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Introduction
• Use AdS/CFT – though arguments generalize to any 

holographic model (i.e. quantum theory on a fixed 
background with a continuous time) at large but finite N

• Use HKLL map to build small black hole states 
• Apply (Energy) Eigenstate Thermalization Hypothesis and the 

theory of quantum chaos to small black hole Hilbert subspace
• Provides estimates of corrections to semiclassical physics
• Provides definitions of special states that behave like firewalls
• Provides definitions of typical states that behave quasi-

classically
– Infalling observables computable



AdS/CFT and HKLL

• HKLL = Hamilton, Kabat, Lifschytz, Lowe



Small Black Holes

• Mukhanov (2003), Zurek (1982)



• Let shell of radiation expand out to size
𝐷 = 𝑀3

• Arrange that 
𝑅!"# ≫ 𝐷

• Use HKLL to build the initial and final states 
out of wavepackets of light excitations



• Key point: build wavepackets that are moving in a 
restricted element of solid angle

𝛿Ω~
𝑀!

𝐷!

• Number of states will match the Bekenstein-
Hawking entropy of the black hole = ¼ horizon 
area

𝑆~𝑀!

• Zurek: process slight irreversibility (extra 4/3 if 
treated like black body)



Quantum Chaos

• Any Hamiltonian can be diagonalized
• Energy eigenstates remain energy eigenstates
• There is no chaos
• However, energy eigenstates may be highly 
delocalized
• Chaos can emerge in some semiclassical limit
– Interactions of localized wavepackets should appear 

chaotic
– Requires dense spectrum of states



Black Holes as Fast Scramblers

• Susskind-Sekino: Argued Hilbert subspace of 
black holes are chaotic, and scramble rapidly 
in (asymptotic) time

𝑡~𝑀 log 𝑆
• Number of states 𝑒$!



Eigenstate Thermalization Hypothesis

• Berry, Srednicki, …
• For some finite set of observables with good 

classical limits

A↵� = A(E↵)�↵� + e
�S((E↵+E�)/2)/2R↵�, (8)

where A(E↵) is a smooth function of the energy and R↵� is a random matrix, whose matrix

elements are drawn from a Gaussian distribution with variance of order one. There is a

further assumption here that the number of choices for observables A is not exponential

in the system size. The e
�S/2 factor in front of the off-diagonal matrix elements can be

understood at a qualitative level by observing that for generic A the matrix elements of

A
2 should also satisfy (8). To see this, one inserts (8) twice on the right hand side of

(A2)↵� =
P

�
A↵�A�� and carries out the sum over �. The exponentially large number

of terms in the sum combined with elementary properties of random matrices gives an

estimate that precisely offsets the suppression from the e
�S/2 prefactors that accompany

the off-diagonal matrix elements [19]. Note that it is only necessary to assume (8) holds

for the Hilbert subspace relevant for an isolated black hole, together with its formation and

evaporation products. It need not hold for the entire Hilbert space of the complete quantum

theory.

Now let us consider eigenstate thermalization in the context of black hole evolution. We

have in mind an isolated black hole, formed from an initial pure state | i in gravitational

collapse that is reasonably well-localized in time, and then allowed to evaporate down to

nothing without further disturbing it. An initial state of this form can always be expanded

on the basis of states provided by the holographic construction in Section (II) but we will

also assume that | i is well-described by semiclassical evolution in the asymptotic region.

We then want to address the question of how long and to what extent the semiclassical

evolution remains faithful to the holographic evolution of the state forward in time, both

outside and inside the black hole. Of course, it is possible to choose initial states for which

the semiclassical approximation fails from the outset but then our geometric description

also fails from the outset. A simple example would be a superposition of equal mass states

localized in different points in space [20]. The holographic theory nevertheless provides a

complete description of the time evolution of such states.

The matrix elements in (8) are between energy eigenstates |↵i whose detailed structure

depends on the details of the holographic theory. It is worth noting that the energy eigen-

states themselves will not have a simple geometric/semiclassical description. Rather they

are stationary states formed by superposition of ingoing and outgoing Mukhanov states for
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• Matrix elements between energy eigenstates
• A(E) smooth in the energy
• R random matrix (e.g. random gaussian 

entries)



Black Hole Energy Eigenstates

• Key point: small black holes in AdS these are 
highly nonclassical

• Superpositions of black holes + clouds of 
ingoing/outgoing radiation

• No well defined spacetime geometry
• Very different from large black holes in AdS, 

much better understood (don’t evaporate, can 
use finite temperature/Euclidean time 
methods)



