Holography for QFTs in de Sitter

Kostas Skenderis

< □ > < □ > < □ > < □ >

HoloTube 12 July 2022

1 Introduction

- 2 Conformal boundary of AdS spacetimes
- 3 QFT in dS from AdS
- 4 Toy model: free fermions in dS
- 5 Conclusions

.∃ ▶ ∢

- 2 Conformal boundary of AdS spacetimes
- 3 QFT in dS from AdS
- 4 Toy model: free fermions in dS
- 5 Conclusions

A (10) > A (10) > A (10)

Introduction

- > The physics of quantum fields in de Sitter is important:
- Observations suggest that the cosmological constant in our Universe is positive.
- Our Universe is asymptotically de Sitter.
- We believe that the very Early Universe underwent a period of exponential expansion, the inflationary period, where the description was also quasi-de Sitter.
- In slow-roll inflation, many of the cosmological observables are well-approximated by QFT in a fixed dS background.

- Weakly coupled QFT in a fixed de Sitter background has been studied through the years.
- > It is well-known that light fields, $m \ll H$ exhibit infrared divergences at loop order. [Starobinski (1984) ...]
- The meaning and implications of these IR divergences are still debated [Starobinski, Yokohama, Ford, Antoniadies, Iliopoulos, Tomaras, Tsamis, Woodard, Weinberg, Burgess, Marolf, Morisson, Zaldariaga, Senatore, Sundrum, Polyakov].
- In this work we aim to use holography to discuss strongly coupled QFTs in a fixed de Sitter background.

• • • • • • • • • • • •

This is talk in based on work with José Manuel Penín and Ben Withers

Massive holographic QFTs in de Sitter, SciPost Phys. 12, 182 (2022) and on-going work

Earlier relevant work includes

A. Buchel, Ringing in de Sitter spacetime, Nucl. Phys. B 928, 307 (2018)

• • • • • • • • • • • •

Holographic cosmology

- This work is conceptually distinct from dS/CFT and holographic cosmology. [Strominger (2001)], [Maldacena (2002) ... [McFadden, KS (2009)]
- In dS/CFT one seeks to describe a dS_{d+1} Universe with dynamical gravity via *d*-dimensional CFT with no gravity.
- > Here we want to describe a d dimensional strongly couple QFT on fixed de Sitter background using AdS gravity in d + 1dimensions.

< 🗇 🕨 < 🖻 🕨

- 2 Conformal boundary of AdS spacetimes
- 3 QFT in dS from AdS
- 4 Toy model: free fermions in dS
- 5 Conclusions

• • = • •

< A

Conformal boundary

- There are very common misconceptions about the conformal boundary of AdS.
- Many assume that if you write the metric as

$$ds^{2} = \frac{dr^{2}}{r^{2}} + \frac{1}{r^{2}} \left(g_{(0)ij}(x) + O(r) \right) dx^{i} dx^{j}$$

then the boundary is at z = 0 and the boundary metric is $g_{(0)ij}(x)$.

- In general, this is not correct.
- If the r=constant slices are non-compact then part of the conformal boundary is located at each value of r.

Boundary conformal boundary

What is correct is that if the metric takes the form

$$ds^{2} = \frac{dr^{2}}{r^{2}} + \frac{1}{r^{2}} \left(g_{(0)ij}(x) + O(r)\right) dx^{i} dx^{j}$$

AND the the *r*=constant slices are compact then the boundary is at r = 0 and $g_{(0)ij}(x)$ is a representative of the boundary conformal structure.

The conformal boundary does not depend on which coordinates we are using.

AdS and its conformal structure

The metric in global coordinates is given by

$$ds^{2} = \frac{1}{\sin^{2} \bar{r}} \left(-dT^{2} + d\bar{r}^{2} + \cos^{2} \bar{r} d\Omega_{d-1}^{2} \right)$$

where $0 < \bar{r} \le \pi/2$.

