SparseSYK

by
\section*{Elena Cáceres}
University of Texas at Austin with A. Misobuchi JHEP 11 (2021) 015
w. A. Misobuchi, A. Raz arXiv 2203.XXXXX

Introduction

Introduction

(all-to-all) SYK
Quantum mechanical system of N Majorana fermions χ^{j} with all-to-all random interactions [Kitaev '15]

$$
H=i^{q / 2} \sum_{1 \leq j_{1}<\ldots<j_{q} \leq N} \underbrace{J_{j_{1} \ldots j_{q}}}_{\text {Gaussian }} \underbrace{\chi^{j_{1}} \ldots \chi^{j_{q}}}_{q \text {-body }}, \quad\left\langle\left(J_{j_{1} \ldots j_{q}}\right)^{2}\right\rangle=\frac{(q-1)!J^{2}}{N^{q-1}}
$$

- Analytically solvable at large N
- Emergent conformal symmetry at low energies
- Maximally chaotic $\lambda_{L}=\frac{2 \pi}{\beta}$ [Maldacena, Shenker, Stanford 1503.01409]

SYK is a model of holographic duality
Drawback: computational cost
Quantum simulation $(q=4)$

$$
\text { number of gates } \sim \mathscr{O}\left(N^{7 / 2} J t+\ldots . .\right)
$$

Classical:
number of terms $\sim N^{q}$
state of the art $N=52,7$ million terms

Is there an SYK modification that retains all the interesting physics but is more computationally efficient?

Sparse SYK

Sparse SYK

Sparse SYK model

Sparsity: Reduce number of terms in the Hamiltonian summation while preserving original properties, e.g., chaotic behavior [Xu, Susskind, Su, Swingle 2008.02303]

■ Random pruning

- Hypergraphs

$$
H=i^{q / 2} \sum_{1 \leq j_{1}<\ldots j_{q} \leq N} J_{j_{1} \ldots j_{q}} x_{j_{1} \ldots j_{q}} \chi^{j_{1}} \ldots \chi^{j_{q}}, \quad\left\langle\left(j_{j_{1} \ldots j_{q}}\right)^{2}\right\rangle=\frac{(q-1)!J^{2}}{p N^{q-1}}
$$

where $\quad x_{i j k l}=0$ with probability $1-p$ or 1 with probability p

Note that

- Computational cost

Quantum simulation (any q), number of gates

$$
\sim \mathscr{O}(k N J t)
$$

Classical, number of terms

$$
\sim k N
$$

For $N=52, k=4,208$ terms

- Chaos
- Path integral G and Sigma

$$
\begin{aligned}
& \text { How much sparsity? } \\
& \text { Other physics? }
\end{aligned}
$$

Hypergraphs

Hypergraphs: Generalization of a graph where hyperedges can connect more than two vertices

graph $G_{0}=(V, E)$
V : finite set whose elements are called vertices

$$
E:\left\{e_{1}, e_{2}, \cdots\right\}
$$

$$
e_{i}: \underset{\text { sets of }}{\text { pair of varices }}
$$

hypengraph $H=(V, E)$

$E:\left\{e_{1}, e_{2} \cdots\right\}$
e; non-empity subset of V
hypergraph $H=(V, E)$

s-uniform
every hyperedge contains s-vertices
r-regular
all vertices âre contaned in r hypredges

(r, s) r-regular, s-uniform

Sparse SYK as $(k q, q)$ Hypergraphs: Majorana fermions are identified with vertices, and each interaction term correspond to a hyperedge connecting q vertices (q-uniform).
$k q$-regular hypergraphs: Every vertex is contained in exactly $k q$ hyperedges.
q uniform indicates that the Hamiltonian contains q-body interactions

- k quantifies the degree of sparsity in the Hamiltonian

$$
k=\frac{p}{N}\binom{N}{q}
$$

\Rightarrow Sparse Hamiltonian is a sum of exactly $k N$ terms

- Math results for random (r, s) hypergraphs

Adjancency matrix

We want sparse hypergraphs that are highly connected, expanders

$$
[A]_{i j}=\left\{\begin{array}{cc}
\# \text { of hyperedges containing vertices } i \text { and } j & \text { if } i \neq j \\
0 & \text { if } i=j
\end{array}\right.
$$

- Second largest eigenvalue λ \rightarrow Spectral gap
- Indication that $k \gtrsim 1$ has good connectivity
- Other measures of hypergraph expansion: algebraic entropy and vertex expansion

Other measures of connectivity:

- Algebraic hypergraph entropy

Consider a hypergraph $H(V, E)$ and its adjancency matrix $A(H)$. Define

$$
\left.D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{N}\right)\right), \quad d_{i}=\sum_{j \in V} A_{i j}
$$

and

$$
\begin{gathered}
L(H)=\frac{1}{\operatorname{Tr} D}(D-A(H)) \quad \text { with eigenvalues } v_{i} \\
I(H)=\sum v_{i} \log v_{i}
\end{gathered}
$$

- Vertex expansion Consider a subset $S \subset V$. Define its neighborhood $\mathscr{N}(S):=\{i: \exists j \in S$ such that $\{i, j\} \subseteq e$ for some $e \in E\}$.

