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At strong coupling often no quasiparticles e.g. the cuprates
Conserved charges and light Goldstone modes can dominate at long wavelengths
Derivation of EFT with few/no symmetries

Broken phase ground states



(Conformal) Field Theory Setup

 Relativistic field theory with global /(1) at finite 7 and zero charge

» Charged operator O, transforms as O, — e 14 O,

» Phase transition with (O ) # Oat 7' < T,

» Couple to perturbative external gauge field A  and scalar source /,,

55 = Jd”x (484, + O3 57+ 0, 67%)



Toy Model

» Consider simple model with UU(1) global symmetry

1 > m? yE
S=|dx|-=|0 . !
j <2|w| — v NA)

» Vacua parametrised by iy, = p, e’ with 0 < 0, < 2x

» Change variable v = p ¢'” to discover massless massless mode from 9 — 9 + ¢

] 1 m? yE
Q — dn —— (9 ——26192 2 4
JX(Z(p) ~p? (09)" = —=p 4p)

* Dispersion relation w = £ £




Toy Model

» Explicitly deform to break the symmetry

2

: 1 > m* . o, A A
§=|dx | =5 |oy| = —-Iyl" = lyl" - sAy* — 2%y

» Change variable y = pe'’ and 61 = 6p, e'":

1 1 2 /12
S = Jd”x (—5 (9p)” - ~p? (09)° n; P =—P" = 2pdp; cos(d - 8s)>

» Two vacua with p; = —m*/2* + O(p,)and 9, = 9, or 9y = 9, +



Toy Model

* Fluctuations of angle acquires a mass

» Expanding around 9, = .,

0 = i\/kz +26p/p,

» Expanding around J, = J, + 7

W = i\/kz—Z(SpS/pO

* Order parameter aligns with deformation parameter in the complex plane

» Expect dissipation to add a damping rate at k = 0. AlsO Delacretaz, Gouteraux, Ziogas



Toy Model

» Couple to external gauge field A,

| > m? yE
S=1|d'x| — |D : 4
J (2|w| — v 4\1/1\)

 With the conserved current
JF =~ w* DMy — w DMy = p? (&”19 + qA”)

* Non-zero current susceptibility



Finite Temperature

» Generating function W[A . 4, A" | depends on external gauge field A, and complex

source A

* Functional differentiation gives

oW oW
Jy=i—,  (0,) = i—
P =ise (O =igs
» Invariance under gauge transformations 0A, — d 0\, 04 = —ig Ao/ yields the

current (non)-conservation Ward identity

V(I = ig ((0,)0 = (03)1)



Hydro

Parametrise massless collective dof:

* Normal fluid parametrised by local temperature 7 and fluid velocity v*

» Superfluid parametrised by phase ¢ of vev (0, ) = (0, ), i

e Express T/w and Jﬂ as functions of the fluctuations 7', v/, v = 0"J

* Solve the closed system Landau

Tisza

V,T"" = F" ], + 20% + A* O oract
H H W Y .
Khalatnikov, Lebedev

Bhattacharya, Bhattacharyya, Minawalla

V(I = ig ((0,)0 = (03)1)



Linearised Hydro

* At zero charge density the normal fluid and superfluid dofs decouple

* Only need to consider phase fluctuations of order parameter at long wavelengths

5(6,)(x") = i(6,), 5c(x¥)

« Express 6(J") as derivative expansion in 6c(x") with d ~ O(e)



Linearised Hydro

* Due to U(1) symmetry, no current when d oc = 0

* At non-dissipative order, gauge invariance of sources yields

5], = = xo0 (0,6¢ + 8A,) + O(0°) 5], = — x;; (0,6¢ + 8A,) + O(0%)

T Susceptibilities—

» The current divergence gives d 0J" ~ O(e?)

= [nclude scalar sources 91 of O(¢?)

