Black Tsunamis and Naked Singularities in AdS

谷の前

Roberto Emparan ICREA & UBarcelona

HoloTube webinar

February 2022

ない見て

Horizons smooth places associated to emergence of geometry

Singularities rough places associated to breakdown of geometry

Horizons limit what can be observed

Singularities

limit what can be predicted (using classical General Relativity)

Horizons & Singularities linked by

Cosmic Censorship Conjecture(s) by Penrose

CCCP

Cosmic Censorship Conjecture(s) by Penrose

You can predict everything you can observe

You cannot observe what you couldn't predict

weak CCCP

You can predict everything you can observe from afar

weak CCCP

The evolution of initially smooth configurations remains predictable for asymptotic observers

The maximal Cauchy development of initial data possesses a complete \mathcal{I}^+

wCCCP

Naked singularities can't form

If naked singularities could form, then we could safely learn about highest-energy/shortest-length physics \Rightarrow strong quantum gravity regime

wCCCP

Nature hides Planck-scale physics from us

can be violated!

wCCC violations

Critical collapse

Choptuik 1993

Black string instability

Gregory+Laflamme 1993 Lehner+Pretorius 2011

Does Nature give us a chance to probe Planck-scale physics?

How much of a chance?

How strong the loss of classical predictivity?

wCCC violations

small mass, small extent

Improved wCCC

Predictivity lost, predictivity regained

Only <u>mild</u> naked singularities can form, small (Planck-scale) mass, size, and duration They may even be controlled by attractors

Improved wCCC

Predictivity lost, predictivity regained

Only <u>mild</u> naked singularities can form, so mild that predictivity is lost only for a time that vanishes as $\hbar \to 0$

What does AdS/CFT say about this?

What setup?

Black String instability in AdS

Setup

$$ds^{2} = \frac{L^{2}}{\cos^{2} z} \left(dz^{2} + ds^{2} (Schw - AdS_{D-1}) \right)$$

Boundary: Sphere with two black holes at antipodes

fixed geometry

Thin enough black strings are unstable to rippling

similar to Gregory-Laflamme

Hirayama+Kang 2001

What's the endpoint of the instability?

Static phases

Marolf+Santos 2019

Uniform black string Black funnel

Black droplets

Fat funnels

(other possibilities too)

Thermodynamics – canonical

Can dominate for large BH@bdry

<u>Never dominant</u>

<u>Dominant for small</u> <u>BH@bdry</u>

Can dominate for large BH@bdry

Dynamical evolution?

Thermo dominant

Black Tsunami flows

<u>Possible</u>

Fixed black hole@bdry acts as heat source/sink

Horizon generators can flow in/out of bdry:

Area theorem 'Free energy theorem'

Singular pinch off

Possible

If string thickness \ll AdS radius $\Rightarrow \sim$

What we have found

+ more complex evolutions

How?

Full numerical GR evolution is difficult and costly

We use

Large-*D effective* theory

Warm up Black strings in AF space @ large D

$D \rightarrow \infty$ effective theory

Black holes @ large *D*: gaussian blobs

 $d\Omega_{D+1} = \mathrm{d}\theta^2 + \cos^2\theta \, d\Omega_D$

Area $(\theta) = \cos^{D} \theta \sim e^{D\theta^{2}/2}$

Area strongly localized near equator

Obtain effective equations for AdS black strings

Find linear instability

Evolve non-linear equations

Boundary CFT signal of naked singularity formation

Large *D*:

Not easy to extract signal at boundary Non-perturbative in 1/D

A linearized model

after Chesler+Way 2019

Critical collapse and Black string pinch show Self-Similarity

$$f(t,x) = f(e^{\lambda}t, e^{\lambda}x)$$

 $f(t,x) = f(e^{\lambda}t,e^{\lambda}x)$

Continuous CSS: $\forall \lambda \in \mathbb{R}$

Discrete DSS: $\lambda = k\Delta$ $k \in \mathbb{N}$

Find solution to *linearized gravity* in AdS that is Discrete Self-Similar near r = 0 t = 0

