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Motivation

• At strong coupling often no quasiparticles e.g. the cuprates 

• Conserved charges and light Goldstone modes can dominate at long wavelengths 

• Derivation of EFT with few/no symmetries 

• Broken phase ground states



(Conformal) Field Theory Setup

• Relativistic field theory with global  at finite  and zero charge 

• Charged operator   transforms as  

•  Phase transition with  at  

• Couple to perturbative external gauge field  and scalar source 

U(1) T

𝒪ψ 𝒪ψ → e−iqα 𝒪ψ

⟨𝒪ψ⟩ ≠ 0 T < Tc

Aμ λψ

δS = ∫ dnx (Jμ δAμ + 𝒪*ψ δλ + 𝒪ψ δλ*)



Toy Model

• Consider simple model with  global symmetryU(1)

S = ∫ dnx (−
1
2

∂ψ
2

−
m2

2
|ψ |2 −

λ2

4
|ψ |4 )

• Vacua parametrised by  with  

• Change variable  to discover massless massless mode from 

ψ0 = ρ0 eiϑ0 0 ≤ θ0 < 2π

ψ = ρ eiϑ ϑ → ϑ + c

S = ∫ dnx (−
1
2 (∂ρ)2 −

1
2

ρ2 (∂ϑ)2 −
m2

2
ρ2 −

λ2

4
ρ4)

• Dispersion relation ω = ± k



Toy Model

• Explicitly deform to break the symmetry

S = ∫ dnx (−
1
2

∂ψ
2

−
m2

2
|ψ |2 −

λ2

4
|ψ |4 − δλ ψ* − δλ* ψ)

• Change variable  and ψ = ρ eiϑ δλ = δρs eiϑs

S = ∫ dnx (−
1
2 (∂ρ)2 −

1
2

ρ2 (∂ϑ)2 −
m2

2
ρ2 −

λ2

4
ρ4 − 2 ρ δρs cos(ϑ − ϑs))

• Two vacua with  and  or ρ2
0 = − m2/λ2 + 𝒪(δρs) ϑ0 = ϑs ϑ0 = ϑs + π



Toy Model

• Fluctuations of angle acquires a mass 

• Expanding around ϑ0 = ϑs

ω = ± k2 + 2 δρs/ρ0

• Expanding around ϑ0 = ϑs + π

ω = ± k2 − 2 δρs/ρ0

• Order parameter aligns with deformation parameter in the complex plane 

• Expect dissipation to add a damping rate at . Alsok = 0 Delacretaz, Gouteraux, Ziogas



Toy Model

• Couple to external gauge field Aμ

S = ∫ dnx (−
1
2

Dψ
2

−
m2

2
|ψ |2 −

λ2

4
|ψ |4 )

• With the conserved current

Dμψ = ∂μψ + i q Aμ ψ

Jμ ≈ ψ* Dμψ − ψ Dμψ* = ρ2 (∂μϑ + q Aμ)

• Non-zero current susceptibility



Finite Temperature

• Generating function  depends on external gauge field  and complex 
source  

• Functional differentiation gives

W[Aμ, λ, λ*] Aμ

λ

⟨Jμ⟩ = i
δW
δAμ

, ⟨𝒪ψ⟩ = i
δW
δλ*

• Invariance under gauge transformations   yields the 
current (non)-conservation Ward identity

δAμ → ∂μδΛ, δλ = − i q λ δΛ

∇α⟨Jα⟩ = iq (⟨𝒪ψ⟩λ* − ⟨𝒪*ψ⟩λ)



Hydro

Parametrise massless collective dof: 

• Normal fluid parametrised by local temperature  and fluid velocity  

• Superfluid parametrised by phase  of vev  

• Express  and  as functions of the fluctuations   

• Solve the closed system

T vμ

ϑ ⟨𝒪ψ⟩ = ⟨𝒪ψ⟩b eiϑ

Tμν Jμ T, vμ, vμ
s = ∂μϑ

∇μTμν = Fνμ Jμ + λ 𝒪*ψ + λ* 𝒪ψ

∇α⟨Jα⟩ = iq (⟨𝒪ψ⟩λ* − ⟨𝒪*ψ⟩λ)

