Critical and near-critical relaxation of holographic superfluids

Sebastian Grieninger, Stony Brook University

11/10/2022

ArXiv:2209.09251 [hep-th] With: M. Flory, S. Morales-Tejera

Stony Brook University Center for Nuclear Theory

The Nobel Prize in Physics 2003

Photo from the Nobel Foundation archive. Alexei Alexeyevich Abrikosov

Prize share: 1/3

Photo from the Nobel Foundation archive. Vitaly Lazarevich Ginzburg

Prize share: 1/3

Photo from the Nobel Foundation archive. Anthony J. Leggett

Prize share: 1/3

Ginzburg-Landau and Gross-Pitaevskii equations

- Complex (time-dependent) Ginzburg-Landau equation is one of the most-studied nonlinear equations in physics
- Wide range of applications from nonlinear waves to second-order phase transitions, superconductivity, (superfluidity) and Bose-Einstein condensation
- Gross-Pitaevskii equation is the superfluid counterpart
- Both simple, phenomenological models are widely used

[Wells, Pan, Wang, Fedoseev, Hilgenkamp; '15]

Homogeneous **Superfluids:** $\partial_t \phi \sim \frac{\delta F}{\delta \phi}$. F is free energy; ϕ order parameter.

How is $\partial_t \phi$ governed if $\delta F / \delta \phi = 0$ (as it happens at the critical point)?

Holographic analogue: at zero wave vector, Quasi-normal mode describing condensate/amplitude fluctuations becomes massless \Rightarrow No exponential decay to equilibrium. Relaxation?

For final states **near the critical point** half-life time of exponential falloff diverges as the end-state is taken towards critical point \Rightarrow **critical slowing down**.

Critical slowing down

Relaxation towards critical point hard to engineer experimentally; try to build phenomenological model to describe "near" critical relaxation (power law \rightarrow exponential decay).

Very timely due to recent interest in fluctuations of order parameter which is usually neglected in hydrodynamics (recent experimental results in context of strange metals) *and* push to employ holography for phenomenological model building

- Study phenomenology of critical quenches numerically in holographic bulk model
- Build phenomenological model in the boundary theory describing the *homogeneous* dynamics
- Determine input parameters in holographic model
- Make independent predictions and check them

 \Rightarrow use powerful toolkit of holography to gain insight into the universal behavior of strongly coupled dynamics through the classical theory of gravity with one additional dimension.

 \Rightarrow use holography to develop and test phenomenological models which may be used in other areas of physics

Drawback: Fluctuations at critical point are suppressed in large *N* limit; mean field limit

Time-dependent Ginzburg-Landau eqs [Schmid; '66], [Aranson, Kramer; '01]

$$\frac{1}{\gamma}\partial_t\psi = \Delta\psi + \alpha\psi + \beta \,|\psi|^2 \,\psi,$$

where ψ is complex function of time and space and β characterizes nonlinear dispersion.

In presence of external vector potential \boldsymbol{A} with effective potential $\boldsymbol{\Phi}$

$$\frac{1}{\gamma}(\partial_t - iq\Phi)\psi = (\nabla - iqA)^2\psi + \alpha\psi + \beta |\psi|^2\psi$$

At finite T: add dissipative terms [Yan, Lan, Tian, Yang, Yao, Zhang; '22]

$$\begin{aligned} \partial_t \psi &= -\frac{(i+\gamma)}{\tau} \left(-\frac{\nabla^2}{2} \psi + \mu(|\psi|^2 - 1)\psi \right), \\ \partial_t \psi &+ i\eta \psi \partial_t |\psi|^2 = -\frac{i}{\tau} \left[\left(-\frac{\nabla^2}{2} \psi + \mu(|\psi|^2 - 1)\psi \right) \right]. \end{aligned}$$

 τ : characteristic time scale of dynamics, μ is the chemical potential, dissipative parameter γ : Keldysh self-energy through the fluctuation-dissipation theorem [Stoof; '97], dissipative parameter η : second law of thermodynamics holds [Carlson; '96].

