Quantum Chaos and Unitary
Black Hole Evaporation



Introduction

Use AdS/CFT — though arguments generalize to any
holographic model (i.e. quantum theory on a fixed
background with a continuous time) at large but finite N

Use HKLL map to build small black hole states

Apply (Energy) Eigenstate Thermalization Hypothesis and the
theory of quantum chaos to small black hole Hilbert subspace

Provides estimates of corrections to semiclassical physics
Provides definitions of special states that behave like firewalls

Provides definitions of typical states that behave quasi-
classically

— Infalling observables computable



AdS/CFT and HKLL

* HKLL = Hamilton, Kabat, Lifschytz, Lowe
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Small Black Holes

* Mukhanov (2003), Zurek (1982)




e Let shell of radiation expand out to size
D = M3

* Arrange that
Rya6 > D

e Use HKLL to build the initial and final states
out of wavepackets of light excitations



e Key point: build wavepackets that are moving in a
restricted element of solid angle
MZ

* Number of states will match the Bekenstein-
Hawking entropy of the black hole = % horizon

area
S~M?
» Zurek: process slight irreversibility (extra 4/3 if
treated like black body)



Quantum Chaos

* Any Hamiltonian can be diagonalized

* Energy eigenstates remain energy eigenstates
* There is no chaos

 However, energy eigenstates may be highly
delocalized

 Chaos can emerge in some semiclassical limit

— Interactions of localized wavepackets should appear
chaotic

— Requires dense spectrum of states



Black Holes as Fast Scramblers

e Susskind-Sekino: Argued Hilbert subspace of
black holes are chaotic, and scramble rapidly
in (asymptotic) time

t~Mlog S

« Number of states eM”



Eigenstate Thermalization Hypothesis

Berry, Srednicki, ...

For some finite set of observables with good
classical limits

Aus = A(E)0ns + ¢ SUBatBR)2) 2

Matrix elements between energy eigenstates
A(E) smooth in the energy

R random matrix (e.g. random gaussian
entries)



Black Hole Energy Eigenstates

Key point: small black holes in AdS these are
highly nonclassical

Superpositions of black holes + clouds of
ingoing/outgoing radiation

No well defined spacetime geometry

Very different from large black holes in AdS,
much better understood (don’t evaporate, can

use finite temperature/Euclidean time
methods)



Typical Black Hole States

e Superpositions with finite energy width

, 1/2
Ayl = (Z |Coz‘2 (Ea — <E>¢) ) ;

AE~1/M?3 typical from previous construction.

 Opens door to self-averaging over many

. . _ M2
energy eigenstates, level spacing ~e™M



Fluctuations in Observables

0A = (V[|AlY) — (V'|A[Y)
<E>¢ — <E>¢/
A¢/E — CAwE

¢ Apply ETH 0A = SAdiag 5Aoff—diag
1
TAdiag = 5(1= ) (A, A" ((E),,)

A" is a smooth function, so can’t depend on
the black hole microstate



* Contribution from off-diagonal random terms

* Can make this term large if you pick an
eigenstate of R

‘5Aoff—diag ‘max ~ 0(1)

2
* Likelihood of picking such a state ~ee"

* Typical state, instead get self-averaging

6 Aot ding| ~ e SUEN/2.

* Quantifies microstate dependent
contributions to an observable



Transition Amplitudes

Example: semiclassical ingoing state has non-
vanishing amplitude to go to any other
semiclassical outgoing state

Implies qguantum corrections are as big as
classical effects near the horizon

Effect only shows up when you “project” onto the
outgoing state — requires non-local operation

Otherwise, local observables will experience self-
averaging over e® outgoing states



Infalling Observables

* Apply above construction, and combine with
results of Lowe, Thorlacius (2015)
arxiv: 1508.06572. Also insist states look
semiclassical prior/after to black hole
formation

* Earlier work explains why this is insensitive to
perturbations that act earlier than 6t~M log S


https://arxiv.org/abs/1508.06572

Infalling effective field theory

* Encode infalling observables as effective field
theory with physical cutoff




ds* = —dt* +v*(r)dy® + r*dQ?

’ Left: ¢ <4M/3
Right: ¢ < ter =4M log (4M)



Continuum of soft near-horizon modes is
regulated (no firewall shocks)

Only need to go back a scrambling time to predict
infalling observables

Can proceed to build local observables outside
the horizon, together with infalling Hamiltonian,
and propagate across the horizon

Number of observables constrained
holographically

Apply ETH arguments to compute using just
diagonal piece with unobservable exponentially

small corrections




Conclusions

Energy eigenstates are delocalized quantum states
— Look nothing like classical black holes

Quantum states with good classical limits must involve
a superposition of a band of energy eigenstates

Because black holes have such a dense spectrum of
states, any observable will experience self-averaging
for such states

Question becomes not why is evolution unitary but
how does semiclassical limit emerge (typical of
guantum chaotic systems)

Applying ETH arguments explains this



