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The physics of quantum fields in de Sitter is important:

Observations suggest that the cosmological constant in our
Universe is positive.

Our Universe is asymptotically de Sitter.

We believe that the very Early Universe underwent a period of
exponential expansion, the inflationary period, where the
description was also quasi-de Sitter.

In slow-roll inflation, many of the cosmological observables are
well-approximated by QFT in a fixed dS background.
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Introduction

QFT in de Sitter

> Weakly coupled QFT in a fixed de Sitter background has been
studied through the years.

> |t is well-known that light fields, m <« H exhibit infrared
divergences at loop order. [Starobinski (1984) ...]

> The meaning and implications of these IR divergences are still
debated [Starobinski, Yokohama, Ford, Antoniadies, lliopoulos, Tomaras, Tsamis, Woodard, Weinberg, Burgess, Marolf,

Morisson, Zaldariaga, Senatore, Sundrum, Polyakov ....]

> In this work we aim to use holography to discuss strongly
coupled QFTs in a fixed de Sitter background.
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Introduction

Holographic cosmology

> This work is conceptually distinct from dS/CFT and holographic

Cosmology. [Strominger (2001)], [Maldacena (2002) ... [McFadden, KS (2009)]

> In dS/CFT one seeks to describe a dS,,; Universe with
dynamical gravity via d-dimensional CFT with no gravity.

> Here we want to describe a d dimensional strongly couple QFT
on fixed de Sitter background using AdS gravity in d + 1
dimensions.
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Conformal boundary of AdS spacetimes

Conformal boundary

> There are very common misconceptions about the conformal
boundary of AdS.

> Many assume that if you write the metric as
dr? 1

then the boundary is at = = 0 and the boundary metric is
g(O)ij(x)'
> In general, this is not correct.

> |f the r=constant slices are non-compact then part of the
conformal boundary is located at each value of r.
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Conformal boundary of AdS spacetimes

Boundary conformal boundary

> What is correct is that if the metric takes the form

dr? 1 o
] (9015 (2) + O(r)) da*da?

AND the the r=constant slices are compact then

the boundary is at » = 0 and gy () is a representative of the
boundary conformal structure.

> The conformal boundary does not depend on which coordinates
we are using.
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Conformal boundary of AdS spacetimes

AdS and its conformal structure

The metric in global coordinates is given by

1

2 _
ds® = 5

—— (—dT? + dr® + cos® 7dQ7_,)
sm- r
where 0 < 7 < 7/2.

> The r=constant slices are compact.

(What we usually call AdS is the universal cover of AdS. The time
variable in AdS is compact —7 < T < 7.)

> The conformal boundary of AdS,.; is at ¥ = 0 and the boundary
is the Einstein Universe R x S9-1.

> The bulk metric divergences there: there is a second order pole.
So there is no well-defined boundary metric.

> There is however a well-defined conformal structure, i.e. a metric
up to a Weyl transformation.
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Conformal boundary of AdS spacetimes

The boundary conformal structure

> To obtain a boundary metric we use a defining function, i.e. a
function w(x) which is positive in the interior but has a single zero
at the boundary. We then define

9(0) = lim w?g
This limit exits because the second order pole in g is canceled by
the zero of w?.

> However, any other w’(z) = w(x)e’®) is as good, so what is

well-defined here is the conformal class

9oy ~ 62”(m)g(o)
> For AdS we may pick w = sin7, and this leads to the
representative:
dsg = —dt* +d93_,
This metric is conformally flat and any other conformally flat
metric is as good.



Conformal boundary of AdS spacetimes

Different representatives of conformal structure

> Modulo issues that are associated with the holographic
conformal anomaly, any representative is as good.
> One can change representative by doing a bulk diffeomorphism.
> A conformally flat conformal structure can represented by
> Minkowski metric: Poincaré coordinates
> AdS metric: AdS slicing of AdS
> dS metric: dS slicing of AdS
> FRW metric: FRW slicing of AdS (ciatagianas, Tetradis)
> This does not change the boundary of AdS, which is always the
Einstein Universe R x S%~1.
w Different representatives describe the same boundary in different
ways.

> A CFT is invariant under Weyl transformations (module
conformal anomalies), so in AAS/CFT it does not matter which
representative one is using.

