dynamics.

Goal: Determine the parameters and cross check with real time evolution

for sub-, super- and critical quenches.
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Determining parameters C4,C5

[
∂t − iC1

(
At(t)− ρ+ C5|Ψ(t)|2

)]
Ψ(t)

≡ −(C2 + iC3)
[
|Ψ(t)|2 − C4(ρ− ρc)

]
Ψ(t),

(Non-trivial) static solutions: (Recall Ψ = ϕe iφ)

ϕ =
√
C4(ρ− ρc), At = ρ− C5ϕ

2 = ρ− C4C5(ρ− ρc)

Within Holography this corresponds to constructing the phase diagram

(static case!) near the critical point choosing the condensate to be real

and fitting

⟨O⟩ =
√
C4(ρ− ρc), µ = ρ− C5⟨O⟩2

⇒ C4 ≈ 4.09192 C5 ≈ 0.14967

Note: As you might have noticed the conformal dimensions do not

match in those expressions. We assume all physical quantities to be

normalized to appropriate powers of T̄ = 4πT/3 (Recall T = 3/(4π)).
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Determining parameter C2[
∂t − iC1

(
At(t)− ρ+ C5|Ψ(t)|2

)]
Ψ(t)

≡ −(C2 + iC3)
[
|Ψ(t)|2 − C4(ρ− ρc)

]
Ψ(t),

Solve equation analytically (for ρ > ρc or ρ < ρc). Late time expansion

for quenches ending near critical point for final states in the superfluid

phase yields (exponential decay to eq. → linear response)

ϕ(t)−
√
C4(ρ− ρc) ∝ e−2C2C4(ρ−ρc )t + ...

or in the normal phase

ϕ(t) ∝ eC2C4(ρ−ρc )t + ... .

Within Holography: lowest QNM(s) at zero wavevector ∼ δf e−iωt

• Superfluid phase: ωAmpl = −0.2469 i (ρ− ρc)

• Normal phase: ω± = −(±0.38087−0.12348i) (ρ− ρc),

ω+ corresponds to Ψ and ω− to Ψ̄

⇒ C2 ≈ 0.03018
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Determining parameter C3 in normal phase

Late time behavior for final states in the normal phase

φ̇(t) = C3C4(ρ− ρc) + ...

Within Holography, we find from the same QNM as on previous slide:

ω± = −(±0.38087− 0.12348i) (ρ− ρc), (ω+ from Ψ, ω− from Ψ̄)

⇒ C3 ≈ 0.09308
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Determining parameter C3 in superfluid phase

Late time behavior for final states in the superfluid phase

ϕ(t) =
√

C4

√
ρ− ρc +

√
C4

2

√
ρ− ρc

(
1− C4(ρ− ρc)

ϕ20

)
e−2C2C4t(ρ−ρc ) + ...

φ̇(t)− C1At(t)=− C1ρ+ C1C4C5(ρ− ρc)

− C4(C1C5 − C3)

ϕ20

(
C4(ρ− ρc)− ϕ20

)
(ρ− ρc)e

−2C2C4t(ρ−ρc ) + ...

Comparing the prefactors of the exponential decay yields

⇒
Amplitudeϕ

Amplitudeφ̇(t)−C1At(t)

=
1

2
√
C4(ρ− ρc)

1

C1C5 − C3
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Determining parameter C3 in superfluid phase

In Holography, QNMs ω are eigenvalues of generalized eigenvalue

problem (Aω − B) x = 0, where A and B are differential operators of a

non-hermitian Sturm-Liouville problem. Eigenvector x corresponding to

the eigenvalue ω carries information about how much each field theory

operator contributes to QNM excitation. Framework recently developed

in [Arean, Baggioli, SG, Landsteiner; ’21]

In this framework, compute contributions of scalar and gauge field

fluctuations to amplitude mode and take ratio of the expectation values:

Amplitude|⟨δO⟩|
Amplitude⟨δφ̇⟩−⟨δat⟩

= 17.67

2
√

C4(ρ−ρc )

!
= 1

2
√

C4(ρ−ρc )

1
C1C5−C3

⇒ C3 ≈ 0.09308
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Checks

[
∂t − iC1

(
At(t)− ρ+ C5|Ψ(t)|2

)]
Ψ(t)

≡ −(C2 + iC3)
[
|Ψ(t)|2 − C4(ρ− ρc)

]
Ψ(t),

Set ρ = ρc for exactly critical quenches and we find

ϕ(t) =
1√

2C2t +
1
ϕ2
0

≈ 4.07

t1/2
+ ...,

φ̇− C1(At − ρc) =
C1C5 + C3

2C2t +
1
ϕ2
0

≈ 0.94

t
+ ... .

Recall for exactly critical quenches, we observed (by fitting the late time

behavior, small deviation since initial condensate ∼ 1)

|⟨O⟩| ∼ 4.07√
t
, φ̇− (At(0)− ρc) ∼

0.93

t
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Sub-critical Quenches
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Sub-critical Quenches

Analytical solution to phenomenological equation analytically: Real part

yields

ϕ(t) =

√√√√ C4(ρ− ρc)

1−
(
1− C4(ρ−ρc )

ϕ2
0

)
e−2C2C4t(ρ−ρc )

with ϕ(0) = ϕ0. Imaginary part then yields expression for φ̇− C1At .

φ̇− C1At = −C1ρ− C3C4(ρ− ρc) +
C4(C3 + C1C5)(ρ− ρc)

1− e−2C2C4t(ρ−ρc )
(
1− C4(ρ−ρc )

ϕ2
0

) .
System will initially react like critical quench (power law decay), only

after ”handover-timescale” which we define as

tho ∼
1

|ρ− ρc |

the system relaxes exponentially.
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Relaxation after sub-critical quench
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Legend

Dashed orange line: solution to phenomenological equation; blue

line: numerical non-linear time evolution; blue dot: hand-over time;

red dashed line: solution for critical quench
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Relaxation after sub-critical quench

1 10 100 1000 10
4

10
5

10
6

-4.0645

-4.0640

-4.0635

t

∂tφ-At

Legend

Dashed orange line: solution to phenomenological equation; blue

line: numerical non-linear time evolution;
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Super-critical Quenches
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Relaxation after super-critical quench
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Legend

Dashed orange line: solution to phenomenological equation; blue

line: numerical non-linear time evolution; blue dot: hand-over time;

red dashed line: solution for critical quench
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Relaxation after super-critical quench
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Dashed orange line: solution to phenomenological equation; blue

line: numerical non-linear time evolution;
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Conclusions and Outlook

Conclusions

• Studied relaxation of critical and near-critical quenches

exhibiting power-law decay and discrete scale invariance

• Established and successfully tested phenomenological model

capturing the non-linear out-of-equilibrium dynamics

• All parameters of the model may be determined within linear

response and static equilibrium

• Non-trivial prediction of the full non-linear dynamics

• Nice test and application of the framework to compute the

amplitudes of Quasi-normal modes, recently developed in

[Arean, Baggioli, SG, Landsteiner; ’21]
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Conclusions and Outlook

Outlook

• Extension to include spatial dependence

• Similar study in the case of broken spacetime dimensions or

other spontaneously broken symmetries in general?

• Origin of discrete scale invariance in horizon dynamics?

• Full solution from scaling solutions?

• Amplitude/Higgs mode near phase transition recently

investigated in linear regime from holography in [Donos,

Pantelidou; ’22]. Connections?

• Different types of phase transitions?

• Beyond mean-field?

Thank you for your attention!!
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