Lower bound on vertex expansion (Dumitriu and Zhu, 2019)

$$
\frac{|\mathcal{N}(S)|}{|S|} \geq\left[1-\frac{1}{2}\left(1-\frac{\lambda^{2}}{r^{2}(s-1)^{2}}\right)\right]^{-1}
$$

$$
\begin{array}{ll}
q=4, & k=4 \\
q=8, & k=2
\end{array}
$$

Do they reproduce desired physics?

- Hypergraphs are a useful tool. Much to explore.

Traversable wormholes and sparse SYK

Two coupled sparse SYK

Eternal traversable wormhole with a global $A d S_{2}$ geometry can be realized by coupling two copies of SYK in the large N and small coupling limit [Maldacena, Qi 1804.00491]

- Solution can be obtained from JT gravity by adding coupling between boundaries
[Gao, Jafferis, Wall 1608.05687]
- Traversable for any time
- Same physics can be derived from two coupled SYKs

$$
H=H_{L}^{\mathrm{SYK}}+H_{R}^{\mathrm{SYK}}+H_{\mathrm{int}}, \quad H_{\mathrm{int}}=i \mu \sum_{j=1}^{N} x_{L}^{j} x_{R}^{j}
$$

\rightarrow Study two coupled sparse SYKs

Properties of the two coupled SYK model

[Maldacena, Qi 1804.00491]

$$
H=H_{L}^{S Y K}+H_{R}^{S Y K}+i \mu \sum_{j=1}^{N} \chi_{L}^{j} \chi_{R}^{j}
$$

$■$ Ground state $\left|\Psi_{0}\right\rangle$ approximately a TFD state (for some $\beta(\mu)$)

- Energy gap scaling (Derived from large N analysis (gravitational))

$$
\begin{array}{ll}
E_{\text {gap }} \sim \mu^{\frac{1}{2-2 / q}} & \text { at weak coupling } \\
E_{\text {gap }} \sim \mu & \text { at strong coupling }
\end{array}
$$

Energy gap

■ $q=8$ matches scaling expected from gravity for large N and appropriate range of couplings

- Finite N effects dominate at very small couplings μ

Revival dynamics phenomena

11 Start with ground state $\left|\Psi_{0}\right\rangle$ of the two coupled SYK
2. Create Majorana excitation in Right system

$$
|\Psi(t=0)\rangle=\chi_{R}\left|\Psi_{0}\right\rangle
$$

3 Excitation gets scrambled
4 Excitation reassembles and becomes localized in Left system

$$
\left|\Psi\left(t=t_{\mathrm{rev}}\right)\right\rangle=\chi_{\llcorner }\left|\Psi_{0}\right\rangle
$$

5 Process is repeated with $L \leftrightarrow R \Rightarrow$ 'Revival oscillations' [Plugge, Lantagne-Hurtubise, Franz 2003.03914]
Gravity picture: Perturbation travels through the wormhole

Diagnostic of revivals

Transmission amplitude $\quad T_{a b}=2\left|G_{a b}^{>}\right|$

$$
G_{a b}^{>}(t)=-\frac{i \theta(t)}{N} \sum_{j}\left\langle\chi_{a}^{j}(t) \chi_{b}^{j}(0)\right\rangle=\left(\begin{array}{ll}
G_{L L}^{>}(t) & G_{L R}^{>}(t) \\
G_{R L}^{>}(t) & G_{R R}^{>}(t)
\end{array}\right)
$$

$\left|T_{a b}(t)\right|^{2}$: Probability of recovering χ_{a}^{j} at some time t after inserting χ_{b}^{j} at $t=0$.