Extract holographic stress tensor near $r = \infty$

Chesler+Way 2019

For critical scalar field collapse, this gives

 $\left< \mathcal{O}_{\varphi} \right> \sim \frac{1}{t - \frac{\pi}{2}}$

 $\frac{\pi}{2}$ = propagation time to bdry

As observed in numerical evolution

For DSS gravitational field

$$\langle T_{tt} \rangle \sim t - \frac{\pi}{2}$$
 vanishes!
 $\langle T_{tt} \rangle \sim const$

$$\langle T_{it} \rangle \sim \text{const}$$

 $\frac{\pi}{2}$ = propagation time to bdry

(pressures vanish)

Boundary signal is not smooth: it oscillates an infinite number of times before $t = \frac{\pi}{2}$ \rightarrow It reaches arbitrarily high frequencies But the energy density vanishes as $t \rightarrow \frac{\pi}{2}$

In CFT at large *N*, we expect

- a few, O(1) quanta, with energy density $O(N^2)$
- large localized shears $\mathcal{O}(N^2)$

Not deadly

You don't notice a few gamma rays hitting you

What have we learned?

- Cosmic Censorship can be violated by AdS black strings
- Evolution is a combination of pinch-offs and tsunamis
- Dual CFT interpretation: Hawking radiation+burst
- Boundary burst: shearing, but mild a few γ gravitons

Going further

• CFT resolution of singularity at finite *N*?

Hawking radiation + gravitational backreaction

 \rightarrow Black hole evaporation as classical bulk evolution

Backup material

Large *D* setup and effective equations
$$D = n + 5$$

 $r_0 = \text{thickness}$

$$ds^{2} = \frac{L^{2}}{\cos^{2}\left(\frac{x}{\sqrt{n}}\right)} \left(\frac{Hdx^{2}}{n} - (1+r_{0}^{-2})A dt^{2} + u_{t} \frac{2dt dR}{n-R} - \frac{2}{n}C dtdx + r_{0}^{2} R^{\frac{2}{n}} d\Omega_{n+1}\right)$$

$$\overset{\text{mass (area) density}}{\underset{R}{\text{momentum density}}} \qquad \underset{R}{\text{momentum density}}$$

$$\partial_t m + (\partial_x + x)(p - \partial_x m) = 0$$

$$\partial_t p - (\partial_x + x) \left(\partial_x p - \frac{p^2}{m}\right) - (1 + r_0^{-2})\partial_x m = 0$$

Tsunami to Fat funnel

Pinch-off to Droplets

Pinch+Tsunami

Linearized SS solution (scalar field)

$$\langle \mathcal{O}_{\varphi} \rangle \sim \partial_{t} F \left[\log \left(t - \frac{\pi}{2} \right) \right] \sim \frac{1}{t - \frac{\pi}{2}}$$

 $\stackrel{\pi}{\longrightarrow} \text{DSS}$ $\frac{1}{t - \frac{\pi}{2}}$

For a DSS function of
$$\log(t - t_*)$$

$$\partial_t \sim \frac{1}{t-t_*}$$

A CSS function of only *t* must be constant

• Stress-energy conservation:

$$\partial_t \langle T_{tt} \rangle = \nabla^i \langle T_{it} \rangle \qquad \partial_t \langle T_{ti} \rangle = \nabla^j \langle T_{ji} \rangle$$

• DSS:
$$\partial_t \sim \frac{1}{t-t_*}$$

$$\Rightarrow \langle T_{tt} \rangle \sim (t - t_*) \langle T_{it} \rangle \sim (t - t_*)^2 \langle T_{ij} \rangle$$

Conservation:

 $\langle T_{tt} \rangle \sim (t - t_*) \langle T_{it} \rangle \sim (t - t_*)^2 \langle T_{ij} \rangle$

Shear mode (tensor) ~ scalar field: $\langle T_{ij} \rangle \sim \frac{1}{t - t_*}$

$$\langle T_{tt} \rangle \sim t - t_* \text{ vanishes!}$$

$$\Rightarrow \quad \langle T_{it} \rangle \sim \text{const}$$

$$\langle T_{ij} \rangle \sim \frac{1}{t - t_*}$$

(explicit solution bears this out)

David Licht Ryotaku Suzuki Marija Tomašević Benson Way

hank you

神子的心