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Sachdev-Ye-Kitaev model
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(all-to-all) SYK
Quantum mechanical system of N Majorana fermions χj with
all-to-all random interactions [Kitaev ’15]

H = iq/2
∑

1≤j1<...<jq≤N
Jj1...jq︸ ︷︷ ︸

Gaussian

χj1 . . .χjq︸ ︷︷ ︸
q-body

, 〈
(
Jj1...jq

)2〉 = (q−1)!J2

Nq−1

Analytically solvable at large N

Emergent conformal symmetry at low energies
Maximally chaotic λL = 2π

β
[Maldacena, Shenker, Stanford

1503.01409]
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SYK is a model of holographic duality

Drawback: computational cost

Quantum simulation (q = 4)

number of gates ∼O(N7/2Jt+ .....)

Classical:

number of terms ∼Nq

state of the art N = 52, 7 million terms



Introduction 6/48

Is there an SYK modification that retains all the interesting
physics but is more computationally efficient?

Sparse SYK
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Sparse SYK



Sparse SYK model
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Sparsity: Reduce number of terms in the Hamiltonian summation
while preserving original properties, e.g., chaotic behavior
[Xu, Susskind, Su, Swingle 2008.02303]

Random pruning
Hypergraphs
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H = iq/2
∑

1≤j1<...<jq≤N
Jj1...jqxj1...jqχ

j1 . . .χjq , 〈(Jj1...jq

)2〉 = (q−1)!J2

pNq−1

where xijkl = 0 with probability 1−p or 1 with probability p
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Note that

Computational cost ✓
Quantum simulation (any q), number of gates

∼O(kNJt)

Classical, number of terms

∼ kN .

For N = 52, k = 4, 208 terms
Chaos ✓
Path integral G and Sigma ✓

How much sparsity?
Other physics?
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Hypergraphs: Generalization of a graph where hyperedges can
connect more than two vertices
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(r,s) r-regular, s-uniform
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Sparse SYK as (kq,q) Hypergraphs: Majorana fermions are
identified with vertices, and each interaction term correspond to a
hyperedge connecting q vertices (q-uniform).

kq-regular hypergraphs: Every vertex is contained in exactly kq
hyperedges.
q uniform indicates that the Hamiltonian contains q-body
interactions
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k quantifies the degree of sparsity in the Hamiltonian

k = p

N

(
N

q

)

⇒ Sparse Hamiltonian is a sum of exactly kN terms
Math results for random (r ,s) hypergraphs



Adjancency matrix
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We want sparse hypergraphs that are highly connected, expanders

[A]ij =
{

# of hyperedges containing vertices i and j if i ̸= j

0 if i = j

1 2 3 4 5 6 7 8
k

0.0

0.2

0.4

0.6

0.8

1.0

/
m

ax

N = 24 q = 4
N = 24 q = 8
N = 40 q = 4
N = 40 q = 8
N = 24, 40 SYK

Second largest eigenvalue λ
→ Spectral gap

Indication that k ≳ 1 has good
connectivity

Other measures of hypergraph
expansion: algebraic entropy and
vertex expansion
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Other measures of connectivity:

Algebraic hypergraph entropy
Consider a hypergraph H(V ,E ) and its adjancency matrix
A(H). Define

D = diag(d1,d2, ...,dN)), di =
∑
j∈V

Aij .

and

L(H)= 1
TrD

(D−A(H)) with eigenvalues νi

I (H)=∑
νi logνi
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N = 24 q = 4
N = 24 q = 8
N = 40 q = 4
N = 40 q = 8
SYK
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Vertex expansion
Consider a subset S ⊂V . Define its neighborhood

N (S) := {i : ∃ j ∈ S such that {i , j } ⊆ e for some e ∈E }.

Lower bound on vertex expansion (Dumitriu and Zhu,
2019)

|N (S)|
|S | ≥

[
1− 1

2

(
1− λ2

r2(s−1)2

)]−1
.
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)|/
|S

|

N = 24 q = 4
N = 24 q = 8
N = 40 q = 4
N = 40 q = 8
SYK
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q = 4, k = 4
q = 8, k = 2
Do they reproduce desired physics?