[Plugge, Lantagne-Hurtubise and Franz, 2020]

Revivals in sparse SYK

Increasing the temperature decreases transmission amplitude but enhances the oscillatory behavior

SYK with $q=4$ does not follow expected frequency scaling from $A d S_{2}$ gravity, but $q=8$ is compatible for some range of couplings and temperatures

Summary so far: Hypergraphs are a useful mathematical framework that provides information about the connectivity of the sparse model. Sparse SYK is a computationally tractable quantum mechanical system with emergent gravitational behavior and can describe an eternal traversable wormhole.
dynamite: a python library that makes use of PETSc and SLEPc. Krylov subspace methods combined with massive parallelization [Github:GregDMeyer/dynamite]
Texas Advanced Computing Center (TACC): Use of computational resources from Stampede2 supercomputer

Chaos and spectral form factor

Classical vs quantum chaos

Classical chaos: Sensitivity to initial conditions

- Diagnosed by Poisson brackets

$$
\frac{\partial x(t)}{\partial x(0)}=\{x(t), p(0)\}_{\text {P.B. }} \sim e^{\lambda t}, \quad \lambda: \text { Lyapunov exponent }
$$

Quantum chaos: First proposal by Larkin and Ovchinnikov (1969). New insights by Shenker, Stanford (2014) and Kitaev (2015)

- Out of Time Order Correlators (OTOC) $C(t)=-\left\langle[W(t), V(0)]^{2}\right\rangle_{\beta}, \quad V, W$ Hermitian operators

Basic intuition: How much an early perturbation V affects the later measurement of W. Lyapunov exponent

- Random Matrix Theory (RMT)
- The Hamiltonian of a chaotic system, when considering small energy windows where the density of states is constant, is believed to resemble a random matrix.
- Wigner. By studying statistical properties of random matrices subject to the symmetries of the Hamiltonian, we can understand the statistical properties of energy levels and eigenstates of the system.
- One observable that captures the statistics of energy levels is the spectral form factor (SFF)

Level statistics

Random matrix theory (RMT) provides an alternative diagnostic of quantum chaos

- Quantum chaos encoded in the statistical properties of the spectrum
- Spectra of quantum chaotic systems show the same fluctuation properties as predicted by RMT

Classical ensembles of RMT: Hermitian random matrices whose entries are random variables independently distributed

Level statistics

Level spacing: $s=\frac{E_{i+1}-E_{i}}{\Delta}, \quad \Delta$: mean level spacing
Level spacing distribution: $P(s)$, probability to find consecutive eigenvalues E_{i}, E_{i+1} at distance s

- For quantum chaotic system:

$$
P_{W}(s) \simeq A_{\alpha} s^{\alpha} e^{-B_{\alpha} s^{\alpha}}, \quad \alpha=\left\{\begin{array}{l}
1 \mathrm{GOE} \\
2 \mathrm{GUE} \\
4 \mathrm{GSE}
\end{array}\right.
$$

- For integrable system:

$$
\left.P_{P}(s)=e^{-s} \quad \text { (Poisson }\right)
$$

Quantity sensitive to energy level statistics: Spectral Form Factor

$$
\begin{aligned}
& g(t, \beta)=\frac{\left\langle Z(\beta, t) Z^{*}(\beta, t)\right\rangle_{J}}{\langle Z(\beta)\rangle_{J}^{2}} \\
& g_{d}(t, \beta)=\frac{\langle Z(\beta, t)\rangle_{J}\left\langle Z^{*}(\beta, t)\right\rangle_{J}}{\langle Z(\beta)\rangle_{J}^{2}} \\
& g_{c}(t, \beta)=g(t, \beta)-g_{d}(t, \beta)
\end{aligned}
$$

Spectral form factor

The late time behavior of the spectral form factor in the all-to-all SYK is governed by random matrix theory, just as expected from a chaotic system.

Slope, dip, ramp, plateaux. [Cotler et. al.]

- Berkooz, Bruckner, Noravlansky and Raz, 2020: connected contributions to the moments can dominate at early times.

$$
\begin{aligned}
\mathscr{Z}\left(\beta_{1}, \beta_{2}\right) & =\left\langle\operatorname{Tr}\left(e^{\left.-\beta_{1} H\right)}\right) \operatorname{Tr}\left(e^{-\beta_{2} H}\right)\right\rangle_{J} \\
& =\sum_{m_{1}, m_{2}=0}^{\infty}\left\langle\operatorname{Tr}\left(H^{m_{1}}\right) \operatorname{Tr}\left(H^{m_{2}}\right)\right\rangle_{J} \frac{\beta_{1}^{m_{1}}}{m_{1}!} \frac{\beta_{2}^{m_{2}}}{m_{2}!}(-1)^{m_{1}+m_{2}}
\end{aligned}
$$

- But a large value of N, beyond the state of the art of numerical simulations, is needed to see this effect in the all-to-all SYK
\rightarrow Sparse SYK!