> The \bar{r} =constant slices are compact.

(What we usually call AdS is the universal cover of AdS. The time variable in AdS is compact $-\pi < T < \pi$.)

- > The conformal boundary of AdS_{d+1} is at $\bar{r} = 0$ and the boundary is the Einstein Universe $R \times S^{d-1}$.
- The bulk metric divergences there: there is a second order pole. So there is no well-defined boundary metric.
- There is however a well-defined conformal structure, i.e. a metric up to a Weyl transformation.

The boundary conformal structure

> To obtain a boundary metric we use a *defining function*, *i.e.* a function $\omega(x)$ which is positive in the interior but has a single zero at the boundary. We then define

$$g_{(0)} = \lim_{\bar{r} \to 0} \omega^2 g$$

This limit exits because the second order pole in g is canceled by the zero of $\omega^2.$

> However, any other $\omega'(x) = \omega(x)e^{\sigma(x)}$ is as good, so what is well-defined here is the conformal class

$$g_{(0)} \sim e^{2\sigma(x)} g_{(0)}$$

> For AdS we may pick $\omega = \sin \bar{r}$, and this leads to the representative:

$$ds_0^2 = -dt^2 + d\Omega_{d-1}^2$$

This metric is conformally flat and any other conformally flat metric is as good.

Different representatives of conformal structure

- Modulo issues that are associated with the holographic conformal anomaly, any representative is as good.
- > One can change representative by doing a bulk diffeomorphism.
- A conformally flat conformal structure can represented by
 - Minkowski metric: Poincaré coordinates
 - AdS metric: AdS slicing of AdS
 - dS metric: dS slicing of AdS
 - FRW metric: FRW slicing of AdS [Giatagianas, Tetradis]
- > This does not change the boundary of AdS, which is always the Einstein Universe $R \times S^{d-1}$.
- Different representatives describe the same boundary in different ways.
- A CFT is invariant under Weyl transformations (module conformal anomalies), so in AdS/CFT it does not matter which representative one is using.

dS_3 slicing of AdS_4

The dS-slicing of AdS is given by

$$ds^{2} = dz^{2} + e^{-2z} \left(1 - \frac{H^{2}}{4}e^{2z}\right)^{2} ds^{2}_{dS_{3}}$$

where

$$ds_{dS_3}^2 = -dt^2 + e^{2Ht}d\vec{y}^2 = \frac{-d\eta^2 + d\vec{y}^2}{H^2\eta^2}$$

where $-\infty < \eta < 0$.

イロト イ団ト イヨト イヨト

Map to Poincaré and global coordinates

The coordinate transformation

$$z = \log\left(-\frac{r}{H\tau}\frac{2\tau^2 - 2\sqrt{\tau^4 - r^2\tau^2}}{r^2}\right), \qquad \eta = \tau\frac{\tau^2 - r^2 - \sqrt{\tau^4 - r^2\tau^2}}{\tau^2 - \sqrt{\tau^4 - r^2\tau^2}}$$

maps the metric to Poincaré coordinates

$$ds^{2} = \frac{1}{r^{2}}(dr^{2} - d\tau^{2} + d\vec{y}^{2})$$

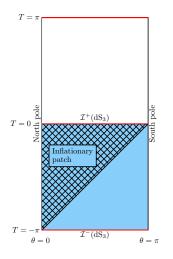
and the further transformation

$$r = \frac{\sin \bar{r}}{\cos T + \cos \theta \cos \bar{r}}, \ \tau = \frac{\sin T}{\cos T + \cos \theta \cos \bar{r}}, \ R = \frac{\sin \theta \cos \bar{r}}{\cos T + \cos \theta \cos \bar{r}}$$

where $d\bar{y}^2 = dR^2 + R^2 d\Phi^2$, maps to global coordinates
 $ds^2 = \frac{1}{\sin^2 \bar{r}} \left(-dT^2 + d\bar{r}^2 + \cos^2 \bar{r} d\Omega_2^2 \right)$

.

