Hydrodynamics with spin

A. Yarom

Together with A. D. Gallegos and U. Gursoy

Motivation:

Motivation:

Motivation:

$\mathrm{O} \times 79$
$\mathrm{O} \times 118$

Motivation:

Motivation:

$$
\overrightarrow{0} \quad \overline{0}
$$

$$
00
$$

Motivation:
o

Motivation:

$$
00
$$

$$
00
$$

0

Motivation:

Motivation:

Motivation:

$S \sim \int d^{4} x \ldots+C \vec{J} \cdot \vec{S}+\ldots$

Motivation:

©

(1)

Motivation:

©

Motivation:

\odot

© $\stackrel{?}{\odot}^{\circ} \stackrel{\odot}{J}$

Motivation:

Motivation:

Motivation:

Motivation:

Motivation:

Motivation:

Motivation:

Motivation:

Hydrodynamics

Motivation:

Hydrodynamics
Pre equilibrium dynamics

Motivation:

Hadronization
Pre equilibrium dynamics

Motivation:

Motivation:

-What is hydrodynamics with a spin current?

Motivation:

-What is hydrodynamics with a spin current?

- Is it relevant to heavy ion collisions?

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\nabla_{\mu} T^{\mu \nu}=0
$$

supplemented with a set of constitutive relations:

$$
T^{\mu \nu}=\epsilon(T) u^{\mu} u^{\nu}+P(T)\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right)+\ldots
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\nabla_{\mu} T^{\mu \nu}=0
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\nabla_{\mu} T^{\mu \nu}=0
$$

Conservation of angular momentum reads

$$
\nabla_{\mu} J^{\mu \nu \rho}=0
$$

where

$$
J^{\mu \nu \rho}=-x^{\nu} T^{\mu \rho}+x^{\rho} T^{\mu \nu}+S^{\mu \nu \rho}
$$ current

Hydrodynamics is a theory of conserved currents:

$$
\nabla_{\mu} T^{\mu \nu}=0
$$

Conservation of angular momentum reads

$$
\nabla_{\mu} J^{\mu \nu \rho}=0
$$

$$
J^{\mu \nu \rho}=-x^{\nu} T^{\mu \rho}+x^{\rho} T^{\mu \nu}+S^{\mu \nu \rho}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\nabla_{\mu} T^{\mu \nu}=0
$$

Conservation of angular momentum reads

$$
\nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu}
$$

But then

$$
\begin{aligned}
& T^{\prime \mu \nu}=T^{\mu \nu}+\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \nu \mu}\right) \\
& S^{\prime \lambda \mu \nu}=S^{\lambda \mu \nu}+\phi^{\lambda \mu \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu}
$$

But then

$$
\begin{aligned}
& T^{\prime \mu \nu}=T^{\mu \nu}+\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \nu \mu}\right) \\
& S^{\prime \lambda \mu \nu}=S^{\lambda \mu \nu}+\phi^{\lambda \mu \nu}
\end{aligned}
$$

are also conserved:

$$
\nabla_{\mu} T^{\prime \mu \nu}=0 \quad \nabla_{\mu} S^{\prime \mu \nu \rho}=T^{\prime \nu \rho}-T^{\prime \rho \nu}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& T^{\prime \mu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \nu \mu}\right) \\
& S^{\prime \lambda \mu \nu}=S^{\lambda \mu \nu}+\phi^{\lambda \mu \nu} \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \quad \nabla_{\mu} S^{\prime \mu \nu \rho}=T^{\prime \nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \begin{array}{c}
\nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
\nabla_{\mu} \begin{array}{l}
T^{\prime \mu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \nu \mu}\right) \\
S^{\prime \mu \nu}=S^{\lambda \mu \nu}+\phi^{\lambda \mu \nu}
\end{array} \\
\nabla^{\prime \mu \nu \rho}=T^{\prime \nu \rho}-T^{\prime} \rho \nu
\end{array}
\end{aligned}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\left.\begin{array}{l}
\nabla_{\mu} T^{\mu \nu}=0 \\
\nabla_{\mu} T^{\prime \mu \nu}=0
\end{array} \begin{array}{c}
\nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
\nabla_{\mu} S^{\prime \mu \nu \rho}=T^{\prime \mu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \mu \mu}\right) \\
S^{\prime \mu \nu}=S^{2 \mu \nu}+\phi^{\prime \mu \nu}
\end{array}\right) T^{\prime \rho \nu}
$$

So one can always choose $\phi^{\lambda \mu \nu}=-S^{\lambda \mu \nu}$ and obtain:

$$
\nabla_{\mu} T^{\prime \mu \nu}=0 \quad 0=T^{\prime \nu \rho}-T^{\prime \rho \nu}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \bigoplus \quad T^{\prime \mu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \nu \mu}\right) \\
& S^{2 \mu \nu}=S^{\lambda \mu \nu}+\phi^{2 \mu \nu} \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \quad 0=T^{\prime \nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \prod \quad T^{\prime \mu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \nu \mu}\right) \\
& S^{2 \mu \nu}=S^{2 \mu \nu}+\phi^{2 \mu \nu} \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \quad 0=T^{\prime \nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