Methodology

Holography as a blackbox

[Maldacena; '97], [Witten; '98], [Kovtun, Starinets; '05], [Chesler, Yaffe; '08]

Holography and Gross-Pitaevskii

State of the art:

[Wittmer, Schmied, Gasenzer, Ewerz; '20], [Yan, Lan, Tian, Yang, Yao, Zhang; '22]

Simulate the motion of a vortex dipole and matching the data with the phenomenological dissipative Gross-Pitaeviskii models

Insights into holographic dissipation mechanism; Selection of phenomenological models. Predictions? Fixed μ out-of-equilibrium?

Holography and Kibble-Zurek

State of the art:

[Chesler, Garcia-Garcia Liu; '14], [Sonner, del Campo, Zurek; '14], [Bhaseen, Gauntlett, Simons, Sonner, Wiseman; '12], [del Campo, Gómez-Ruiz, Li, Xia, Zeng, Zhang; '21], [Li, Shi, Zhang; '21]

- Dynamic after smooth quench across continuous transition from disordered phase to ordered phase
- Formalism to predict rate of defect formation (smaller than the Kibble-Zurek prediction)
- Breakdown of Kibble-Zurek scaling for sufficiently fast quenches

Holographic Model

Building the holographic superconductor

Consider (probe approximation/large charge q expansion)

- Radial electric field on top of fixed AdS₄ Schwarzschild background
- Massive scalar charged under gauge field

Action

$$S = S_{\text{grav}} + \frac{1}{2\kappa^2} \int_{\mathcal{M}} d^4 x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D\psi|^2 - m^2 |\psi|^2 \right],$$

where
$$F = dA$$
, $D_{\mu} \cdot = (\nabla_{\mu} - iqA_{\mu}) \cdot$, $L = u_h = 2\kappa^2 = q = 1$ and

 $A = A_t dt, \quad \psi = \psi_1 + i\psi_2, \quad ds^2 = \frac{1}{u^2} \left[-f(u) dt^2 - 2 dt du + dx^2 + dy^2 \right],$

with $f(u) = 1 - u^3 \Rightarrow T = |f'(1)|/(4\pi) = 3/(4\pi)$.

- Radial coordinate $u \in [0, 1]$
- At boundary (*u* = 0): field theory coordinates (*t*, *x*, *y*)

Static holographic superconductor

Equations of motion:

$$\nabla_m F^{mn} - iq(\psi^* D^n \psi - \psi D^n \psi^*) = 0,$$

$$D_m (D^m \psi) - m^2 \psi = 0, \quad (\text{and c.c.}).$$

Simple solution: $A_t = \mu (1 - u), \qquad \psi \equiv 0;$ (normal fluid)

Consider time dependent scalar fluctuation about this background:

Shown: Quasi-normal modes of scalar fluctuations for $\mu \in [4, 4.1]$ \Rightarrow positive imaginary part above some μ indicating instability.

Bulk picture

[Gubser; '08]: Electrically charged black hole: effective mass of scalar depends on radial direction: $m_{\rm eff}^2 = m^2 + q^2 g^{tt} A_t^2$; may become sufficiently negative near horizon \Rightarrow unstable to forming scalar hair

[Gubser, Pufu; '08]: Superconducting condensate floats above horizon balanced by gravitational & electrostatic forces. Condensate carries finite fraction of total charge density \rightarrow more electric flux above condensate than right at horizon.

Building the holographic superconductor

Choose
$$m^2 = -2 \ge m_{\mathsf{BF}}^2 = -\frac{d^2}{4}$$
. Asymptotic expansions (near $u = 0$)
 $\psi_i(t, \mathbf{x}, u) = \psi_i^{(l)}(t, \mathbf{x})u + \psi_i^{(s)}(t, \mathbf{x})u^2 + \dots, \qquad (i = 1, 2)$
 $A_t(t, \mathbf{x}, u) = \mu(t, \mathbf{x}) + \rho(t, \mathbf{x})u + \dots$

At equilibrium & $A_t(u=1)=0$: μ chemical potential; ho charge density

Superfluid: set $\psi_i^{(l)}$ to zero \Rightarrow spontaneous symmetry breaking; Condensate encoded in $\psi_i^{(s)}$