Hypergraphs are a useful tool. Much to explore.
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Traversable wormholes and sparse SYK



Two coupled sparse SYK
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Eternal traversable wormhole with a global AdS2 geometry can be
realized by coupling two copies of SYK in the large N and small
coupling limit [Maldacena, Qi 1804.00491]

Solution can be obtained from JT gravity by adding
coupling between boundaries
[Gao, Jafferis, Wall 1608.05687]

Traversable for any time

Same physics can be derived from two coupled SYKs

H =HSYK
L +HSYK

R +Hint, Hint = iµ
N∑
j=1

χ
j
L
χ
j
R

→ Study two coupled sparse SYKs



Traversable wormholes and sparse SYK 24/48

Properties of the two coupled SYK model
[Maldacena, Qi 1804.00491]

H =HSYK
L +HSYK

R + iµ
N∑
j=1

χ
j
L
χ
j
R

Ground state |Ψ0〉 approximately a TFD state (for some β(µ))

Energy gap scaling (Derived from large N analysis (gravitational))

Egap ∼µ
1

2−2/q at weak coupling

Egap ∼µ at strong coupling



Energy gap
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q = 8 matches scaling expected from gravity for large N
and appropriate range of couplings
Finite N effects dominate at very small couplings µ



Revival dynamics phenomena
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1 Start with ground state |Ψ0〉 of the two coupled SYK
2 Create Majorana excitation in Right system

|Ψ(t = 0)〉 =χR |Ψ0〉

3 Excitation gets scrambled
4 Excitation reassembles and becomes localized in Left

system
|Ψ(t = trev)〉 =χL|Ψ0〉

5 Process is repeated with L↔R ⇒ ’Revival oscillations’
[Plugge, Lantagne-Hurtubise, Franz 2003.03914]

Gravity picture: Perturbation travels through the wormhole



Diagnostic of revivals
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Transmission amplitude Tab = 2|G>
ab|

G>
ab(t)=− iθ(t)

N

∑
j

〈χja(t)χjb(0)〉 =
(
G>
LL(t) G>

LR(t)
G>
RL(t) G>

RR(t)

)

|Tab(t)|2: Probability of recovering χ
j
a at some time t after

inserting χ
j
b

at t = 0.
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[Plugge, Lantagne-Hurtubise and Franz, 2020]



Revivals in sparse SYK
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Increasing the temperature decreases transmission amplitude but
enhances the oscillatory behavior

SYK with q = 4 does not follow expected frequency scaling from AdS2
gravity, but q = 8 is compatible for some range of couplings and
temperatures
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Summary so far: Hypergraphs are a useful mathematical framework
that provides information about the connectivity of the sparse
model. Sparse SYK is a computationally tractable quantum
mechanical system with emergent gravitational behavior and can
describe an eternal traversable wormhole.

dynamite: a python library that makes use of PETSc and SLEPc.
Krylov subspace methods combined with massive parallelization
[Github:GregDMeyer/dynamite]

Texas Advanced Computing Center (TACC): Use of computational
resources from Stampede2 supercomputer
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Chaos and spectral form factor



Classical vs quantum chaos
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Classical chaos: Sensitivity to initial conditions

Diagnosed by Poisson brackets

∂x(t)

∂x(0)
= {x(t),p(0)}P.B. ∼ eλt , λ : Lyapunov exponent

Quantum chaos: First proposal by Larkin and Ovchinnikov (1969). New

insights by Shenker, Stanford (2014) and Kitaev (2015)

Out of Time Order Correlators (OTOC)

C (t)=−〈[W (t),V (0)]2〉β, V ,W Hermitian operators

Basic intuition: How much an early perturbation V
affects the later measurement of W . Lyapunov exponent
Random Matrix Theory (RMT)
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The Hamiltonian of a chaotic system, when considering
small energy windows where the density of states is
constant, is believed to resemble a random matrix.
Wigner. By studying statistical properties of random
matrices subject to the symmetries of the Hamiltonian, we
can understand the statistical properties of energy levels
and eigenstates of the system.
One observable that captures the statistics of energy
levels is the spectral form factor (SFF)



Level statistics
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Random matrix theory (RMT) provides an alternative diagnostic of
quantum chaos

Quantum chaos encoded in the statistical properties of
the spectrum

Spectra of quantum chaotic systems show the same
fluctuation properties as predicted by RMT

Classical ensembles of RMT: Hermitian random matrices whose
entries are random variables independently distributed



Level statistics
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Level spacing: s = Ei+1−Ei
∆ , ∆: mean level spacing

Level spacing distribution: P(s), probability to find consecutive
eigenvalues Ei ,Ei+1 at distance s

For quantum chaotic system:

PW (s)≃Aαs
αe−Bαs

α
, α=


1 GOE
2 GUE
4 GSE

(Wigner-surmise)

For integrable system:

PP(s)= e−s (Poisson)
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Quantity sensitive to energy level statistics: Spectral Form Factor

g(t,β)= 〈Z (β,t)Z∗(β,t)〉J
〈Z (β)〉2

J

gd (t,β)= 〈Z (β,t)〉J 〈Z∗(β,t)〉J
〈Z (β)〉2

J

gc(t,β)= g(t,β)−gd (t,β)



Spectral form factor
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The late time behavior of the spectral form factor in the all-to-all SYK is
governed by random matrix theory, just as expected from a chaotic system.