Typical Black Hole States

• Superpositions with finite energy width

black hole formation at all different times. The initial state | i =
P

↵
C↵|↵i has an energy

width given by

� E =

 
X

↵

|C↵|
2
⇣
E↵ � hEi

 

⌘2
!1/2

, (9)

which has a natural value of order 1/E3 due to the finite black hole lifetime. This is a narrow

resonance but still �E is parametrically larger than e
�S(E) and therefore expectation values

can self-average over a large number of order eS(E) states.3 We also require the observable A

in (8) to be sufficiently smooth across the range of energies under consideration. The precise

criterion is considered in [19] with the conclusion

(�E)2 ⌧

����
A (hEi)

A00 (hEi)

���� . (10)

This criterion is easily satisfied for a large class of observables in a black hole background

where �E ⇠ 1/E3 and does not represent a severe restriction on the local operators avail-

able for semiclassical physics. In fact, eigenstate thermalization applies for states that are

as broad as �E . O(1) but such a broad state would be short lived compared to the

macroscopic black holes that are of primary interest here.

Now let us consider two different normalized pure states, | i and | 
0
i satisfying the above

criteria,

| i =
X

↵

C↵|↵i, | 
0
i =

X

↵

C
0
↵
|↵i, (11)

and compute the following quantity, representing the fluctuation of the expectation value of

A between the two states,

�A = h |A| i � h 
0
|A| 

0
i =

X

↵�

D↵� e
i(E↵�E�)t/~A↵�, (12)

where D↵� = C
⇤
↵
C� � C

0⇤
↵
C

0
�

and normalization implies
P

↵
D↵↵ = 0. We can estimate �A

by using (8) for the matrix elements in the energy eigenstate basis,

�A =
X

↵�

D↵�

⇣
A(E↵)�↵� + e

�S((E↵+E�)/2)/2R↵�

⌘
e
i(E↵�E�)t/~. (13)

3
Even with finite �E one can build states that do not self-average over many energy eigenstates. However

such states will not satisfy the semiclassical approximation in the asymptotic region.
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Δ𝐸~1/𝑀% typical from previous construction.
• Opens door to self-averaging over many 

energy eigenstates, level spacing ~𝑒&$!



Fluctuations in Observables
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Even with finite �E one can build states that do not self-average over many energy eigenstates. However
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Consider the first term, arising from the diagonal contributions, which will be time indepen-

dent. For simplicity, let us define hEi
 
= hEi

 0 but we will allow that � 0E = c� E with

c = O(1). Then the leading portion of the first term will be

�Adiag =
1

2
(1� c

2) (� E)2 A00
⇣
hEi

 

⌘
, (14)

and then it directly follows from the criteria (10) constraining the width of the band of energy

eigenstates that |�Adiag| ⌧ |A (hEi) |. The diagonal corrections depend on the energy profiles

of the states | i and | 
0
i through the slowly varying function A(hEi

 
) but are otherwise

insensitive to the detailed properties of the microstates. It is natural to assume that the

semiclassical approximation is capable of correctly computing this contribution, since it

should correctly compute quantities, including finite size corrections, that depend on the

expectation value of the energy. The RST model in two dimensional spacetime provides a

detailed example where such finite size corrections are explicitly computable [21]. We also

note that the finite size corrections emerging from 2d CFT show a similar behavior [22].

The off-diagonal corrections, however, depend on the random matrix R↵� which depends

sensitively on the choice of state. The semiclassical approximation will not capture those

effects correctly. The size of the off-diagonal contribution to �A in (13) is governed by the

random fluctuations of R↵� and for typical microstates | i and | 
0
i one obtains

|�Ao↵�diag| ⇠ e
�S(hEi)/2

. (15)

The answer for the off-diagonal terms in (13) is time dependent but at t = 0 all the phase

factors will be equal to one. On timescales of order the Heisenberg time t ⇠ e
S we expect

this expectation value to recur.