Landau
Tisza
Israel

Bhattacharya, Bhattacharyya, Minawalla
Khalatnikov, Lebedev



Linearised Hydro

• At zero charge density the normal fluid and superfluid dofs decouple 

• Only need to consider phase fluctuations of order parameter at long wavelengths

δ⟨𝒪ψ⟩(xμ) = i ⟨𝒪ψ⟩b δc(xμ)

• Express  as derivative expansion in  with δ⟨Jμ⟩ δc(xμ) ∂ ∼ O(ε)



Linearised Hydro

• Due to  symmetry, no current when  

• At non-dissipative order, gauge invariance of sources yields

U(1) ∂μδc = 0

δJt = − χQQ (∂tδc + δAt) + O(∂2) δJx = − χJJ (∂xδc + δAx) + O(∂2)

• The current divergence gives  

➡ Include scalar sources  of  

• In our frame 

∂μδJμ ∼ O(ϵ2)

δλ O(ϵ2)

μ = ∂tδc

Susceptibilities



Scalar Sources and Phase Pinning

• Assume thermal state with real vev  

• Include complex scalar source 

⟨𝒪ψ⟩

δλ = δρ(s) + i δsψ

Time independent pinning parameter Time dependent phase source

• Expanding the current conservation Ward identity yields

∂μδ⟨Jμ⟩ = − 2 q |⟨𝒪ψ⟩b | δρ(s) δc + 2 q |⟨𝒪ψ⟩b | δsψ



Second Sound

• Solve the source free system 

 

 

• To obtain the non-dissipative dispersion relation 

 

• With

∂μδ⟨Jμ⟩ = − 2 q |⟨𝒪ψ⟩b | δρ(s) δc ⇒

χQQ ∂2
t δc − χJJ ∂2

xδc = − 2 q |⟨𝒪ψ⟩b | δρ(s) δc

ω2(k) = c2
s k2 + m2

s

c2
s = χJJ /χQQ m2

s =
2 q |⟨𝒪ψ⟩b | δρ(s)

χQQ



Second Sound

• Speed of second sound goes to zero close to the transition where  

• Instability when , similar to toy model

χJJ → 0

δρ(s) < 0

c2
s = χJJ /χQQ m2

s =
2 q |⟨𝒪ψ⟩b | δρ(s)

χQQ



Dissipative Corrections

• Dissipation captured by higher derivative terms in constitutive relations

δ⟨Jt⟩ = − χQQ (δst + ∂tδc) + Ξ ∂t (δst + ∂tδc)

δ⟨Jx⟩ = − χJJ (δsx + ∂xδc) − σd ∂t (δsx + ∂xδc)

• In the normal phase with   and χJJ = 0 δμ ∼ O(ϵ)

δ⟨Jt⟩ = − χQQ δμ δ⟨Jx⟩ = − σd ∂xδμ

• Where  the incoherent conductivityσd

Khalatnikov, Lebedev



Retarded Green’s Functions

• Solve Ward identity for phase fluctuation  in terms of sources  and  

• Express VEVs   and  as linear combination of sources 

• Read off retarded Green’s functions from  for all 
 

• Determined in terms of susceptibilities  ,   and coefficients   and   

• Kubo formulae

δc δAμ δsψ

δ⟨Jμ⟩ δ⟨𝒪ψ⟩

δ⟨𝒪A⟩ = GAB(ω, k) δsB
{A, B} = {Jt, Jx, 𝒪Y}

χQQ χJJ Ξ σd

σd = lim
ω→0

lim
k→0

Im GJxJx

ω
, Ξ = lim

k→0
lim
ω→0

Im GJtJt

ω



Retarded Green’s Functions

• At  the transport current  and the “phase” operator   decouple 

• Persistent current exists after explicit breaking of 

k = 0 Jx 𝒪Y

U(1)

σAC(ω) =
GJxJx(ω, k = 0)

i ω
=

i χJJ

ω
+ σd

• Need to include vortices for current to relax 

• All  have a pair of simple poles related to the pseudo-Goldstone modeGAB(ω, k)

Davidon, Delacretaz, Gouteraux, Hartnoll



Dispersion Relations

• All  have a pair of simple poles related to the pseudo-Goldstone mode 

• Dispersion relation

GAB(ω, k)