Slope, dip, ramp, plateaux. [Cotler et. al.]
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• Berkooz, Bruckner, Noravlansky and Raz, 2020: connected
contributions to the moments can dominate at early times.

Z (β1,β2)= 〈Tr(e−β1H))Tr(e−β2H)〉J
=

∞∑
m1,m2=0

〈Tr(Hm1)Tr(Hm2)〉J
β
m1
1

m1!

β
m2
2

m2!
(−1)m1+m2

• But a large value of N , beyond the state of the art of numerical
simulations, is needed to see this effect in the all-to-all SYK

→ Sparse SYK !



SFF in Sparse SYK
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Connected and disconnected parts, exchange of dominance. N =30, k =4q =4
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Spectral form factor k =4, N =30, q =4



Work in progress: OTOCs
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Another way of diagnosing chaos: Out of TIme Order Correlators
(OTOCs)

C (t)= 〈[W (t),V (0]2〉 = 2−2F (t)

F (t)≡ 〈W (t)V (0)W (t)V (0)〉β



Work in progress: OTOCs
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Intuition:
〈W (t)V (0)W (t)V (0)〉 = 〈ψ2|ψ1〉

|ψ2〉 =V (0)W (t)|β〉 and |ψ1〉 =W (t)V (0)|β〉
In non-chaotic system: early measurement of V has no effect on
the later measurement of W , |ψ1〉 ∼ |ψ2〉 , so overlap
〈ψ1|ψ2〉 = 1→C (t)∼ 0

In a chaotic system: Pertubation V makes |ψ1〉 and |ψ2〉
distinguishable, so overlap 〈ψ1|ψ2〉 is small, C (t)→ 2 for late times

Scrambling time t∗

Lyapunov exponent λL



Work in progress: chaos bound
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Maldacena, Shenker, Stanford ’15

λL ≤
2πkBT

ħ

Valid for generic quantum systems, with the assumption
of analyticity and factorization at large times of thermal
correlation functions

A large class of black holes saturate this bound

Bound is also saturated in the SYK model

Sparse SYK? k dependence?
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Future directions
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Collisions behind the horizon [ Haehl and Zhao, 2105.12755,

2202.04661]

F6 ∼
〈W1W1OjOjW2W2〉

〈W1W1〉〈OjOj 〉〈W2W2〉
Operator growth, complexity, etc. Hyergraphs?
.....
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Thanks!

Gracias!



Green’s functions
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Gab(t)=
1
N

∑
j

2Re〈χja(t)χjb(0)〉, a,b = L,R .

5 10 15 20 25 30 35 40
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

G
LR

(t
)

2N = 40 q = 4 = 0.5

k = 1
k = 2
k = 4
k = 8

50 100 150 200 250 300 350 400
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

G
LR

(t
)

2N = 40 q = 8 = 0.05

k = 0.5
k = 1
k = 2
k = 4

Sparse SYK similar to original SYK using k of order 1
Larger q allows us to choose smaller k



Numerical methods
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SYK maps to N/2-qubit system via Jordan-Wigner
transformation

χ2n =
(
n−1∏
j=1

σxj

)
σzn , χ2n−1 =

(
n−1∏
j=1

σxj

)
σ
y
n , {χi ,χj } = 2δij



Numerical methods
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Krylov subspace

Km = span{|ψ(t)〉,H |ψ(t)〉,H2|ψ(t)〉, . . . ,Hm−1|ψ(t)〉}

Get approximation for time evolution

e−iH∆t |ψ(t)〉 ≃Vme
−iVmHVm∆te1

Typicality:

〈χja(t)χjb(0)〉 =
1
Z

Tr
[
e−βHχja(t)χ

j
b
(0)

]
≃

〈β|χja(t)χjb(0)|β〉
〈β|β〉

|β〉 = e−
β

2H |ψ〉, |ψ〉 random state
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