Time dependent quenches

$$S = S_{\rm grav} + rac{1}{2\kappa^2} \int_{\mathcal{M}} {\rm d}^4 x \, \sqrt{-g} \left[-rac{1}{4} F_{\mu
u} F^{\mu
u} - |D\psi|^2 - m^2 |\psi|^2
ight] \, .$$

The radial Maxwell equation reads (we don't consider spatial dependence)

$$abla_m F^{mu} - iq(\psi^* D^u \psi - \psi D^u \psi^*) = 0 \quad \Rightarrow \dot{
ho} = 0 \quad \text{for } u = 0, \psi_i^{(l)} = 0$$

Want: $\dot{\rho} \neq 0$. One way to achieve this is by quenching the scalar source $\psi^{(l)}$ (see e.g. [Bhaseen, Gauntlett, Simons, Sonner, Wiseman; '12]) In the case of $\psi^{(l)} = 0$, we can quench the charge density with an external source in terms of the Null fluid action

$$S_{\rm nf} = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} A_{\mu} J_{\rm ext}^{\mu} \Rightarrow 2\kappa^2 J_{\rm (nf)}^{u} = \dot{\rho}_{\rm ext} u^2$$

 S_{nf} is null-fluid action added by hand to obtain Vaidya-like solution.

The holographic model

$$S = S_{\rm grav} + \frac{1}{2\kappa^2} \int_{\mathcal{M}} d^4 x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D\psi|^2 - m^2 |\psi|^2 \right] + S_{\rm nf} \,.$$

The radial Maxwell equation reads

$$\nabla_m F^{mu} - iq(\psi^* D^u \psi - \psi D^u \psi^*) = 2\kappa^2 J^u_{(\mathsf{nf})} \Rightarrow \dot{\rho} = \dot{\rho}_{\mathsf{ext}} \text{ for } u = 0, \psi_i^{(I)} = 0$$

Quench Profile

$$\rho(t) =
ho_{\text{initial}} + rac{1}{2}(
ho_{\text{final}} -
ho_{\text{initial}})(1 + anh[\Omega(t - t_s)]);$$

where $\Omega = 10$ (rapidity), $t_s = 1.5$ (center). Comments:

- Shortly after quench $(t_s\sim 2)~
 ho(t)=$ const and thus $\dot{
 ho}=$ 0
- Intermediate and late time behavior independent of quench protocol
- Solve system of PDEs numerically
- Monitor that all equations and constraint are satisfied at all times

Quench Profile

Quench Profile

$$\rho(t) =
ho_{\text{initial}} + rac{1}{2}(
ho_{\text{final}} -
ho_{\text{initial}})(1 + anh[\Omega(t - t_s)]);$$

where $\Omega = 10$ (rapidity), $t_s = 1.5$ (center). Shortly after quench ($t_s \sim 2$) $\rho(t) =$ const and thus $\dot{\rho} = 0$

Numerical methods

Usually: Combine pseudo-spectral methods in spatial directions with 4th order Runge-Kutta or Adams-Bashforth (both explicit time-marching algorithms)

Problem: Our problem requires stable simulation over large time intervals \Rightarrow implicit algorithm needed (for example Crank-Nicolson, not subject to CFL condition like explicit schemes)

Here: (Pseudo)-spectral methods in space in time (highly implicit)

- Highly accurate (in space and time) and stable
- Divide time interval in multiple domains (size dynamically adjustable)
- Use Chebychev-Lobatto grid in radial direction, right-sided Radau grid in time direction (which does not include initial time slice).
- For more details see [Hennig, Ansorg; '08], [Flory, SG, Tejera-Morales; '22],[Ammon, SG, Jimenez-Alba, Macedo, Melgar; '16],[SG; '17]

Critical Quenches

Critical Quenches

- For exactly critical quenches starting from the superfluid phase (red) onto the critical point (green): Quasi-normal mode which usually drives system to equilibrium (Higgs mode/Amplitude mode) becomes massless.
- No exponential decay!
- How does the system relax?
- Relaxation purely encoded in nonlinearity of the equations

Power law decay amplitude

Observation

At late times, all quenches: power law decay with exponent $-\frac{1}{2}$ (instead of exp.) $|\langle \mathcal{O} \rangle| \sim \frac{4.07}{\sqrt{t}}$

Log-periodic oscillations

Observation

Phase falloff $\dot{\varphi} \sim 1/t$ means $\varphi(t) \sim \log(t)$, i.e. log-periodic oscillations \Rightarrow discrete scale invariance?