* Inour frame i = d.oc



Scalar Sources and Phase Pinning

» Assume thermal state with real vev (O )

» Include complex scalar source 04 = op ) + 1 0s,,

Time independent pinning parameter .
e p p gPp Time dependent phase source

* Expanding the current conservation Ward identity yields

a,u5<Jﬂ> — 2q ‘ <@1//>b‘ 5:0(5) oc + zq ‘ <@yj>b‘ 5S1//



Second Sound

* Solve the source free system
0,5(") = —2q1(0,),| p,,) 6c =
X00 arz& —XjJ 83%50 =—2q| <@1//>b‘ 5,0(5) ocC
* To obtain the non-dissipative dispersion relation
w*(k) = cZ k* + m?
* With

2 / 2_ZQ|<@1//>19‘5P(S)
Cs = XJjJ )(QQ Mg =

£00



Second Sound

2, o 2Q‘<@w>b‘5ﬂ(s)
Cs = X171/ X00 mg =

£00

» Speed of second sound goes to zero close to the transition where y;,;, — 0

» Instability when op ) < 0, similar to toy model



Dissipative Corrections

* Dissipation captured by higher derivative terms in constitutive relations  Khalamikoy, Lebedev
5(J.) = — xoo (8s,+ 0,6¢) +E 9, (8s,+ 9,5¢)
5(J.) = — xy; (85, + 0,5¢) — 6,0, (55, + 0,5¢)

* In the normal phase with y,, = Oand oy ~ O(¢)

* Where o, the incoherent conductivity



Retarded Green’s Functions

« Solve Ward identity for phase fluctuation oc in terms of sources 0A, and 0s,,
» Express VEVs 6(J") and 6(0,,) as linear combination of sources

* Read off retarded Green’s functions from 6(©0 ,) = G, ,(w, k) o5, for all
{A,B} = {J',J*, Oy}

» Determined in terms of susceptibilities y,, v,, and coefficients = and o,

 Kubo formulae

. . Im ijjx . . .
o, = lim lim : 2 = lim lim
w—0 k—0 W k—0 w—0 ()

Im G




Retarded Green’s Functions

» At k = 0 the transport current /" and the “phase” operator @, decouple

 Persistent current exists after explicit breaking of (1)

* Need to include vortices for current to relax Davidon, Delacretaz, Gouteraux, Hartnoll

* All G,x(w, k) have a pair of simple poles related to the pseudo-Goldstone mode



Dispersion Relations

» All G, 5(w, k) have a pair of simple poles related to the pseudo-Goldstone mode

* Dispersion relation

w + k2)(u ] - -
W = + 5 (w:+k2(:)(JJ+0d)(QQ))
Y00 2200

W = 2q2 | <@w>b‘ 5P(s)

* Dissipative effects will introduce a damping rate determined by =

P

w =

2 %50

a)g ap



Continuity (2) Across Transition

Undeformed Supertluid (7' < 7)) Normal Fluid (T" > T)

X A
2250

. Oy4

* v;7 — U but need to know more about =



Why holography

* Microscopic derivation = Compute transport coefficients

» Valid away from 7. = Ground states

* Implement disorder without assumptions

* Real time dynamics



CF'T Setup

Model superfluid transitions at 1 = 0:

» CFT with a global U(1) and charged operator 00,

* Finite temperature /

» Deform by neutral relevant operator O, to break scaling symmetry

* Phase transition at 7',



AdS/CFT

r

The vacuum of CFT , is modelled by AdS

2
ds? = 12 (—d® + dx2) + —

72



Holographic Setup

Boundary conditions of bulk fields correspond to sources in CFT:

 Metric = Source for the stress tensor

2 20 42 2 AV 4 dr L ...
ds® = r°(—=dt” + dx; + 6g,, (X)dx dx") 4 |
)

* Gauge Field = Source for U(1) current

A = a,(x)dx* + -

» Massive Scalar =» Source for scalar boundary with dimension A,

e
y(r, X) = pd+1-A |




Holographic Setup

* Boundary theory gets deformed to

1
Slgg a,,08,,] = Scpr + Jdd Ix (gbs(x) Ox) + a,(x) JH(x) + Eégﬂy(x)T”” (x))

* Holographic conjecture relates partition functions
ZCFT[¢S’ aﬂ’ 5gﬂl/] — Zbulk[¢sa a//h 5g/w] ~ eiSb”lk[¢S’aM’5gMV]

* Powerful tool to extract VEVs of operators

1 o
(O(x)) = In Z-p1l @, a, 5g,w] ~

S ,d,,08,,
;50 putklPs> Ay 08, ]

0p(x)