One usually further defines

$$
T^{\prime \prime \mu \nu}=T^{\prime \mu \nu}-\frac{1}{2}\left(T^{\prime \mu \nu}-T^{\prime \nu \mu}\right)
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \\
& \nabla_{\mu} T^{\nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu}} \begin{array}{l}
\begin{array}{l}
T^{\prime \mu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \mu \lambda}+\phi^{\nu \mu \nu}-\phi^{\lambda \mu \mu}\right) \\
S^{\prime \mu \mu \nu}=S^{2 \mu \nu}+\phi^{2 \mu \nu}
\end{array} \\
0=T^{\prime \nu \rho}-T^{\prime \rho \nu} \\
T^{\prime \prime \mu \nu}=T^{\prime \mu \nu}-\frac{1}{2}\left(T^{\prime \mu \nu}-T^{\prime \nu \mu}\right)
\end{array}
\end{aligned}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:
This is the
hydrodynamic

$$
\left.\begin{array}{l}
\nabla_{\mu} T^{\mu \nu}=0 \\
\nabla_{\mu} T^{\prime \mu \nu}=0 \\
\overbrace{\mu} T^{\prime \prime \mu \nu}=0
\end{array} \begin{array}{c}
\nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
T^{\prime \mu \nu}=\frac{1}{2} \nabla_{2}\left(\phi^{\mu \mu \lambda}+\phi^{\prime \mu \mu}-\phi^{\prime \mu \nu}\right) \\
S^{2 \mu \mu}=S^{\prime \mu \mu}+\phi^{\prime \mu \nu}
\end{array}\right)
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:
This is the
hydrodynamic

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \\
& \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \mu \nu}=0 \\
& 0=T^{\prime \nu \rho}-T^{\prime \rho \nu} \\
& \Downarrow \\
& T^{\prime \mu \nu}=T^{\prime \mu \nu}-\frac{1}{2}\left(T^{\prime \mu \nu}-T^{\prime \nu \mu}\right) \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \\
& \text { This is what } \\
& \text { we're used to }
\end{aligned}
$$

Hydrodynamics with a spin current

Hydrodynamics is a theory of conserved currents:

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \prod T^{\prime \mu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \mu \mu}\right) \\
& S^{2 \mu \nu}=S^{2 \mu \nu}+\phi^{2 \mu \nu} \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \quad 0=T^{\prime \nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

It should reduce to

$$
\nabla_{\mu} T^{\prime \prime \mu \nu}=0
$$

Hydrodynamics with a spin

 currentHydrodynamics is a theory of conserved currents:

$$
\nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu}
$$

Constitutive relations will involve
$u^{\mu} \quad$ - velocity field
T - temperature
$\mu^{\alpha \beta} \quad$ - spin chemical potential

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration

$$
\begin{aligned}
& P=P_{0} \\
& u^{\mu}=(1,0)
\end{aligned}
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration

$$
\begin{aligned}
& P=P_{0} \\
& u^{\mu}=(1,0)
\end{aligned}
$$

$$
P=\rho g z
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration

$$
\begin{aligned}
& P=P_{0} \\
& u^{\mu}=(1,0)
\end{aligned}
$$

$P=\rho g z$

$$
T \vec{\nabla} \frac{\mu}{T}=\vec{E}
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration

$$
\begin{aligned}
& P=P_{0} \\
& u^{\mu}=(1,0)
\end{aligned}
$$

$P=\rho g z$

$$
T \vec{\nabla} \frac{\mu}{T}=\vec{E}
$$

There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration
There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields
(Jensen et. al. 2012, Banerjee et. al. 2012)
E.g.,

$$
\delta S=\int d^{4} x \frac{1}{2} \sqrt{g} T^{\mu \nu} \delta g_{\mu \nu}
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration
There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields
(Jensen et. al. 2012, Banerjee et. al. 2012)
E.g.,

$$
\delta S=\int d^{4} x \frac{1}{2} \sqrt{g} T^{\mu \nu} \delta g_{\mu \nu}
$$

The partition function

$$
Z\left[g_{\mu \nu}, \beta\right]=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

Hydrostatics with a spin

current

There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields
(Jensen et. al. 2012, Banerjee et. al. 2012) E.g.,

$$
\delta S=\int d^{4} x \frac{1}{2} \sqrt{g} T^{\mu \nu} \delta g_{\mu \nu}
$$

The partition function

$$
Z\left[g_{\mu \nu}, \beta\right]=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

will be constrained by the requirement that

$$
\frac{\partial^{2} \ln Z}{\partial g^{\alpha \beta} \partial g^{\gamma \delta}} \sim \operatorname{Tr}\left(e^{-\beta H+\beta \mu} T_{\alpha \beta}(x) T_{\gamma \delta}(0)\right) \sim e^{-\xi|x|}
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration
There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields
(Jensen et. al. 2012, Banerjee et. al. 2012)
E.g.,

$$
\delta S=\int d^{4} x \frac{1}{2} \sqrt{g} T^{\mu \nu} \delta g_{\mu \nu}
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration
There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields
(Jensen et. al. 2012, Banerjee et. al. 2012)
E.g.,

$$
\delta S=\int d^{4} x \frac{1}{2} \sqrt{g} T^{\mu \nu} \delta g_{\mu \nu}+\sqrt{g} J^{\mu} \delta A_{\mu}
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration
There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields
(Jensen et. al. 2012, Banerjee et. al. 2012)
E.g.,

$$
\delta S=\int d^{4} x \frac{1}{2} \sqrt{g} T^{\mu \nu} \delta g_{\mu \nu}+\sqrt{g} J^{\mu} \delta A_{\mu}
$$