SFF in Sparse SYK

Connected and disconnected parts, exchange of dominance. $N=30, k=4 q=4$

Spectral form factor $k=4, N=30, q=4$

Work in progress: OTOCs

Another way of diagnosing chaos: Out of Tlme Order Correlators (OTOCs)

- $C(t)=\left\langle\left[W(t), V(0]^{2}\right\rangle=2-2 F(t)\right.$

$$
F(t) \equiv\langle W(t) V(0) W(t) V(0)\rangle_{\beta}
$$

Work in progress: OTOCs

Intuition:

$$
\begin{gathered}
\langle W(t) V(0) W(t) V(0)\rangle=\left\langle\psi_{2} \mid \psi_{1}\right\rangle \\
\left|\psi_{2}\right\rangle=V(0) W(t)|\beta\rangle \quad \text { and } \quad\left|\psi_{1}\right\rangle=W(t) V(0)|\beta\rangle
\end{gathered}
$$

In non-chaotic system: early measurement of V has no effect on the later measurement of $W,\left|\psi_{1}\right\rangle \sim\left|\psi_{2}\right\rangle$, so overlap $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=1 \rightarrow C(t) \sim 0$

In a chaotic system: Pertubation V makes $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ distinguishable, so overlap $\left\langle\psi_{1} \mid \psi_{2}\right\rangle$ is small, $C(t) \rightarrow 2$ for late times

Scrambling time t_{*}

Lyapunov exponent λ_{L}

Work in progress: chaos bound

Maldacena, Shenker, Stanford '15

$$
\lambda_{L} \leq \frac{2 \pi k_{B} T}{\hbar}
$$

- Valid for generic quantum systems, with the assumption of analyticity and factorization at large times of thermal correlation functions
- A large class of black holes saturate this bound
- Bound is also saturated in the SYK model
- Sparse SYK? k dependence?

Future directions

Future directions

- Collisions behind the horizon [Haehl and Zhao, 2105.12755, 2202.04661]

$$
\mathscr{F}_{6} \sim \frac{\left\langle W_{1} W_{1} \mathscr{O}_{j} \mathscr{O}_{j} W_{2} W_{2}\right\rangle}{\left\langle W_{1} W_{1}\right\rangle\left\langle\mathscr{O}_{j} \mathscr{O}_{j}\right\rangle\left\langle W_{2} W_{2}\right\rangle}
$$

■ Operator growth, complexity, etc. Hyergraphs?

Thanks!
Gracias!

Green's functions

$$
G_{a b}(t)=\frac{1}{N} \sum_{j} 2 \operatorname{Re}\left\langle\chi_{a}^{j}(t) \chi_{b}^{j}(0)\right\rangle, \quad a, b=L, R .
$$

- Sparse SYK similar to original SYK using k of order 1
- Larger q allows us to choose smaller k

Numerical methods

SYK maps to $N / 2$-qubit system via Jordan-Wigner transformation

$$
\chi_{2 n}=\left(\prod_{j=1}^{n-1} \sigma_{j}^{x}\right) \sigma_{n}^{z}, \quad \chi_{2 n-1}=\left(\prod_{j=1}^{n-1} \sigma_{j}^{x}\right) \sigma_{n}^{y}, \quad\left\{\chi_{i}, \chi_{j}\right\}=2 \delta_{i j}
$$

Sparse

Numerical methods

Krylov subspace

$$
\mathscr{K}_{m}=\operatorname{span}\left\{|\psi(t)\rangle, H|\psi(t)\rangle, H^{2}|\psi(t)\rangle, \ldots, H^{m-1}|\psi(t)\rangle\right\}
$$

Get approximation for time evolution

$$
e^{-i H \Delta t}|\psi(t)\rangle \simeq V_{m} e^{-i V_{m} H V_{m} \Delta t} e_{1}
$$

Typicality:

$$
\begin{aligned}
\quad\left\langle\chi_{a}^{j}(t) \chi_{b}^{j}(0)\right\rangle= & \frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \chi_{a}^{j}(t) \chi_{b}^{j}(0)\right] \simeq \frac{\langle\beta| \chi_{a}^{j}(t) \chi_{b}^{j}(0)|\beta\rangle}{\langle\beta \mid \beta\rangle} \\
|\beta\rangle= & e^{-\frac{\beta}{2} H}|\psi\rangle, \quad|\psi\rangle \text { random state }
\end{aligned}
$$