The estimate in (15) will hold for most microstates but there are special states for which

the off-diagonal contribution is considerably larger. The maximal possible value will be

realized when either | i or | 0
i happens to be close to the eigenstate of the matrix R↵� that

belongs to its largest eigenvalue. It then follows from the Wigner semi-circle law [23] that

|�Ao↵�diag|max ⇠ O(1) but the probability for a randomly chosen microstate to be close to

such an eigenstate is extremely small based on a Haar measure for U(eS). Let us constrain

|C↵� C̃↵| < ✏⌧ 1, where C̃↵ specifies the eigenstate of R↵� in question. Then the likelihood

of picking the state would be of order ✏eS , which is negligible. We will therefore use (15) as

an estimate of the off-diagonal term for the states of interest.
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• Apply ETH 𝛿𝐴 = 𝛿𝐴"'() + 𝛿𝐴*++&"'()
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𝐴′′ is a smooth function, so can’t depend on 
the black hole microstate



• Contribution from off-diagonal random terms
• Can make this term large if you pick an 

eigenstate of 𝑅
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• Likelihood of picking such a state ~𝜖,"
!

• Typical state, instead get self-averaging

Consider the first term, arising from the diagonal contributions, which will be time indepen-

dent. For simplicity, let us define hEi
 
= hEi

 0 but we will allow that � 0E = c� E with

c = O(1). Then the leading portion of the first term will be

�Adiag =
1

2
(1� c

2) (� E)2 A00
⇣
hEi

 

⌘
, (14)

and then it directly follows from the criteria (10) constraining the width of the band of energy

eigenstates that |�Adiag| ⌧ |A (hEi) |. The diagonal corrections depend on the energy profiles

of the states | i and | 
0
i through the slowly varying function A(hEi

 
) but are otherwise

insensitive to the detailed properties of the microstates. It is natural to assume that the

semiclassical approximation is capable of correctly computing this contribution, since it

should correctly compute quantities, including finite size corrections, that depend on the

expectation value of the energy. The RST model in two dimensional spacetime provides a

detailed example where such finite size corrections are explicitly computable [21]. We also

note that the finite size corrections emerging from 2d CFT show a similar behavior [22].

The off-diagonal corrections, however, depend on the random matrix R↵� which depends

sensitively on the choice of state. The semiclassical approximation will not capture those

effects correctly. The size of the off-diagonal contribution to �A in (13) is governed by the

random fluctuations of R↵� and for typical microstates | i and | 
0
i one obtains

|�Ao↵�diag| ⇠ e
�S(hEi)/2

. (15)

The answer for the off-diagonal terms in (13) is time dependent but at t = 0 all the phase

factors will be equal to one. On timescales of order the Heisenberg time t ⇠ e
S we expect

this expectation value to recur.

The estimate in (15) will hold for most microstates but there are special states for which

the off-diagonal contribution is considerably larger. The maximal possible value will be

realized when either | i or | 0
i happens to be close to the eigenstate of the matrix R↵� that

belongs to its largest eigenvalue. It then follows from the Wigner semi-circle law [23] that

|�Ao↵�diag|max ⇠ O(1) but the probability for a randomly chosen microstate to be close to

such an eigenstate is extremely small based on a Haar measure for U(eS). Let us constrain

|C↵� C̃↵| < ✏⌧ 1, where C̃↵ specifies the eigenstate of R↵� in question. Then the likelihood

of picking the state would be of order ✏eS , which is negligible. We will therefore use (15) as

an estimate of the off-diagonal term for the states of interest.

9

• Quantifies microstate dependent 
contributions to an observable



Transition Amplitudes
• Example: semiclassical ingoing state has non-

vanishing amplitude to go to any other 
semiclassical outgoing state

• Implies quantum corrections are as big as
classical effects near the horizon

• Effect only shows up when you “project” onto the 
outgoing state – requires non-local operation

• Otherwise, local observables will experience self-
averaging over 𝑒" outgoing states



Infalling Observables
• Apply above construction, and combine with 

results of Lowe, Thorlacius (2015) 
arxiv: 1508.06572. Also insist states look 
semiclassical prior/after to black hole 
formation

• Earlier work explains why this is insensitive to 
perturbations that act earlier than δ𝑡~𝑀 log 𝑆

https://arxiv.org/abs/1508.06572


Infalling effective field theory

• Encode infalling observables as effective field
theory with physical cutoff

t

y

Sin
gu
lar
ity

4

3
M

Ho
riz
on

Infalling lattice (continued)



Observer in free fall near horizon:    t = proper time,  y = constant

Horizon is at  y = t .  Observer enters black hole at t = y = 0 . 

Coordinate system for infalling observer 

Lattice model: Discretise y coordinate

S.Corley & T.Jacobson ’97;  D.Lowe, LT ’15

Infalling lattice model

pt = �E = �
�
1� v2(r)

� dt
d⌧

� v(r)
dr

d⌧
.