In our case

$$
\delta S=\int d^{4} x|e|\left(T^{\mu}{ }_{a} \delta e^{a}{ }_{\mu}+\frac{1}{2} S_{a b}^{\lambda} \delta \omega_{\lambda}{ }^{a b}\right)
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration
There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields
(Jensen et. al. 2012, Banerjee et. al. 2012)
E.g.,

$$
\delta S=\int d^{4} x \frac{1}{2} \sqrt{g} T^{\mu \nu} \delta g_{\mu \nu}+\sqrt{g} J^{\mu} \delta A_{\mu}
$$

In our case

$$
\delta S=\int d^{4} x|e|\left(T_{a}^{\mu} \delta e_{\mu}^{a}+\frac{1}{2} S_{a b}^{\lambda} \delta \omega_{\lambda}^{a b}\right)+\sqrt{g} J^{\mu} \delta A_{\mu}
$$

Hydrostatics with a spin current

In our case

$$
\delta S=\int d^{4} x|e|\left(T_{a}^{\mu} \delta e^{a}{ }_{\mu}+\frac{1}{2} S_{a b}^{\lambda} \delta \omega_{\lambda}{ }^{a b}\right)
$$

The resulting equations of motion are

$$
\begin{aligned}
\nabla_{\mu} T^{\mu \nu} & =\frac{1}{2} R^{\rho \sigma \nu \lambda} S_{\rho \lambda \sigma}-T_{\rho \sigma} K^{\nu a b} e_{a}^{\rho} e_{b}^{\sigma} \\
\nabla_{\lambda} S_{\mu \nu}^{\lambda} & =2 T_{[\mu \nu]}-2 S_{\rho[\mu}^{\lambda} e_{\nu]}^{a} e_{\rho}^{b} K_{\lambda a b}
\end{aligned}
$$

Hydrostatics with a spin current

In our case

$$
\delta S=\int d^{4} x|e|\left(T_{a}^{\mu} \delta e^{a}{ }_{\mu}+\frac{1}{2} S_{a b}^{\lambda} \delta \omega_{\lambda}{ }^{a b}\right)
$$

The resulting equations of motion are

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=\frac{1}{2} R^{\rho \sigma \nu \lambda} S_{\rho \lambda \sigma}-T_{\rho} K^{\nu a b} e^{\rho_{a}} e_{b}^{\sigma} \\
& \nabla_{\lambda} S_{\mu \nu}^{\lambda}=2 T_{[\mu \nu]}-2 S_{\rho[\mu}^{\lambda} e_{\nu]}^{a} e^{\sigma} K_{\lambda a b} \\
& \omega_{\mu}^{a b}=e_{\nu}^{a}\left(\partial_{\mu} e^{\nu b}+\Gamma_{\sigma \mu}^{\nu} e^{\sigma b}\right)+K_{\mu}^{a b}
\end{aligned}
$$

Hydrostatics with a spin current

In our case

$$
\delta S=\int d^{4} x|e|\left(T_{a}^{\mu} \delta e^{a}{ }_{\mu}+\frac{1}{2} S_{a b}^{\lambda} \delta \omega_{\lambda}{ }^{a b}\right)
$$

The resulting equations of motion are

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=\frac{1}{2} R^{\rho \sigma \nu \lambda} S_{\rho \lambda \sigma}-T_{\rho \sigma} K^{\nu a b} e_{a}^{\rho} e_{b}^{\sigma} \\
& \nabla_{\lambda} S_{\mu \nu}^{\lambda}=2 T_{[\mu \nu]}-2 S_{\rho[\mu}^{\lambda} e_{\nu]}^{a} e_{\rho}^{b} K_{\lambda a b} \\
& \omega_{\mu}^{a b}=e_{\nu}^{a}\left(\partial_{\mu} e^{\nu b}+\Gamma_{\sigma \mu}^{\nu} e^{\sigma b}\right)+K_{\mu}^{a b}
\end{aligned}
$$

Hydrostatics with a spin current

In our case

$$
\delta S=\int d^{4} x|e|\left(T_{a}^{\mu} \delta e^{a}{ }_{\mu}+\frac{1}{2} S_{a b}^{\lambda} \delta \omega_{\lambda}{ }^{a b}\right)
$$

The resulting equations of motion are

$$
\begin{aligned}
& \nabla_{\mu} \Gamma^{\mu \nu}=\frac{1}{2} R^{\rho \sigma \nu \lambda} S_{\rho \lambda \sigma}-T_{\rho \sigma} K^{\nu a b} e_{a}^{\rho} e_{b}^{\sigma} \\
& \nabla_{\lambda} s^{\lambda}{ }_{\mu \nu}=2 T_{[\mu \nu]}-2 S_{\rho[\mu}^{\lambda} e_{\nu]}^{a} e_{\rho}^{b} K_{\lambda a b} \\
& \omega_{\mu}^{a b}=e_{\nu}^{a}\left(\partial_{\mu} e^{\nu b}+\Gamma_{\sigma \mu}^{\nu} e^{\sigma b}\right)+K_{\mu}^{a b}
\end{aligned}
$$

Hydrostatics with a spin current

In our case

$$
\delta S=\int d^{4} x|e|\left(T_{a}^{\mu} \delta e^{a}{ }_{\mu}+\frac{1}{2} S_{a b}^{\lambda} \delta \omega_{\lambda}{ }^{a b}\right)
$$