Power law and log periodic oscillations also observed in crit. quenches in Kondo model [Erdmenger, Flory, Newrzella, Strydom, Wu; '16]

Dicrete scale invariance

Order parameter: power law decay with oscillations in logarithmic time \Rightarrow characteristic for discrete scale invariance and **complex critical exponents** $\langle \mathcal{O} \rangle \sim t^{\alpha+i\beta} \Rightarrow$ Self similar systems and fractal structure

Decay gauge field

Observation

At late times, all quenches: power law decay with exponent -1 (instead of exp.)

$$\dot{arphi} - (A_t(0) -
ho_c) \sim rac{0.93}{t}$$

Found both solutions as scaling solutions; analytical solution possible?

Boundary model

Postulate the phenomenological equation (for homogeneous case)

$$\begin{split} & \left[\partial_t - iC_1 \left(\mathcal{A}_t(t) - \rho + C_5 |\Psi(t)|^2\right)\right] \Psi(t) \\ & \equiv -(C_2 + iC_3) \left[|\Psi(t)|^2 - C_4(\rho - \rho_c)\right] \Psi(t) \end{split}$$

where $\Psi = \phi e^{i\varphi}$, $\rho, \rho_c, \varphi, \mathcal{A}_t, C_i \in \mathbb{R}$, $\phi > 0$.

- Complex pre-factor $(C_2 + iC_3)$ dissipation, phase rotation
- Neglect spatial derivatives or higher orders of Ψ and $(\rho \rho_c)$
- Eq for ϕ decouples \Rightarrow analytical solution
- Assume that $\rho(t) \equiv \rho$ (constant in time)
- Set charge of complex scalar under gauge field to unity: $C_1 = 1$.

Validity: Since we neglect higher order of Ψ and $(\rho - \rho_c)$, the equation should describe the dynamics near the critical points, i.e. small enough condensates and small enough deviations from the critical charge density.

Claim:

- Phenomenological model describes full non-linear dynamics after quench (where $\rho = \text{const}$) if initial and final state are sufficiently close to critical point
- All parameters are fixed within linear response theory and from the properties of the equilibrium states

Advantage: Equilibrium solutions and linear response properties are (computationally) much easier to obtain than full real time dynamics.

Goal: Determine the parameters and cross check with real time evolution for sub-, super- and critical quenches.

$$\begin{split} & \left[\partial_t - iC_1 \left(\mathcal{A}_t(t) - \rho + C_5 |\Psi(t)|^2\right)\right] \Psi(t) \\ & \equiv -(C_2 + iC_3) \left[|\Psi(t)|^2 - C_4 (\rho - \rho_c)\right] \Psi(t), \end{split}$$

(Non-trivial) static solutions: (Recall $\Psi = \phi e^{i\varphi}$)

$$\phi = \sqrt{C_4(\rho - \rho_c)}, \qquad \mathcal{A}_t = \rho - C_5 \phi^2 = \rho - C_4 C_5(\rho - \rho_c)$$

Within Holography this corresponds to constructing the phase diagram (static case!) near the critical point choosing the condensate to be real and fitting

$$\langle \mathcal{O} \rangle = \sqrt{C_4(\rho - \rho_c)}, \ \mu = \rho - C_5 \langle \mathcal{O} \rangle^2$$

 $\Rightarrow C_4 \approx 4.09192 \ C_5 \approx 0.14967$

Note: As you might have noticed the conformal dimensions do not match in those expressions. We assume all physical quantities to be normalized to appropriate powers of $\overline{T} = 4\pi T/3$ (Recall $T = 3/(4\pi)$).