Kostas Skenderis Holography for QFTs in de Sitter



Conformal boundary of AdS spacetimes

dS; slicing of AdS,

> The dS-slicing of AdS is given by
2 2
ds* = dz* 4+ e~ %% <1 - }ie2z> dszs3

where
—dn? + djf?

d 2 :*dt2 2th—*2:
5dS, +eay H2?

where —oo < 1 < 0.
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Conformal boundary of AdS spacetimes

Map to Poincaré and global coordinates

> The coordinate transformation

r 212 — /14 — 272 722\ rd 212
z=log | ——— 2 son

Hrt 72 — /74 — r272

maps the metric to Poincaré coordinates

1 q
ds* = T—Q(drz — dr?* 4 di?)
> and the further transformation
sin 7 sinT sinf cos 7
pr— 5 T pr— - p— —
cosT + cosf cosT cosT + cosfcos7’ cosT + cosf cosT

where di? = dR? + R?d®?, maps to global coordinates
1

sin’ 7
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Conformal boundary of AdS spacetimes

Boundary and global issues

> Boundary R x S?isat7 = 0.
Azimuthal angle is suppressed.

> dS; is conformal to a portion of
R x S?

The spacelike conformal boundaries
of dS are shown in red.
Inflationary

patch > AsY =il oo we get the blue

sin 7

square region.

> AsY — oo we get the white square
region.

T+(dSs)

~

Il
North pole
South pole

7 (dS.
9=0 (dSy) 0=n
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Conformal boundary of AdS spacetimes

Penrose diagram

Each point is an S? which shrinks to
zero size at the origin of coordinates
indicated by the dashed line.

> Lines are level sets of Y (= sin T/ sin 7)

« I+ (dSs) > Blue line corresponds to the blue square
area of the boundary.

> The shows the
development of data prescribed in the
blue dS; region at the boundary.

Y - +00
Y

Y - —c©

+ I~ (dSs)
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QFT in dS from AdS
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QFT in dS from AdS

From CFT to QFT

> A CFT is Weyl invariant, so it is the same as in all conformally
related spacetimes
> We would like to deform the CFT by a mass term:

S = Scer + | d%z Vv —detgm O(z).

> Since m breaks conformal symmetry there is no longer a relation
to vacuum QFT on Minkowski spacetime under a Weyl
transformation.

> Instead a massive theory in dS is equivalent to QFT on
Minkowski spacetime in the presence of a spacelike defect:
The Weyl tranformation to Minkowski spacetime yields

S = ScFT-l-/ddx

w The future conformal boundary of dS; is described by a singular
spacelike source function in R'-2,
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QFT in dS from AdS

Holographic implementation

> |t is well-known how to deform a CFT holographically from the
studies of holographic RG flows in the early days of AdS/CFT

[Boonstra, KS, Townsend (1998)] [Girardello etal (1998)][Freedman etal (1999)] [KS, Townsend (1999)].....
> We need to turn on the scalar ¢ that is dual to O
> Look for dS-sliced asymptotically AdS domain-wall solutions

ds* = dz* — P(2)dshg,, ¢ =¢(2)

> As z — o0

> the metric should approach that of AdS is AdS-sliced coordinates
> the scalar should behave as a sources, ¢ — ¢“~"2)*m
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QFT in dS from AdS

The model

> Following [Buchel (2017)], we consider a free massive field in AdS:

_i _ 4 _1 2 2
5_252/%1\/ de<R+6 5 (99) +¢),

> The field ¢ is dual to a dimension A = 2 operator.
> One can solve the field equations perturbatively in m.

- o (1 H?2 21>2 (—144 + 112He? — 32H2e2% 4 aH3e3% 4 HAe4?)
- e - e -

1152 (1 + %ez)z

m2 + o(m?)

e2%(40 4+ 12He? + 14H2e27% 4 g3e3%

5 m —

L‘Z)Z 576 H (1+%EZ)6

m3 + O(ms),

vz | %

G

This solution was first obtained (in different coordinates) in
[Buchel (2017)].
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QFT in dS from AdS

Global solution

> One may transform to global coordinates

5 1
ds*> = QV)*—— (—dT? + dr* + cos® 7d€3),
sm-r
o = F(Y)
with
Q%(y) = 1- ! — - ° — +o(m)",
12(Y —1)2 H? 432(y — 1)3 g4
1 m 3-5Y m3  —175+ 619Y — 645Y2 4 120Y3 m5 -
FY) = ———+ — — 4+ 0(m)",
1—-Y H 72(y —1)3 H3 51840(Y — 1)° H5
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QFT in dS from AdS

Penrose diagram

m#0

¥ = 4o
¥ = 40

W — I+ (dSa) M — I+ (dSa)

Y = -0

A T jasy) W 1 (as,)
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QFT in dS from AdS

Location of singularity at finite m

> The null Y = 1 singularity
splits into a spacelike and
y- ‘ ‘ ‘ ‘ timelike singularity for finite m.