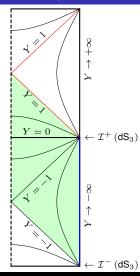
Boundary and global issues



- Boundary R × S² is at r
 = 0.

 Azimuthal angle is suppressed.
- > dS₃ is conformal to a portion of $R \times S^2$
- The spacelike conformal boundaries of dS are shown in red.
- > As $Y \equiv \frac{\sin T}{\sin \bar{r}} \rightarrow -\infty$ we get the blue square region.
- ➤ As $Y \to \infty$ we get the white square region.

Penrose diagram



- Each point is an S² which shrinks to zero size at the origin of coordinates indicated by the dashed line.
- > Lines are level sets of $Y(=\sin T/\sin \bar{r})$
- Blue line corresponds to the blue square area of the boundary.
- The green shaded region shows the development of data prescribed in the blue dS₃ region at the boundary.

Kostas Skenderis

1 Introduction

- 2 Conformal boundary of AdS spacetimes
- 3 QFT in dS from AdS
- 4 Toy model: free fermions in dS
- 5 Conclusions

A (10) > A (10) > A (10)

From CFT to QFT

- A CFT is Weyl invariant, so it is the same as in all conformally related spacetimes
- > We would like to deform the CFT by a mass term:

$$S = S_{\mathsf{CFT}} + \int d^d x \, \sqrt{-\det g} \, m \, O(x).$$

- Since *m* breaks conformal symmetry there is no longer a relation to vacuum QFT on Minkowski spacetime under a Weyl transformation.
- Instead a massive theory in dS is equivalent to QFT on Minkowski spacetime in the presence of a spacelike defect: The Weyl tranformation to Minkowski spacetime yields

$$S = S_{\rm CFT} + \int d^d x \, \frac{m}{-H\eta} \, O(x). \label{eq:S_CFT}$$

The future conformal boundary of dS₃ is described by a singular spacelike source function in ℝ^{1,2}.

Holographic implementation

It is well-known how to deform a CFT holographically from the studies of holographic RG flows in the early days of AdS/CFT

[Boonstra, KS, Townsend (1998)] [Girardello etal (1998)][Freedman etal (1999)] [KS, Townsend (1999)]....

- > We need to turn on the scalar ϕ that is dual to O
- Look for dS-sliced asymptotically AdS domain-wall solutions

$$ds^{2} = dz^{2} - P(z)ds^{2}_{dS_{3}}, \qquad \phi = \phi(z)$$

> As $z \to \infty$

- > the metric should approach that of AdS is AdS-sliced coordinates
- > the scalar should behave as a sources, $\phi \to e^{(d-\Delta)z}m$

The model

> Following [Buchel (2017)], we consider a free massive field in AdS:

$$S = \frac{1}{2\kappa^2} \int_{\mathcal{M}_4} \sqrt{-G} d^4 x \left(R + 6 - \frac{1}{2} \left(\partial \phi \right)^2 + \phi^2 \right),$$

> The field ϕ is dual to a dimension $\Delta = 2$ operator.

> One can solve the field equations perturbatively in m.

$$P = -e^{-2z} \left(1 - \frac{H^2}{4}e^{2z}\right)^2 - \frac{(-144 + 112He^z - 32H^2e^{2z} + 4H^3e^{3z} + H^4e^{4z})}{1152\left(1 + \frac{H}{2}e^z\right)^2} m^2 + O(m^4)$$

$$\bar{\phi} = \frac{e^z}{\left(1 + \frac{H}{2}e^z\right)^2} m - \frac{e^{2z}(40 + 12He^z + 14H^2e^{2z} + H^3e^{3z})}{576H\left(1 + \frac{H}{2}e^z\right)^6} m^3 + O(m^5).$$

This solution was first obtained (in different coordinates) in [Buchel (2017)].