ω = ± w + k2 χJJ

χQQ
−

i
2χ2

QQ
(w Ξ + k2 (Ξ χJJ + σd χQQ))

w = 2q2 |⟨𝒪ψ⟩b | δρ(s)

• Dissipative effects will introduce a damping rate determined by Ξ

ωgap =
w Ξ

2 χ2
QQ



Continuity (?) Across Transition

Undeformed Superfluid ( )T < Tc

ω± = ± χJJ

χQQ
k2 −

i
2χ2

QQ
(Ξ χJJ + σd χQQ) k2

Normal Fluid ( )T > Tc

ωD = − i
σd

χQQ
k2

ℜω

ℑω

ℜω

ℑω

•  but need to know more about χJJ → 0 Ξ



Why holography

• Microscopic derivation  Compute transport coefficients 

• Valid away from   Ground states 

• Implement disorder without assumptions 

• Real time dynamics

⇒

Tc ⇒



CFT Setup

Model superfluid transitions at : 

• CFT with a global  and charged operator  

• Finite temperature  

• Deform by neutral relevant operator  to break scaling symmetry 

• Phase transition at 

μ = 0

U(1) 𝒪ψ

T

𝒪ϕ

Tc



AdS/CFT

ℝ1,d

r

The vacuum of   is modelled by CFT1,d AdSd+2

ds2 = r2 (−dt2 + dx2
d) +

dr2

r2



Holographic Setup

Boundary conditions of bulk fields correspond to sources in CFT:

ds2 = r2 (−dt2 + dx2
d + δgμν(x)dxμdxν) +

dr2

r2
+ ⋯

A = aμ(x) dxμ + ⋯

ψ(r, x) =
ψs(x)

rd+1−Δϕ
+ ⋯

• Metric ➜ Source for the stress tensor

• Gauge Field ➜ Source for  currentU(1)

• Massive Scalar ➜ Source for scalar boundary with dimension  Δϕ



Holographic Setup

S[ϕs, aμ, δgμν] = SCFT + ∫ dd+1x (ϕs(x) 𝒪(x) + aμ(x) Jμ(x) +
1
2

δgμν(x)Tμν(x))

• Boundary theory gets deformed to

• Holographic conjecture relates partition functions

ZCFT[ϕs, aμ, δgμν] = Zbulk[ϕs, aμ, δgμν] ≈ eiSbulk[ϕs,aμ,δgμν]

• Powerful tool to extract VEVs of operators

⟨𝒪(x)⟩ =
1
i

δ
δϕs(x)

ln ZCFT[ϕs, aμ, δgμν] ≈
δ

δϕs(x)
Sbulk[ϕs, aμ, δgμν]



Symplectic Current

• Cast the bulk action in terms of first derivatives

Sbulk = ∫M
dd+1x ℒ(∂ϕ, ϕ) + counterterms

• Vary with respect to bulk field to find

⟨𝒪(x)⟩ = ∫∂M
ddx δϕ

δℒ
δ∂rϕ

+ ⋯

• Non-trivial information from knowing on shell value of    close to the boundary 

• Useful to think of it as momentum density

δℒ
δ∂rϕ

Papadimitriou



Symplectic Current

• Within linear response need to know variation  against specific bulk 

perturbations 

• For any two perturbations  and  define the symplectic current density

δ ( δℒ
δ∂rϕ )

δ1ϕA δ2ϕA

Pμ = δ1ϕA δ2 ( δℒ
δ∂μϕA ) − δ2ϕA δ1 ( δℒ

δ∂μϕA )
• Divergence free when evaluated on-shell

∂μPμ = 0

• Component  interesting in holographyPr



Symplectic current

• Useful in a hydro/derivative expansion 

• Suppose  is a set of static solutions e.g. thermodynamic/zero mode 
perturbation 

• Construct hydro perturbation in derivative expansion

δ1ϕ(s)
A

δ2ϕA = e−iϵ ω t+iϵ k x(δϕ(s)
A + ϵ δϕ(s)(1)

A + O(ϵ2))

• Construct  out of  and  

• Expand conservation of  in , integrate along radial direction to study 
corrections 