Determining parameter C_2

$$\begin{split} & \left[\partial_t - iC_1 \left(\mathcal{A}_t(t) - \rho + C_5 |\Psi(t)|^2\right)\right] \Psi(t) \\ & \equiv -(C_2 + iC_3) \left[|\Psi(t)|^2 - C_4 (\rho - \rho_c)\right] \Psi(t), \end{split}$$

Solve equation analytically (for $\rho > \rho_c$ or $\rho < \rho_c$). Late time expansion for quenches ending near critical point for final states in the superfluid phase yields (exponential decay to eq. \rightarrow linear response)

$$\phi(t) - \sqrt{C_4(\rho - \rho_c)} \propto e^{-2C_2C_4(\rho - \rho_c)t} + \dots$$

or in the normal phase

$$\phi(t) \propto e^{C_2 C_4 (
ho -
ho_c) t} + \dots \, .$$

Within Holography: lowest QNM(s) at zero wavevector $\sim \delta f \ e^{-i\omega t}$

- Superfluid phase: $\omega_{Ampl} = -0.2469 i (\rho \rho_c)$
- Normal phase: $\omega_{\pm} = -(\pm 0.38087 0.12348i)(\rho \rho_c)$,

 ω_+ corresponds to Ψ and ω_- to Ψ

$$\Rightarrow \textit{C}_{2} \approx 0.03018$$

Late time behavior for final states in the normal phase

$$\dot{\varphi}(t) = C_3 C_4 (\rho - \rho_c) + \dots$$

Within Holography, we find from the same QNM as on previous slide:

 $\omega_{\pm} = -(\pm 0.38087 - 0.12348i) (\rho - \rho_c), (\omega_{+} \text{ from } \Psi, \omega_{-} \text{ from } \bar{\Psi})$

 $\Rightarrow C_3 \approx 0.09308$

Late time behavior for final states in the superfluid phase

$$\begin{split} \phi(t) &= \sqrt{C_4} \sqrt{\rho - \rho_c} + \frac{\sqrt{C_4}}{2} \sqrt{\rho - \rho_c} \left(1 - \frac{C_4(\rho - \rho_c)}{\phi_0^2} \right) e^{-2C_2 C_4 t(\rho - \rho_c)} + \dots \\ \dot{\phi}(t) - C_1 \mathcal{A}_t(t) &= -C_1 \rho + C_1 C_4 C_5(\rho - \rho_c) \\ &- \frac{C_4 (C_1 C_5 - C_3)}{\phi_0^2} (C_4(\rho - \rho_c) - \phi_0^2) (\rho - \rho_c) e^{-2C_2 C_4 t(\rho - \rho_c)} + \dots \end{split}$$

Comparing the prefactors of the exponential decay yields

$$\Rightarrow \frac{\text{Amplitude}_{\phi}}{\text{Amplitude}_{\dot{\varphi}(t)-C_{1}\mathcal{A}_{t}(t)}} = \frac{1}{2\sqrt{C_{4}(\rho-\rho_{c})}} \frac{1}{C_{1}C_{5}-C_{3}}$$

Determining parameter C_3 in superfluid phase

In Holography, QNMs ω are eigenvalues of generalized eigenvalue problem $(\mathbf{A}\omega - \mathbf{B})\mathbf{x} = 0$, where \mathbf{A} and \mathbf{B} are differential operators of a non-hermitian Sturm-Liouville problem. Eigenvector \mathbf{x} corresponding to the eigenvalue ω carries information about how much each field theory operator contributes to QNM excitation. Framework recently developed in [Arean, Baggioli, SG, Landsteiner; '21]

In this framework, compute contributions of scalar and gauge field fluctuations to amplitude mode and take ratio of the expectation values:

$$\frac{\text{Amplitude}_{|\langle \delta \mathcal{O} \rangle|}}{\text{Amplitude}_{\langle \delta \dot{\varphi} \rangle - \langle \delta \mathfrak{s}_t \rangle}} = \frac{17.67}{2\sqrt{C_4(\rho - \rho_c)}} \stackrel{!}{=} \frac{1}{2\sqrt{C_4(\rho - \rho_c)}} \frac{1}{C_1 C_5 - C_3}$$
$$\implies C_3 \approx 0.09308$$