Imposing the usual normalization condition on the 4-velocity of the particle, leads to the

orbit equation for radial geodesics
✓
dr

d⌧

◆2

= E2
� 1 + v2(r) .

The infall coordinates used in [3] are constructed from geodesics with E2 = 1, which are at

rest at infinity. For this choice, t is equal to the proper time along the geodesic. One may

then introduce a new radial coordinate

y = t�

ˆ r

2M

dr0

v(r0)
,

which is constant along the geodesic. In these coordinates, the metric is

ds2 = �dt2 + v2(r)dy2 + r2d⌦2 , (2)

with

r(y, t) = 2M

✓
1 +

3

4M
(y � t)

◆2/3

. (3)

The horizon is located at y = t and the curvature singularity at y = t� 4
3M . In particular,

the y = 0 geodesic enters the horizon at t = 0, and hits the singularity at t = 4
3M .

The freely falling lattice model is obtained by discretizing the y coordinate. We choose a

freely falling Planck scale lattice near the horizon (rescaling M can be used to rescale this

to any desired length), as motivated by holographic models. At larger radius, the proper

spacing falls below the Planck length, limiting the region of spacetime where the effective

field theory description will be valid. However this will be sufficient for our purposes, and

was already sufficient to show cutoff independence of the Hawking flux. The breakdown of

the free-fall lattice regulator far from the black hole is in line with black hole complemen-

tarity. Presumably to represent the far region using a holographic description, one must

evolve operators with respect to a different time coordinate, such as the Schwarzschild time,

resulting in a very different regulator in the bulk effective field theory.

Let us consider a massless scalar field on the freely falling lattice. We choose units such

that the lattice spacing in y is 1. Since the most dangerous modes for us are s-waves, it is

convenient to truncate to only those modes. The Lagrangian is then [3]
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Curvature singularity is at  y = t - 4M/3 .
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Figure 2. Interior wavepacket trajectories. The left figure shows the radial position as a function of

the Gulstrand-Painlevé coordinate t. The right figure shows the evolution of the WKB wavevector

k. The blue curves represent the right-moving, horizon skimming mode, which take a scrambling

time to hit the singularity. The red curves represent the left-moving mode. In the figures, M = 100,

! = 1/10.

evolved by free fall from outside the horizon, crossing the horizon at a later time. The

by now standard theory of decoherence (for a textbook treatment see [9]) shows that local

interactions with a large number of exterior degrees of freedom decohere a quantum state,

if given sufficient time. In the case of a black hole this decoherence time is at least of order

the scrambling time [10]. Correlation functions between wavepackets that enter the horizon

separated by less than a scrambling time are not affected by decoherence. However, if our

initial wavepacket is capable of sending a detectable signal to a late time wavepacket that

enters the black hole a scrambling time or more later, then the black hole complementarity

principle will be falsified [11]. In other words, if one takes property #1 as a postulate, then

a violation of property #2 implies violation of black hole complementarity.

It is straightforward to analyze the propagation of such wavepackets, using standard

methods of propagation in dispersive media [12]. The largest amplitude component of the

wavepacket propagates within a timelike cone, bounded by the evolution of trajectories

according to the group velocity of the different Fourier components. The group velocity

with respect to the y � t coordinate of a wavetrain (6) is

vg =
d!

dk
= ±

cos (k/2)

|v|
� 1 . (11)

Let us begin with a wavepacket just inside the horizon. This is inside the future trapped

region so both signs in (11) correspond to ingoing wavepackets. The minus sign gives rise
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The wavepackets reach the  
singularity at different times: 

Left:    t  < 4M/3 
Right:   t  < tscr  ≡ 4M log (4M)

All information about interior quantum state at t = 0 is erased by t = tscr
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• Continuum of soft near-horizon modes is 
regulated (no firewall shocks)

• Only need to go back a scrambling time to predict 
infalling observables

• Can proceed to build local observables outside 
the horizon, together with infalling Hamiltonian, 
and propagate across the horizon

• Number of observables constrained 
holographically

• Apply ETH arguments to compute using just 
diagonal piece with unobservable exponentially 
small corrections



Conclusions
• Energy eigenstates are delocalized quantum states
– Look nothing like classical black holes

• Quantum states with good classical limits must involve 
a superposition of a band of energy eigenstates

• Because black holes have such a dense spectrum of 
states, any observable will experience self-averaging 
for such states

• Question becomes not why is evolution unitary but 
how does semiclassical limit emerge (typical of 
quantum chaotic systems)

• Applying ETH arguments explains this