The resulting equations of motion are

$$
\begin{aligned}
\nabla_{\mu} T^{\mu \nu} & =\frac{1}{2} R^{\rho \sigma \nu \lambda} S_{\rho \lambda \sigma}-T_{\rho \sigma} K^{\nu a b} e_{a}^{\rho} e_{b}^{\sigma} \\
\nabla_{\lambda} S_{\mu \nu}^{\lambda} & =2 T_{[\mu \nu]}-2 S_{\rho[\mu}^{\lambda} e_{\nu]}^{a} e_{\rho}^{b} K_{\lambda a b} \\
\omega_{\mu}^{a b} & =e_{\nu}^{a}\left(\partial_{\mu} e^{\nu b}+\Gamma_{\sigma \mu}^{\nu} e^{\sigma b}\right)+K_{\mu}^{a b}
\end{aligned}
$$

Hydrostatics with a spin current

Consider a hydrostatically equilibrated configuration
There is a general technique for obtaining the constitutive relations in hydrostatic equilibrium by coupling the fluid to background fields
(Jensen et. al. 2012, Banerjee et. al. 2012)
In our case

$$
\delta S=\int d^{4} x|e|\left(T_{a}^{\mu} \delta e_{\mu}^{a}+\frac{1}{2} S_{a b}^{\lambda} \delta \omega_{\lambda}^{a b}\right)
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:
$T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots$
$S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
\left.T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}-P g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\bigcirc(}{\partial m^{2}}+4 \frac{P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots
$$

$$
S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}
$$

$$
P=P\left(T, \mu^{a b}, u^{\mu}\right)
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
\left.T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}-P g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\Im P}{\partial m^{2}}+4 \frac{P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots
$$

$$
S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}
$$

$$
\begin{aligned}
& P=P\left(T, \mu^{a b}, u^{\mu}\right) \\
& \mu^{a b}=2 u^{[a} m^{b]}+M^{a b}
\end{aligned}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
\left.T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}-P g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\Im P}{\partial m^{2}}+4 \frac{P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots
$$

$$
S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}
$$

$$
\begin{aligned}
& P=P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right) \\
& \mu^{a b}=2 u^{[a} m^{b]}+M^{a b}
\end{aligned}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial \sqrt[V^{2}]{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots
$$

$$
S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}
$$

$$
\underbrace{M^{2}}
$$

$$
P=P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right)
$$

$$
\mu^{a b}=2 u^{[a} m^{b]}+M^{a b}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
\begin{aligned}
& T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\sqrt{m}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta} \\
& \quad P=P(T, M^{\alpha \beta} M_{\alpha \beta}, \overbrace{m_{\alpha} m^{\alpha}}^{m^{2}}, m_{\alpha} M^{\alpha \beta} m_{\beta}) \\
& \quad \mu^{a b}=2 u^{[a} m^{b]}+M^{a b}
\end{aligned}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:
$\left.T^{\alpha \beta}=\epsilon\right)^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots$
$S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}$

$$
\begin{aligned}
& P=P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right) \\
& \mu^{a b}=2 u^{[a} m^{b]}+M^{a b} \\
& \epsilon=-P+\frac{\partial P}{\partial T} T+\frac{1}{2} \rho_{a b} \mu^{a b}
\end{aligned}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots
$$

$$
S_{\alpha \beta}^{\lambda}=u^{\prime} \varrho_{\alpha \beta}
$$

$$
\begin{aligned}
& P=P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right) \\
& \mu^{a b}=2 u^{[a} m^{b]}+M^{a b} \\
& \left.\epsilon=-P+\frac{\partial P}{\partial T} T+\frac{1}{2} \varrho_{a b}\right)^{a b} \\
& \rho_{\alpha \beta}=8 \frac{\partial P}{\partial M^{2}} M_{\alpha \beta}+\ldots
\end{aligned}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots
$$

$$
S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}
$$

$$
\begin{aligned}
& P=P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right) \\
& \mu^{a b}=2 u^{[a} m^{b]}+M^{a b} \\
& \epsilon=-P+\frac{\partial P}{\partial T} T+\frac{1}{2} \rho_{a b} \mu^{a b} \\
& \rho_{\alpha \beta}=8 \frac{\partial P}{\partial M^{2}} M_{\alpha \beta}+\ldots
\end{aligned}
$$

Hydrostatics with a spin current

Further:

$$
\begin{aligned}
& P=P_{0} \\
& u^{\mu}=(1,0)
\end{aligned}
$$

$P=\rho g z$

$T \vec{\nabla} \frac{\mu}{T}=\vec{E}$

Hydrostatics with a spin current

Further:

$P=\rho g z$

$T \vec{\nabla} \frac{\mu}{T}=\vec{E}$

$u^{\mu} K_{\mu}^{a b}=\mu^{a b}+e^{a}{ }_{\mu} e^{b}{ }_{\nu}\left(\Omega^{\mu \nu}-2 u^{[\mu} a^{\nu]}\right)$

Hydrostatics with a spin current

Further:

$P=\rho g z$

$T \vec{\nabla} \frac{\mu}{T}=\vec{E}$

$\left.u^{\mu} K_{\mu}^{a b}=\mu^{a b}+e^{a}{ }_{\mu} e^{b}{ }_{\nu} \Omega^{\mu \nu}-2 u^{[\mu} a^{c]}\right)$
$\Omega^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \nabla_{[\alpha} u_{\beta]}$
$\Delta^{\alpha \beta}=\eta^{\alpha \beta}+u^{\alpha} u^{\beta}$

Hydrostatics with a spin current

Further:

$P=\rho g z$

$$
T \vec{\nabla} \frac{\mu}{T}=\vec{E}
$$

$$
u^{\mu} K_{\mu}^{a b}=\mu^{a b}+e^{a}{ }_{\mu} e^{b}{ }_{\nu} \Omega-2 u \Omega^{\mu \nu} a^{\nu)}
$$

$$
\Omega^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \nabla_{[\alpha} u_{\beta]}
$$

$$
\Delta^{\alpha \beta}=\eta^{\alpha \beta}+u^{\alpha} u^{\beta}
$$

$$
a_{\mu}=u^{\alpha} \nabla_{\alpha} u_{\mu}
$$

Hydrostatics with a spin current

Further:

$P=\rho g z$

$T \vec{\nabla} \frac{\mu}{T}=\vec{E}$

$u^{\mu} K_{\mu}{ }^{a b}=\mu^{a b}+e^{a}{ }_{\mu} e^{b}{ }_{\nu}\left(\Omega^{\mu \nu}-2 u^{[\mu} a^{\nu]}\right)$
$\Omega^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \nabla_{[\alpha} u_{\beta]}$
$\Delta^{\alpha \beta}=\eta^{\alpha \beta}+u^{\alpha} u^{\beta}$
$a_{\mu}=u^{\alpha} \nabla_{\alpha} u_{\mu}$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots
$$

$$
S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}
$$

$$
\begin{aligned}
& P=P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right) \\
& \epsilon=-P+\frac{\partial P}{\partial T} T+\frac{1}{2} \rho_{a b} \mu^{a b} \\
& \rho_{\alpha \beta}=8 \frac{\partial P}{\partial M^{2}} M_{\alpha \beta}+\ldots
\end{aligned}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
\begin{aligned}
& T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}
\end{aligned}
$$

$$
\begin{aligned}
& P=P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right) \\
& \epsilon=-P+\frac{\partial P}{\partial T} T+\frac{1}{2} \rho_{a b} \mu^{a b} \\
& \rho_{\alpha \beta}=8 \frac{\partial P}{\partial M^{2}} M_{\alpha \beta}+\ldots
\end{aligned}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
\begin{align*}
& T^{\alpha \beta}=\frac{\mathcal{O}\left(\partial^{0}\right)}{\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots} \tag{2}\\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}
\end{align*}
$$

$$
\begin{aligned}
P & =P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right) \\
\epsilon & =-P+\frac{\partial P}{\partial T} T+\frac{1}{2} \rho_{a b} \mu^{a b} \\
\rho_{\alpha \beta} & =8 \frac{\partial P}{\partial M^{2}} M_{\alpha \beta}+\ldots
\end{aligned}
$$

Hydrostatics with a spin current

One finds, for an "ideal" fluid:

$$
\begin{gather*}
T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial\left(\partial^{0}\right)}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m_{\gamma}+\ldots \tag{2}\\
S_{\alpha \beta}^{\lambda}=u^{\prime} \rho_{\alpha \beta}^{\mathcal{O}\left(\partial^{2}\right)} \\
P=P\left(T, M^{\alpha \beta} M_{\alpha \beta}, m_{\alpha} m^{\alpha}, m_{\alpha} M^{\alpha \beta} m_{\beta}\right) \\
\epsilon=-P+\frac{\partial P}{\partial T} T+\frac{1}{2} \rho_{a b} \mu^{a b} \\
\rho_{\alpha \beta}=8 \frac{\partial P}{\partial M^{2}} M_{\alpha \beta}+\ldots
\end{gather*}
$$

Hydrodynamics with a spin current

An "ideal" fluid:
$T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)-2\left(\frac{\partial P}{\partial m^{2}}+4 \frac{\partial P}{\partial M^{2}}\right) u^{\alpha} M^{\beta \gamma} m .+\ldots$
$\left.S_{\alpha \beta}^{\lambda}=u^{\prime} \rho_{\alpha \beta}\right)^{\mathcal{O}\left(\partial^{1}\right)}$
Expanding to 1st order we have

$$
\begin{aligned}
& T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

But recall that

$$
\begin{aligned}
\nabla_{\mu} T^{\mu \nu} & =0 \\
\nabla_{\lambda} S^{\lambda}{ }_{\mu \nu} & =2 T_{[\mu \nu]}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{\alpha \beta}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& T^{[\alpha \beta]}=\mathcal{O}\left(\partial^{1}\right)+\mathcal{O}\left(\partial^{2}\right) \\
& S^{\lambda}{ }_{\alpha \beta}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

But recall that

$$
\begin{aligned}
\nabla_{\mu} T^{\mu \nu} & =0 \\
\nabla_{\lambda} S^{\lambda}{ }_{\mu \nu} & =2 T_{[\mu \nu]}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& T^{[\alpha \beta]}=\mathcal{O}\left(\partial^{1}\right)+\mathcal{O}\left(\partial^{2}\right) \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