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Global solution

One may transform to global coordinates

$$ds^{2} = \Omega(Y)^{2} \frac{1}{\sin^{2} \bar{r}} \left(-dT^{2} + d\bar{r}^{2} + \cos^{2} \bar{r} d\Omega_{2}^{2} \right),$$

$$\bar{\phi} = F(Y)$$

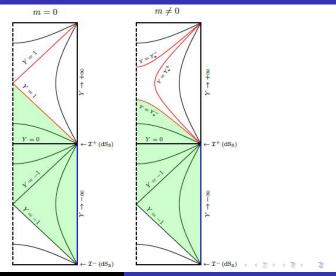
with

$$\begin{split} \Omega^2(Y) &= 1 - \frac{1}{12(Y-1)^2} \frac{m^2}{H^2} - \frac{5}{432(Y-1)^3} \frac{m^4}{H^4} + O(m)^6, \\ F(Y) &= \frac{1}{1-Y} \frac{m}{H} + \frac{3-5Y}{72(Y-1)^3} \frac{m^3}{H^3} + \frac{-175+619Y-645Y^2+129Y^3}{51840(Y-1)^5} \frac{m^5}{H^5} + O(m)^7, \end{split}$$

イロト イ団ト イヨト イヨト

크

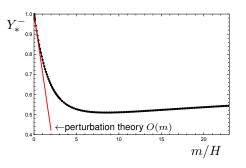
Penrose diagram



Kostas Skenderis

Holography for QFTs in de Sitter

Location of singularity at finite m



The null Y = 1 singularity splits into a spacelike and timelike singularity for finite m.

$$Y_*^{\pm} = 1 \pm \frac{1}{2\sqrt{3}} \frac{m}{H} + O(m)^2$$

➤ At finite m, we obtained the solution using the shooting method (source m at Y = -∞, regular at Y = -1)

One-point functions

- Correlators can be extracted as usual using holographic renormalization.
- One-point functions take the form dictated by dS-invariance and Ward identites:

$$\langle O \rangle_0 = \frac{H^2}{2\kappa^2} \mathcal{F}\left(\frac{m}{H}\right),$$

$$\langle T_{\mu\nu} \rangle_0 = -\frac{H^3}{2\kappa^2} \frac{m}{3H} \mathcal{F}\left(\frac{m}{H}\right) g_{\mu\nu}^{dS},$$

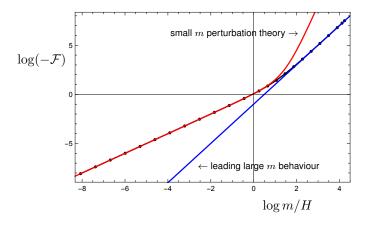
> For small m/H:

$$\mathcal{F} = -\frac{m}{H} - \frac{5}{72}\frac{m^3}{H^3} + \frac{43}{17280}\frac{m^5}{H^5} + O(m)^7$$

> As $m/H \to \infty$:

$$\mathcal{F} = \mathcal{F}_{asy} \frac{m^2}{H^2} \qquad \qquad \mathcal{F}_{asy} \simeq -0.37$$
Kostas Skenderis Holography for OFTs in de Sitter

Non-perturbative evaluation of \mathcal{F}



2-point functions

- These are computed using the methodology developed for holographic RG flows [Bianchi, Freedman, KS (2001)]
- > We need to solve linearised equations around the background:

$$G_{ab} = G_{ab}^{DW}(z) + H_{ab}(z, x), \quad \phi = \bar{\phi}(z) + H_{\phi}(z, x)$$