Symplectic Current

Cast the bulk action in terms of first derivatives

Spoe = [ A x L(0¢, p) + counterterms
M

Vary with respect to bulk field to find

0F
O(x)) = d%x S
(O() LM v

Non-trivial information from knowing on shell value of

Useful to think of it as momentum density

00,4

close to the boundary

Papadimitriou



Symplectic Current

0L
00,

. Within linear response need to know variation o ( ) against specific bulk

perturbations

* For any two perturbations 0,¢, and 0,¢, define the symplectic current density

PH = 6,¢b, 8 o7 Sy O o7
— Y1¥A Y2 5aﬂ§bA 2VA Y1 5aﬂ§bA

* Divergence free when evaluated on-shell

0P =0

» Component P’ interesting in holography



Symplectic current

» Useful in a hydro/derivative expansion

« Suppose 5lgbf) is a set of static solutions e.g. thermodynamic/zero mode
perturbation

» Construct hydro perturbation in derivative expansion

52¢A — e—iea)t+i€kX(5¢f(XS) 4 €5¢1§S)(1) 1 0(62))

(s) " First dissipative corrections
» Construct P out of 0,¢," and 0,

* Expand conservation of P” in €, integrate along radial direction to study
corrections 5gbj§s>(1)



Setup

The minimum bulk action includes a complex scalar 1/ in four dims

I I
L =R-V(, |ly|*) - ~0u$ 0" — DD )* — (¢, lw|*) F*F,,

Dy=Vy+iqA,y

. Invariant under v — ¢ "y, A,—A,+0A

* Scenario were we deform by neutral scalar ¢ and y breaks U(1) below 7.

]
Vz—6+5 £¢2+ml/2/h/f\2+---

2

» UV dimensions A y and A  of dual operators fixed by m(/% and 71,



Setup

» Deform the theory by source ¢, of operator dual to ¢

* Trigger non-trivial RG flow described by black brane solutions with

2

d
ds? = — U(r) dt* 1 |42 (dx* + dy?)
U(r)

¢d = @(r), w=w(r), A=0

» Complex scalar y non-trivial below 7.



Setup

 Horizon at » = 0 with

Ur) ~ 4xTr + O(), o(r) ~ g(o) + O(r)

p(r) = D+ 0,  pr)=p? +0O(r)

* UV boundary at » = oo with

Ur) = (r+ R+ -+ + g, r + R+ g =In(r+R)+ ...
P(r) = ) (r+ R + o + ¢, (r+ R) ™20 + -+

p(r) = p, (r + R + Py (7 + R) 2w + ...

¢ Set 10(5) — O



Setup

. In the broken phase useful to redefine v = pe'” and B,=09,0+qA,

* The Goldstone mode packaged in a gauge invariant

» Asymptotics close to UV boundary

B, = 0,0 PP e (0,0c+qos,)+ - 1Ja |

Source for phase of complex scalar Gauge ivariant

combination of phase and
source vector



Hydro Perturbations

B, = 0,0, r* ™3 4 e + (3,00 + q 85,) + - 2% 4 oo
r

» At zero frequency/infinite wavelength solutions for B, purely thermodynamic

* Change in chemical potential 642, and constant external vector field oy,

* Near the UV boundary

£00 (x)
OB = qdu, — Spt, + -+ 6B = qéu, —
= qoM = g Ot ERCC I

* Near the horizon

6B = qéu,a r + O(r?) SBY = qéu aV + O(r)



Hydro Perturbations

* Leading term in hydro expansion simply by replacing

Op, = 0,0C + 0Os, Of, — 0,0C + 0S,

* At leading order

5, = — Xoo (0:6¢ + 5s,) 5, = — xyy (0,6¢ + 6s,)



Hydro Perturbations

* The symplectic current yields the expected dissipative corrections

5, = — Xoo (8s,+ 9,6¢c) + E0, (s, + 9,6¢)
8, = — xyy (85, + 0,6¢) — 6,0, (S5, + 0,5¢)
» With specific transport coefficients determined by the black hole horizon

o, =1 (a)§°>)2

260 (T (O)a;(o))z

2q*(p™)>

P
=
e

— €



Near T,

Horizon expressions allow us to determine

=~ (T.-T) !

Near the transition the phase oc becomes not well defined

Hydro expansion naively breaks down

W, = I

The mode is well behaved

!

AJJ

X00

k2

l

260

(Bxy+ 04 X00) k?



Near T,

 Diffusive mode of normal phase “jumps” at the phase transition

S Sw

T—Tr

* In MoOrec Complicate Setup Arean, Baggioli, Grieninger, Landsteiner



Outlook

Powerful holographic techniques to extract transport coefficients
Understand better the hydro convergence at the phase transition
Study inhomogeneous superfluids

Finite chemical potential

Dissipationat 7" — 0