But recall that

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \\
& \nabla_{\lambda} S^{\lambda}{ }_{\mu \nu}=2 T_{[\mu \nu]}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have
$T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right)$
$T^{[\alpha \beta]}=\mathcal{O}\left(\partial^{1}\right)+\mathcal{O}\left(\partial^{2}\right)$
$S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right)^{\times 3 \text { terms }} \\
& T^{[\alpha \beta]}=\mathcal{O}\left(\partial^{1}\right)+\mathcal{O}\left(\partial^{2}\right) \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& S^{\lambda}{ }_{\alpha \beta}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right)^{\times 3 \text { terms }} \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{L]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\hat{m}^{\mu}=m^{\mu}-a^{\mu} \\
\hat{M}^{\mu \nu}=M^{\mu \nu}+\Omega^{\mu \nu}
\end{gathered}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& \quad \times 3 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\widehat{O}\left(\partial^{2}\right) \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{m}^{\mu}=m^{\mu}-a^{\mu} \\
& \hat{M}^{\mu \nu}=M^{\mu \nu}+\Omega^{\mu \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& \times 3 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \times 4 \text { terms } \\
& S_{\alpha \beta}^{\lambda}=u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{m}^{\mu}=m^{\mu}-a^{\mu} \\
& \hat{M}^{\mu \nu}=M^{\mu \nu}+\Omega^{\mu \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& \times 3 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \times 4 \text { terms } \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{m}^{\mu}=m^{\mu}-a^{\mu} \\
& \hat{M}^{\mu \nu}=M^{\mu \nu}+\Omega^{\mu \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& \times 3 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \times 4 \text { terms } \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\hat{m}^{\mu}=m^{\mu}-a^{\mu} \\
\hat{M}^{\mu \nu}=M^{\mu \nu}+\Omega^{\mu \nu}
\end{gathered}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& \times 3 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{[j]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \times 4 \text { terms } \\
& \times 4 \text { terms } \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{m}^{\mu}=m^{\mu}-a^{\mu} \\
& \hat{M}^{\mu \nu}=M^{\mu \nu}+\Omega^{\mu \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& \quad \times 2 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{\mathrm{t}}^{L]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& \times 4 \text { terms } \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

Recall

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \prod^{T^{\mu \nu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{2 \nu \mu}\right)} \begin{array}{l}
S^{2 \mu \nu}=S^{\lambda \mu \nu}+\phi^{\lambda \mu \nu}
\end{array} \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \quad \nabla_{\mu} S^{\prime \mu \nu \rho}=T^{\prime \nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& \quad \times 2 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{t}^{L]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\hat{O}\left(\partial^{2}\right) \\
& \times 4 \text { terms } \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

Recall

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \prod^{T^{\mu \nu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \mu \mu}\right)} \begin{array}{l}
S^{\lambda \mu \nu}=S^{\lambda \mu \nu}+\phi^{\lambda \mu \nu}
\end{array} \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \quad \nabla_{\mu} S^{\prime \mu \nu \rho}=T^{\prime \nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& \\
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& \times 2 \text { terms } \times 1 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{L]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& \times 4 \text { terms } \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

Recall

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \prod_{T^{\prime \mu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\mu \mu \lambda}-\phi^{\lambda \mu \mu}\right)}^{\nabla^{\prime \mu \mu \nu}=T^{\prime \mu \nu}+\phi^{\lambda \mu \nu}}=0 \quad \nabla_{\mu} S^{\prime \mu \nu \rho}=T^{\nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& \times 2 \text { terms } \times 1 \text { terms } \\
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& T^{[\alpha \beta]} \quad \times 1 \text { terms } \times 1 \text { terms } \times 4 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} \hat{M}^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

Recall

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \prod^{T^{\mu \nu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \mu \mu}\right)} \begin{array}{l}
S^{\lambda \mu \nu}=S^{2 \mu \nu}+\phi^{\lambda \mu \nu}
\end{array} \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \quad \nabla_{\mu} S^{\prime \mu \nu \rho}=T^{\prime \nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& \times 2 \text { terms } \times 1 \text { terms } \\
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& T^{[\alpha \beta]}=\sigma^{[\mu} \hat{m}^{\nu]}+\stackrel{\times}{\hat{M}} \text { terms }^{\mu \nu} 1 \text { terms } \times 4 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} M^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

Recall

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \prod^{T^{\mu \nu \nu}=\frac{1}{2} \nabla_{\lambda}\left(\phi^{\mu \nu \lambda}+\phi^{\nu \mu \lambda}-\phi^{\lambda \mu \mu}\right)} \begin{array}{l}
S^{\lambda \mu \nu}=S^{2 \mu \nu}+\phi^{\lambda \mu \nu}
\end{array} \\
& \nabla_{\mu} T^{\prime \mu \nu}=0 \quad \nabla_{\mu} S^{\prime \mu \nu \rho}=T^{\prime \nu \rho}-T^{\prime \rho \nu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& \times 2 \text { terms } \times 1 \text { terms } \\
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& T^{[\alpha \beta]}={ }^{[\mu} \hat{m}^{\nu]}+{ }^{1} \text { terms } \times 1 \text { terms } \times 4 \text { terms } \\
& T^{[\alpha \beta]}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} M^{\mu \nu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& S^{\lambda}{ }_{\alpha \beta}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

To the order we are working in we find that the EOM reduce to

$$
\nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right)
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& \times 2 \text { terms } \times 1 \text { terms } \\
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right) \\
& T^{[\alpha \beta]}=\sigma{ }^{[\mu} \hat{m}^{\nu]}+\underset{\widehat{M}^{1}{ }^{\mu} \text { terms } \times 1 \text { terms }}{ } \times 4 \text { terms } \\
& T^{n}=\sigma_{m} u^{[\mu} \hat{m}^{\nu]}+\sigma_{M} M^{\mu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

To the order we are working in we find that the EOM reduce to

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu}
\end{aligned}
$$

Hydrodynamics with a spin current

Expanding to 1st order we have

$$
\begin{aligned}
& \times 2 \text { terms } \times 1 \text { terms } \\
& T^{(\alpha \beta)}=\epsilon u^{\alpha} u^{\beta}+P\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T^{[\alpha \beta}=\sigma_{m} u^{l \mu} \hat{m}^{\nu]}+\sigma_{M} M^{\mu}+\ldots+\mathcal{O}\left(\partial^{2}\right) \\
& S_{\alpha \beta}^{\lambda}=\mathcal{O}\left(\partial^{0}\right)+u^{\lambda} \rho_{\alpha \beta}+\mathcal{O}\left(\partial^{1}\right)
\end{aligned}
$$