Decomposition

$$H_{zz} = X$$

$$H_{z\mu} = P(z)(\partial_{\mu}V + V_{\mu})$$

$$H_{\mu\nu} = P(z)(-2\psi g^{dS}_{\mu\nu} + 2\nabla^{dS}_{(\mu}\partial_{\nu)}\chi + 2\nabla^{dS}_{(\mu}\omega_{\nu)} + \gamma_{\mu\nu})$$

$$H_{\phi} = S$$

 $\gamma_{\mu\nu}$ is TT and ω_{μ}, V_{μ} are divergence-less w.r.t. $g^{dS}_{\mu\nu}$

▶ < □</p>

Using dS isometries

> Gauge redundancy

$$H_{ab} \to H_{ab} + 2\nabla_{(a}\xi_{b)}, \ H_{\phi} \to H_{\phi} + \xi^a \partial_a \bar{\phi}$$

- Take $X = V = V_{\mu} = 0$ we go to the FG gauge. Leftover redundancy solved with gauge invariant variables.
- > We further use the dS isometries to decompose as:

$$\partial_j \Phi = i k_j \Phi, \quad \Box_{dS_3} \Phi = \lambda \Phi$$

 $\Rightarrow \Phi = \Phi_{k,\lambda}(z)\eta J_{\nu}(k\eta)e^{ik_iy^i}, \quad \lambda = H^2(1-\nu^2)$

where we work with conformal time:

$$ds_{dS_3}^2 = \frac{-d\eta^2 + d\bar{y}^2}{H^2\eta^2}$$

> So the dynamical equation to be solved is the radial equation involving $\Phi_{k,\lambda}(z)$.

Tensors

Decomposition:

$$\gamma_{0i} = -h_i J_{\nu}(k\eta) e^{iky} \gamma(z)$$

$$\gamma_{ij} = \frac{1}{k^2 \eta^2} (\eta \partial_{\eta} - 2) (\eta J_{k\nu}(k\eta)) \partial_{(i} e^{iky} h_{j)} \gamma(z)$$

where h_i is a constant polarization vector satisfying: $h_i k^i = 0$.

- > Equation: $\gamma'' + \frac{3}{2} \frac{P'}{P} \gamma' \frac{\lambda}{P} \gamma = 0$, is solved order by order in *m*.
- 2-point function:

$$\langle T_{\mu\nu}(\nu_1,k_1)T_{\rho\sigma}(\nu_2,k_2)\rangle = \Pi_{\mu\nu\rho\sigma}\mathcal{A}(\nu_1,k_1)$$

where $\Pi_{\mu\nu\rho\sigma}$ is TT projector and

$$\mathcal{A}(\nu,k) = \frac{H^3}{2\kappa^2} \Big[\nu(\nu^2 - 1) + \frac{3\nu^2 + 8\nu - 19}{24(\nu - 2)} \frac{m^2}{H^2} + \left(\frac{35}{864} - \frac{23}{1536(\nu - 2)} + \frac{3}{256(\nu - 2)^2}\right) \frac{m^4}{H^4} + O(m)^6 \Big]$$

> $\mathcal{A}(\nu_1, k_1)$ contains a polynomial in ν and poles in $(\nu - 2)$.

Resummation

 Resummation yields single poles corresponding to normalisable modes:

$$\nu_n^t = n + O(m^2), \qquad n = 2, 3, 4...$$

where we computed the corrections though m^6 . For example,

$$\nu_2^t \quad = \quad 2 + \frac{1}{32} \frac{m^2}{H^2} - \frac{103}{36684} \frac{m^4}{H^4} + \frac{50929}{212336640} \frac{m^6}{H^6} + O(m)^8,$$

> The resummation reads:

$$\mathcal{A}(\nu,k) = \frac{3H^3}{2\kappa^2} \left(\frac{\nu}{3} (\nu^2 - 1) + \frac{\nu}{24} \frac{m^2}{H^2} + \sum_{j=2}^{\infty} \frac{r_j^t}{\nu - \nu_j^t} \right) - \frac{7}{12} m \langle O \rangle_0$$

with residues

$$\begin{array}{rcl} r_2^t & = & -\frac{m^2}{8H^2}(1-\frac{23}{576}\frac{m^2}{H^2}-\frac{14477}{6635520}\frac{m^4}{H^4}+\frac{66506857}{1337720832000}\frac{m^6}{H^6}+O(m)^8), \\ r_3^t & = & \dots \\ & & \dots \end{array}$$