> Perturbatively in m:

08

1 m
o7} 1 Yf:l:l:———l—OmQ
2 O
osf ] > At finite m, we obtained the
o[\ ¢-perturbation theory O(m) ‘ solution using the shooting
’ ) * * m”/ % method (source m at

Y = —oo, regularaty = —1)

Kostas Skenderis Holography for QFTs in de Sitter



QFT in dS from AdS

One-point functions

> Correlators can be extracted as usual using holographic
renormalization.

> One-point functions take the form dictated by dS-invariance and
Ward identites:

H2

m
O = 527 (3):
H® m my s
<TMV>O - _ﬁsiH (ﬁ)gl“”
> For smallm/H:
m 5 m? 43 mP

_ s n e 7
F=-% nm  tesm O
> Asm/H — oo:

2
m
f = fasy7H2 .Fasy ~ —037
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QFT in dS from AdS

Non-perturbative evaluation of F

small m perturbation theory —
5L ]
log(—7)
’ e
-5+ m
«+ leading large m behaviour
8 6 4 2 0 2 n

logm/H
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QFT in dS from AdS

2-point functions

> These are computed using the methodology developed for
holographic RG flows sianchi Freedman. ks 001 -

> We need to solve linearised equations around the background:
Gap = GEV(2) + Hup(2,7), ¢ = d(2) + Hy(z,2)
> Decomposition

H,.=X
H.p = P(2)(0,V +Vy,)
Hy = P(2) (20907 +2V{50,)x + 2V {w,) + )

Yuv i8 TT and w,,, V, are divergence-less w.r.t. g&>
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QFT in dS from AdS

Using dS isometries

> Gauge redundancy
Hab — Hab + 2V(a§b)7 Hd) — Hd) + gaaaé

w Take X =V =V, =0 we go to the FG gauge. Leftover
redundancy solved with gauge invariant variables.
> We further use the dS isometries to decompose as:

0;® =ik;®, Ogs, & =\D
=& = @k’A(z)'r]Jl,(kn)eikiyi, A= H?*(1 -7
where we work with conformal time:
—dn? + dij?
H2p?
> So the dynamical equation to be solved is the radial equation
involving @, »(z).
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QFT in dS from AdS

Tensors

> Decomposition:
voi = —hiJ, (kn)e™¥y(z)
Vi = g2z (10 — 2) (T (k1)) Die™ hyjyy(2)
where h; is a constant polarization vector satisfying: h;k* = 0.

> Equation: " + %% " — 2~ =0, is solved order by order in mn.
> 2-point function:

<T:uu(1/17 kl)Tpd(V27 k2)> = H;u/poA(Vh kl)

where I1,,,,,» is TT projector and

H3 5 302 + 8y — 19 m? 35 23 3 m 6
Aw) = — e oy T (2 + )+ omm)
2k2 24(v —2) H?2 864 1536(v — 2)  256(v — 2)2/ H4

> A(v, k1) contains a polynomial in v and poles in (v — 2).
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QFT in dS from AdS

Resummation

> Resummation yields single poles corresponding to normalisable
modes:
vl =n+0(m?), n=2234...
where we computed the corrections though m®. For example,

103 m? 50029 m©
32 H2 36684 H4 212336640 HO

> The resummation reads:

+0o(m)8,

3H3 (v vm? ot 7
A k)= (202 - 1)+ =22 4 ) — Zm(0)o
(v, k) 22 3( ) 24 H?2 & 4~ p -t 12 ()
]:2 J
with residues
' m? 23 m? 14477 m? 66506857  mS s
o= - a-— - - —= +om®),
8H 576 H 6635520 H 1337720832000 H
t
T3 =
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QFT in dS from AdS

Scalars

> Gauge invariant variables:

~ ’ R
Ciiw+§P5/7 ¢:7(%)7 V:X/+p%/

> The Hamiltonian and momentum constraint equations give:

— _2(3H +)\ C"’ Q_3m2 C/

7 _ 2H?P~ 2P S
¢ = pr Y pr ' v H2Qx
> Dynamical equation
2 46 | 2H? 2P _ ¢*P  P@*\
¢ ‘*‘(_T"‘ b=~ 5 )9+
o) 40H?¢ _ 40¢P _ 206°P _ 10¢P3" _ A\ 7 _
(—10-¢° - c/>/2 + %P o " 3gp 3P P)o=

which is solved pertrubatively in m.
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QFT in dS from AdS

Scalar 2-point function

> 2-point function:

<OV1 (kl)OVQ (k2)> = a(Vl, kl)él/l,VQ 6(2) (kl + k2)

> After resummation only single poles at the location of
normalizable modes:

where the normalisables modes are sucne 2017

v =n+0(m?), n=1,2,3,4...
again computed through order m®. E.g.

s 1 m?2 1 om? 1591 m6 s
vi = 14— — - —— + — +0o(m)8,

12 H2 54 H4 = 622080 HS
and residues:

2 2 4 6
s _ m 1m 109 m 109672267 _ m 8) s _
= a2 (1 175z t 2536 g4 T 100590033600 F6 + O(m) )*T’z =
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QFT in dS from AdS

A simple representation of conformal correlators

> When m? = 0 the 2-point should reduce to a CFT correlator:
<OV1 (k1)0V2 (k2)> ~ V16V1,V2 5(2) (kl + k2)

where v, is the index of the Bessel function.
> This is a surprising simple representation of the CFT correlator

> No explicit momentum dependence, apart from the momentum
conserving delta function

> Recall that in momentum space (for A = 2,d = 3):

(O(w1, k1)O(wa, k2)) ~ \/[k2 — w28 (w1 + wa)d@ (k1 + ko)

> The fact that the two agree follows from expanding e*“* in terms
of Bessel functions.

> Similar results hold for any A and d.
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Toy model: free fermions in dS
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Toy model: free fermions in dS

Model for dual QFT

> We deformed the CFT with an operator O of dimension 2.

> Ind = 3 afree massless fermion ¢ is a CFT and has an operator
of dimension 2, namely a mass term O = ¢

> Thus a free massive fermion in dS has some of the features of
the dual QFT.
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Toy model: free fermions in dS

Conformal perturbation theory

> We can use conformal perturbation theory in Minkowski with a
singular source for O and then Weyl transform to de Sitter.

> In the free-fermion CFT:

(O(z1))o =0
(O(x1)O(z2))0 = 8711'2 |x112|4
(O(21)0(22)O(3))0 = 0
)O(24))

0 = non — zero

where the subscript 0 indicates that the computation was done in
the massless theory.
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Toy model: free fermions in dS

1-point function

> Computing in Minkowski

(Ole1)) =0~ [ dam(z2)(O(1)0w))o + O(m*) = 1y + O(n?)
1
and transforming to de Sitter

1
(O)as, = —H?5 7 + O(m?)

which matches the holographic result, up to a constant.

> Note that in A\¢* theory in dS, [Bunch, Davies (1978)]:

H 4

m2

Kostas Skenderis Holography for QFTs in de Sitter

<G)2>d54 ~



Toy model: free fermions in dS

2-point function

> Two-point functions up to O(m?)

(O(21)O(22)) = (O(z1)O(2))0 — /ddfﬂsm(xs)<O($1)O(=’E2)O($3)>o

+ /ddm3ddx4m(x3)m(x4)(O(xl)O(xg)O(x3)O(x4)>o

1

2

which yields
(O(21)0(x2)) = (O(21)O(2))0 + O(m?)

which is also in agreement with the holographic result: no order
m contribution.

Kostas Skenderis Holography for QFTs in de Sitter



Conclusions

Outline

Conclusions

Kostas Skenderis Holography for QFTs in de Sitter



Conclusions

Conlusions

> We studied strong coupled QFTs in dS3 via holography.

> We found no signs of IR instabilities. Perhaps this is unsurprising
given that the QFT was a deformation of a CFT.

> 2-point functions are expressed in a spectral representation as a
sum over simple poles.

> The poles correspond to normalizable modes.
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Conclusions

Outlook

> Extend the work to dS, and FRW, and general potential.

> Make connection with cosmological observables.

> Explore the novel Bessel basis for CFT correlators.
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