To the order we are working in we find that the EOM reduce to

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Hydrodynamics with a spin

current

To the order we are working in we find that the EOM reduce to

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Recall

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=0 \quad \nabla_{\mu} S^{\mu \nu \rho}=T^{\nu \rho}-T^{\rho \nu} \\
& \text { 】 } T^{\prime \prime \mu \nu}=T^{\prime \mu \nu}-\frac{1}{2}\left(T^{\prime \mu \nu}-T^{\prime \nu \mu}\right) \\
& \nabla_{\mu} T^{\prime \mu \nu}=0
\end{aligned}
$$

Back to Λ polarization

Hydrodynamics
Hadronization
Pre equilibrium dynamics

Back to Λ polarization

Hadronization
Pre equilibrium dynamics

Back to Λ polarization

Hadronization
Pre equilibrium dynamics

Back to Λ polarization

?

Hydrodynamics

Pre equilibrium dynamics

Solving the equations

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Solving the equations

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Use an ansatz (Bjorken flow)

Solving the equations

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Use an ansatz (Bjorken flow)

Solving the equations

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Use an ansatz (Bjorken flow)

Solving the equations

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Use an ansatz (Bjorken flow)

Solving the equations

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Use an ansatz (Bjorken flow)

$$
d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}+d x^{2}+d y^{2}
$$

Solving the equations

$$
\begin{aligned}
& \nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad\left(T^{\prime \prime \mu \nu}=\epsilon u^{\mu} u^{\nu}+P \Delta^{\mu \nu}-\eta \sigma^{\mu \nu}-\zeta \nabla_{\alpha} u^{\alpha} \Delta^{\mu \nu}\right) \\
& m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \\
& M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
\end{aligned}
$$

Use an ansatz (Bjorken flow)

$$
\begin{aligned}
& d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}+d x^{2}+d y^{2} \\
& u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
\end{aligned}
$$

Solving the equations

Use an ansatz (Bjorken flow)

$$
\begin{aligned}
& d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}+d x^{2}+d y^{2} \\
& u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
\end{aligned}
$$

with linearized perturbations

$$
\begin{aligned}
& T \rightarrow T+\int d^{2} q \delta T e^{i\left(q_{x} x+q_{y} y\right)} \\
& u^{\mu} \rightarrow u^{\mu}+\int d^{2} q \delta u^{\mu} e^{i\left(q_{x} x+q_{y} y\right)} \\
& \mu^{a b} \rightarrow \mu^{a b}+\int d^{2} q \delta \mu^{a b} e^{i\left(q_{x} x+q_{y} y\right)}
\end{aligned}
$$

Solving the equations

Use an ansatz (Bjorken flow)

$$
\begin{aligned}
& d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}+d x^{2}+d y^{2} \\
& u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
\end{aligned}
$$

with linearized perturbations

$$
T \rightarrow T+\int d^{2} q \delta T e^{i\left(q_{x} x+q_{y} y\right)} \quad u^{\mu} \rightarrow u^{\mu}+\int d^{2} q \delta u^{\mu} e^{i\left(q_{x} x+q_{y} y\right)} \mu^{a b}
$$

and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

Solving the equations

Use an ansatz (Bjorken flow)

$$
\begin{aligned}
& d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}+d x^{2}+d y^{2} \\
& u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
\end{aligned}
$$

with linearized perturbations

$$
T \rightarrow T+\int d^{2} q \delta T e^{i\left(q_{x} x+q_{y} y\right)} \quad \cdots
$$

and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

Solving the equations

Use an ansatz (Bjorken flow)

$$
\begin{aligned}
& d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}+d x^{2}+d y^{2} \\
& u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
\end{aligned}
$$

with linearized perturbations

$$
\begin{aligned}
& T \rightarrow T+\int d^{2} q \delta T e^{i\left(q_{x} x\right.} \\
& \text { and initial conditions } \\
& \qquad \delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
\end{aligned}
$$

Solving the equations

Use an ansatz (Bjorken flow)

$$
u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
$$

with linearized perturbations and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

Solving the equations

Use an ansatz (Bjorken flow)

$$
u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
$$

with linearized perturbations and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

and some approximations (Floerchinger-Wiedemann, 2011)

Solving the equations

Use an ansatz (Bjorken flow)

$$
u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
$$

with linearized perturbations and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

and some approximations (Floerchinger-Wiedemann, 2011)
one finds an analytic solution

$$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \epsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

Solving the equations

Use an ansatz (Bjorken flow)

$$
u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
$$

with linearized perturbations and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

and some approximations (Floerchinger-Wiedemann, 2011)
one finds an analytic solution

$$
\delta u^{\eta}=\left\langle u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \epsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}\right.
$$

Solving the equations

Use an ansatz (Bjorken flow)

$$
u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
$$

with linearized perturbations and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

and some approximations (Floerchinger-Wiedemann, 2011)
one finds an analytic solution

$$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \varepsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

Back to Λ polarization
 $$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \varepsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

Hydrodynamics
Hadronization
Pre equilibrium dynamics

Back to Λ polarization
 $$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \epsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

Hydrodynamics
Hadronization

Pre equilibrium dynamics

Back to Λ polarization
 $$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \epsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

Hydrodynamics
Hadronization

Pre equilibrium dynamics

Back to Λ polarization
 $$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \varepsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