Checks

$$\begin{split} & \left[\partial_t - i\mathcal{C}_1\left(\mathcal{A}_t(t) - \rho + \mathcal{C}_5|\Psi(t)|^2\right)\right]\Psi(t) \\ & \equiv -(\mathcal{C}_2 + i\mathcal{C}_3)\left[|\Psi(t)|^2 - \mathcal{C}_4(\rho - \rho_c)\right]\Psi(t), \end{split}$$

Set $\rho=\rho_{\rm c}$ for exactly critical quenches and we find

$$\begin{split} \phi(t) &= \frac{1}{\sqrt{2C_2t + \frac{1}{\phi_0^2}}} \approx \frac{4.07}{t^{1/2}} + \dots, \\ \dot{\varphi} &- C_1(\mathcal{A}_t - \rho_c) = \frac{C_1C_5 + C_3}{2C_2t + \frac{1}{\phi_0^2}} \approx \frac{0.94}{t} + \dots \end{split}$$

Recall for exactly critical quenches, we observed (by fitting the late time behavior, small deviation since initial condensate \sim 1)

$$|\langle \mathcal{O} \rangle| \sim \frac{4.07}{\sqrt{t}}, \qquad \dot{\varphi} - (A_t(0) - \rho_c) \sim \frac{0.93}{t}$$

Sub-critical Quenches

Sub-critical Quenches

Analytical solution to phenomenological equation analytically: Real part yields

$$\phi(t) = \sqrt{\frac{C_4(\rho - \rho_c)}{1 - \left(1 - \frac{C_4(\rho - \rho_c)}{\phi_0^2}\right)e^{-2C_2C_4t(\rho - \rho_c)}}}$$

with $\phi(0) = \phi_0$. Imaginary part then yields expression for $\dot{\varphi} - C_1 \mathcal{A}_t$.

$$\dot{\varphi} - C_1 \mathcal{A}_t = -C_1 \rho - C_3 C_4 (\rho - \rho_c) + \frac{C_4 (C_3 + C_1 C_5) (\rho - \rho_c)}{1 - e^{-2C_2 C_4 t (\rho - \rho_c)} \left(1 - \frac{C_4 (\rho - \rho_c)}{\phi_0^2}\right)}.$$

System will initially react like critical quench (power law decay), only after "handover-timescale" which we define as

$$t_{\rm ho} \sim \frac{1}{|\rho - \rho_c|}$$

the system relaxes exponentially.

Relaxation after sub-critical quench

Legend

Dashed orange line: solution to phenomenological equation; blue line: numerical non-linear time evolution; blue dot: hand-over time; red dashed line: solution for critical quench

Relaxation after sub-critical quench

Legend

Dashed orange line: solution to phenomenological equation; blue line: numerical non-linear time evolution;

Super-critical Quenches

Relaxation after super-critical quench

Legend

Dashed orange line: solution to phenomenological equation; blue line: numerical non-linear time evolution; blue dot: hand-over time; red dashed line: solution for critical quench

Relaxation after super-critical quench

Legend

Dashed orange line: solution to phenomenological equation; blue line: numerical non-linear time evolution;

Conclusions

- Studied relaxation of critical and near-critical quenches exhibiting power-law decay and discrete scale invariance
- Established and successfully tested phenomenological model capturing the non-linear out-of-equilibrium dynamics
 - All parameters of the model may be determined within linear response and static equilibrium
 - Non-trivial prediction of the full non-linear dynamics
 - Nice test and application of the framework to compute the amplitudes of Quasi-normal modes, recently developed in [Arean, Baggioli, SG, Landsteiner; '21]

Conclusions and Outlook

Outlook

- Extension to include spatial dependence
- Similar study in the case of broken spacetime dimensions or other spontaneously broken symmetries in general?
- Origin of discrete scale invariance in horizon dynamics?
- Full solution from scaling solutions?
- Amplitude/Higgs mode near phase transition recently investigated in linear regime from holography in [Donos, Pantelidou; '22]. Connections?
- Different types of phase transitions?
- Beyond mean-field?

Thank you for your attention!!