Gauge invariant variables:

$$\zeta = -\psi + \frac{P'}{2P} \frac{S}{\phi'}, \quad \hat{\phi} = -\left(\frac{S}{\phi'}\right)', \quad \hat{\nu} = \chi' + \frac{S}{P\phi'}$$

The Hamiltonian and momentum constraint equations give:

$$\hat{\phi} = \frac{2H^2P}{P'}\hat{\nu} - \frac{2P}{P'}\zeta', \quad \hat{\nu} = -\frac{2(3H^2+\lambda)P'}{Q_\lambda}\zeta + \frac{Q_{-3H^2}}{H^2Q_\lambda}\zeta'$$

Dynamical equation

$$\hat{\phi}'' + \left(-\frac{4\bar{\phi}}{\phi'} + \frac{2H^2}{P'} - \frac{2P}{P'} - \frac{\bar{\phi}^2 P}{3P'} - \frac{P\bar{\phi}'^2}{6P'} \right) \hat{\phi}' + \left(-10 - \bar{\phi}^2 - \frac{8\bar{\phi}^2}{\phi'^2} + \frac{40H^2\bar{\phi}}{\phi'P'} - \frac{40\bar{\phi}P}{\phi'P'} - \frac{20\bar{\phi}^3 P}{3\bar{\phi}'P'} - \frac{10\bar{\phi}P\bar{\phi}'}{3P'} - \frac{\lambda}{P} \right) \hat{\phi} = 0$$

which is solved pertrubatively in *m*.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Scalar 2-point function

> 2-point function:

$$\langle O_{\nu_1}(k_1)O_{\nu_2}(k_2)\rangle = a(\nu_1,k_1)\delta_{\nu_1,\nu_2}\delta^{(2)}(k_1+k_2)$$

After resummation only single poles at the location of normalizable modes:

$$\langle O_{\nu}(k)O_{\nu}(-k)\rangle = H\left(\nu + \frac{r_{1}^{s}}{\nu - \nu_{1}^{s}} + \sum_{\pm} \frac{r_{2,\pm}^{s}}{\nu - \nu_{2,\pm}^{s}} + \sum_{j=3}^{\infty} \frac{r_{j}^{s}}{\nu - \nu_{j}^{s}}\right)$$

where the normalisables modes are [Buchel (2017)]

$$\nu_n^s = n + O(m^2), \qquad n = 1, 2, 3, 4...$$

again computed through order m^6 . E.g.

$$\nu_1^s \quad = \quad 1 + \frac{1}{12} \frac{m^2}{H^2} - \frac{1}{54} \frac{m^4}{H^4} + \frac{1591}{622080} \frac{m^6}{H^6} + O(m)^8,$$

and residues:

$$r_1^s = \frac{m^2}{6H^2} \left(1 - \frac{1}{4} \frac{m^2}{H^2} + \frac{109}{4536} \frac{m^4}{H^4} + \frac{109672267}{100590033600} \frac{m^6}{H^6} + O(m)^8 \right), r_2^s = \dots \quad \text{in } r_2 = 0 \text{ for } r_2 = 0 \text$$

A simple representation of conformal correlators

> When $m^2 = 0$ the 2-point should reduce to a CFT correlator:

 $\langle O_{\nu_1}(k_1)O_{\nu_2}(k_2)\rangle \sim \nu_1 \delta_{\nu_1,\nu_2} \delta^{(2)}(k_1+k_2)$

where ν_1 is the index of the Bessel function.