Hydrodynamics
Hadronization

Pre equilibrium dynamics

Solving the equations

Use an ansatz (Bjorken flow)

$$
u^{\tau}=1 \quad T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}-\frac{\eta_{0}}{2 \epsilon_{0} \tau}
$$

with linearized perturbations and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

and some approximations (Floerchinger-Wiedemann, 2011) one finds an analytic solution

$$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \epsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

Hadronization

Use an ansatz (Bjorken flow)
with linearized perturbations and initial conditions

$$
\delta u^{\eta}\left(\tau_{0}\right) \propto \vec{b} \cdot \vec{q}
$$

and some approximations (Floerchinger-Wiedemann, 2011) one finds an analytic solution

$$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 T_{0} \epsilon_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

To obtain the polarization we use a Cooper Frye prescription:

$$
\Pi_{\alpha}(p)=-\frac{1}{4} \epsilon_{\alpha \rho \sigma \beta} \frac{p^{\beta}}{m} \frac{\int d \Sigma_{\lambda} p^{\lambda} B \mu^{\rho \sigma}}{2 \int d \Sigma_{\lambda} p^{\lambda} n_{F}}
$$

Hadronization

Use an ansatz (Bjorken flow)
with linearized perturbations and initial conditions and some approximations (Floerchinger-Wiedemann, 2011) one finds an analytic solution

$$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{-q q^{\eta} \eta_{0} \tau_{0}}{16 \tau_{0} \tau_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

To obtain the polarization we use a Cooper Frye prescription. After some massaging

Hadronization

Use an ansatz (Bjorken flow)
with linearized perturbations and initial conditions and some approximations (Floerchinger-Wiedemann, 2011) one finds an analytic solution

$$
\delta u^{\eta}=\|_{x} \tau^{-\frac{5}{3}} e^{-\frac{9 q^{2} \eta_{0} \tau_{0}}{16 \tau_{0} \tau_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

To obtain the polarization we use a Cooper Frye prescription. After some massaging

Hadronization

Use an ansatz (Bjorken flow)
with linearized perturbations and initial conditions and some approximations (Floerchinger-Wiedemann, 2011) one finds an analytic solution

$$
\delta u^{\eta}=i u_{0} b q_{x} \tau^{-\frac{5}{3}} e^{-\frac{-q q^{\eta} \eta_{0} \tau_{0}}{16 \tau_{0} \tau_{0}}\left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}
$$

To obtain the polarization we use a Cooper Frye prescription. After some massaging

Fit to data

Summary

-What is hydrodynamics with a spin current?

- Is it relevant to heavy ion collisions?

Summary

-What is hydrodynamics with a spin current?

$$
\nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \quad M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
$$

- Is it relevant to heavy ion collisions?

Summary

-What is hydrodynamics with a spin current?

$$
\nabla_{\mu} T^{\prime \prime \mu \nu}=0 \quad m^{\mu}=u^{\alpha} \nabla_{\alpha} u^{\mu} \quad M^{\mu \nu}=\Delta^{\mu \alpha} \Delta^{\nu \beta} \partial_{[\alpha} u_{\beta]}
$$

- Is it relevant to heavy ion collisions?

Thank you

Motivation:

Motivation:

$$
\frac{d N}{d \cos \theta^{*}} \propto\left(1+\alpha_{\Lambda}\left|\vec{\Pi}_{\Lambda}^{*}\right| \cos \theta^{*}\right)
$$

Motivation:

$$
\begin{aligned}
\frac{d N}{d \cos \theta^{*}} & \propto(1+\alpha_{\Lambda} \overbrace{\Lambda}^{*} \cos \theta^{*}) \\
\Pi_{\Lambda}^{\mu} & =-\frac{1}{2 M_{\Lambda}} \epsilon^{\mu \nu \rho \sigma} J_{\nu \rho} P_{\sigma}
\end{aligned}
$$

Motivation:

$\frac{d N}{d \cos \theta^{*}} \propto\left(1+\alpha_{\Lambda} \xrightarrow[\Pi]{\Pi}_{\wedge}^{*} \cos \theta^{*}\right)$

$$
\begin{aligned}
& \Pi_{\Lambda}^{\mu}=-\frac{1}{2 M_{\Lambda}} \epsilon^{\mu \nu \rho \sigma} J_{\nu \rho} P_{\sigma} \\
& P_{\sigma}^{*}=\left(-m_{\Lambda}, 0,0,0\right) \\
& J_{\nu \rho}^{*}=S_{\nu \rho}^{*}
\end{aligned}
$$

Motivation:

$$
\frac{d N}{d \cos \left(\theta^{*}\right.} \propto \frac{1}{2}\left(1+\alpha_{\Lambda}\left|\vec{\Pi}_{\Lambda}^{*}\right| \cos \theta^{*}\right)
$$

Motivation:

$$
\frac{\Delta N}{d \cos \theta^{*}} \propto \frac{1}{2}\left(1+\alpha_{\Lambda}\left|\vec{\Pi}_{\Lambda}^{*}\right| \cos \theta^{*}\right)
$$

Motivation:

$\frac{d N}{d \cos \theta^{*}} \propto \frac{1}{2}\left(1+\propto_{\Lambda} \vec{\Pi}_{\Lambda}^{*} \mid \cos \theta^{*}\right)$

$$
\alpha_{\Lambda}=0.642 \pm 0.013
$$

Motivation:

$$
\frac{d N}{d \cos \theta^{*}} \propto \frac{1}{2}\left(1+\alpha_{\Lambda}\left|\vec{\Pi}_{\Lambda}^{*}\right| \cos \theta^{*}\right)
$$