- > This is a surprising simple representation of the CFT correlator
 - No explicit momentum dependence, apart from the momentum conserving delta function

> Recall that in momentum space (for $\Delta = 2, d = 3$):

$$\langle O(\omega_1, k_1) O(\omega_2, k_2) \rangle \sim \sqrt{|k_1^2 - \omega_1^2|} \delta(\omega_1 + \omega_2) \delta^{(2)}(k_1 + k_2)$$

- > The fact that the two agree follows from expanding $e^{i\omega t}$ in terms of Bessel functions.
- > Similar results hold for any Δ and d.

1 Introduction

2 Conformal boundary of AdS spacetimes

3 QFT in dS from AdS

4 Toy model: free fermions in dS

5 Conclusions

• • = • •

< A

- > We deformed the CFT with an operator O of dimension 2.
- > In d = 3 a free massless fermion ψ is a CFT and has an operator of dimension 2, namely a mass term $O = \overline{\psi}\psi$
- Thus a free massive fermion in dS has some of the features of the dual QFT.

Conformal perturbation theory

- We can use conformal perturbation theory in Minkowski with a singular source for O and then Weyl transform to de Sitter.
- ➤ In the free-fermion CFT:

$$\langle O(x_1) \rangle_0 = 0 \langle O(x_1)O(x_2) \rangle_0 = \frac{1}{8\pi^2} \frac{1}{|x_{12}|^4} \langle O(x_1)O(x_2)O(x_3) \rangle_0 = 0 \langle O(x_1)O(x_2)O(x_3)O(x_4) \rangle_0 = \text{non} - \text{zero}$$

where the subscript 0 indicates that the computation was done in the massless theory.

< □ > < □ > < □ > < □ > < </p>

1-point function

Computing in MInkowski

$$\langle O(x_1) \rangle = 0 - \int d^3 x_2 m(x_2) \langle O(x_1) O(x_2) \rangle_0 + \mathcal{O}(m^2) = \frac{m}{4H\tau_1^2} + \mathcal{O}(m^2)$$

and transforming to de Sitter

$$\langle O \rangle_{dS_3} = -H^2 \frac{1}{4} \frac{m}{H} + \mathcal{O}(m^2)$$

which matches the holographic result, up to a constant.

> Note that in $\lambda \phi^4$ theory in dS₄ [Bunch, Davies (1978)]:

$$\langle \phi^2 \rangle_{dS_4} \sim \frac{H^4}{m^2}$$

• • • • • • • • • • • •

2-point function

> Two-point functions up to $\mathcal{O}(m^2)$

$$\begin{aligned} \langle O(x_1)O(x_2) \rangle &= \langle O(x_1)O(x_2) \rangle_0 - \int d^d x_3 m(x_3) \langle O(x_1)O(x_2)O(x_3) \rangle_0 \\ &+ \frac{1}{2} \int d^d x_3 d^d x_4 m(x_3) m(x_4) \langle O(x_1)O(x_2)O(x_3)O(x_4) \rangle_0 \end{aligned}$$

which yields

$$\langle O(x_1)O(x_2)\rangle = \langle O(x_1)O(x_2)\rangle_0 + \mathcal{O}(m^2)$$

which is also in agreement with the holographic result: no order m contribution.

1 Introduction

- 2 Conformal boundary of AdS spacetimes
- 3 QFT in dS from AdS
- 4 Toy model: free fermions in dS

5 Conclusions

A (10) > A (10) > A (10)

- > We studied strong coupled QFTs in dS $_3$ via holography.
- We found no signs of IR instabilities. Perhaps this is unsurprising given that the QFT was a deformation of a CFT.
- 2-point functions are expressed in a spectral representation as a sum over simple poles.
- > The poles correspond to normalizable modes.

- > Extend the work to dS_4 and FRW, and general potential.
- > Make connection with cosmological observables.
- > Explore the novel Bessel basis for CFT correlators.

< □ > < □ > < □ > < □ > < </p>