Pμ δ1ϕ(s)
A δ2ϕA

Pμ ϵ
δϕ(s)(1)

A

First dissipative corrections



Setup
The minimum bulk action includes a complex scalar    in four dimsψ

ℒ = R − V(ϕ, |ψ |2 ) −
1
2

∂μϕ ∂μϕ − (Dμψ)(Dμψ)* −
1
4

τ(ϕ, |ψ |2 ) FμνFμν

V ≈ − 6 +
1
2

m2
ϕ ϕ2 + m2

ψ |ψ |2 + ⋯

Dμψ = ∇μψ + i q Aμ ψ

• Invariant under   

• Scenario were we deform by neutral scalar  and  breaks  below 

ψ → e−iqΛ ψ, Aμ → Aμ + ∂μΛ

ϕ ψ U(1) Tc

• UV dimensions  and  of dual operators fixed by  and Δϕ Δψ m2
ϕ m2

ψ



Setup

• Deform the theory by source  of operator dual to  

• Trigger non-trivial RG flow described by black brane solutions with

ϕ(s) ϕ

ds2 = − U(r) dt2 +
dr2

U(r)
+ e2g(r) (dx2 + dy2)

ϕ = ϕ(r), ψ = ψ(r), A = 0

• Complex scalar  non-trivial below ψ Tc



Setup

• Horizon at  withr = 0

U(r) ≈ 4πT r + 𝒪(r2), g(r) ≈ g(0) + 𝒪(r)

ϕ(r) ≈ ϕ(0) + 𝒪(r), ρ(r) ≈ ρ(0) + 𝒪(r)

• UV boundary at  withr = ∞

U(r) ≈ (r + R)2 + ⋯ + g(v) (r + R)−1 + ⋯ g(r) ≈ ln(r + R) + …

ϕ(r) ≈ ϕ(s) (r + R)Δϕ−3 + ⋯ + ϕ(v) (r + R)−Δϕ + ⋯

ρ(r) ≈ ρ(s) (r + R)Δψ−3 + ⋯ρ(v) (r + R)−Δψ + ⋯

• Set ρ(s) = 0



Setup

• In the broken phase useful to redefine  and  

• The Goldstone mode packaged in a gauge invariant 

• Asymptotics close to UV boundary

ψ = ρeiθ Bμ = ∂μθ + q Aμ

Bα = ∂αθ(s) r2Δψ−3 + ⋯ + (∂αδc + q δsα) + ⋯ +
q jα
r

+ ⋯

Source for phase of complex scalar Gauge invariant 
combination of phase and 
source vector

Current



Hydro Perturbations

• At zero frequency/infinite wavelength solutions for  purely thermodynamic 

• Change in chemical potential  and constant external vector field  

• Near the UV boundary

Bα

δμt δμx

Bα = ∂αθ(s) r2Δψ−3 + ⋯ + (∂αδc + q δsα) + ⋯ +
q jα
r

+ ⋯

δB(t)
t = q δμt − q

χQQ

r + R
δμt + ⋯ δB(x)

x = q δμx − q
χJJ

r + R
δμx + ⋯

• Near the horizon

δB(t)
t = q δμt a(0)

t r + 𝒪(r2) δB(x)
x = q δμx a(0)

x + 𝒪(r)



Hydro Perturbations

• Leading term in hydro expansion simply by replacing

δμt → ∂tδc + δst δμx → ∂xδc + δsx

• At leading order

δjt = − χQQ (∂tδc + δst) δjx = − χJJ (∂xδc + δsx)



Hydro Perturbations

• The symplectic current yields the expected dissipative corrections

δjt = − χQQ (δst + ∂tδc) + Ξ ∂t (δst + ∂tδc)
δjx = − χJJ (δsx + ∂xδc) − σd ∂t (δsx + ∂xδc)

σd = τ(0) (a(0)
x )2

• With specific transport coefficients determined by the black hole horizon

Ξ = e2g(0) (τ(0)a(0)
t )2

2q2(ρ(0))2



Near Tc

• Horizon expressions allow us to determine

Ξ ∼ (Tc − T)−1 χJJ ∼ Tc − T

• Near the transition the phase  becomes not well defined 

• Hydro expansion naively breaks down

δc

ω± = ± χJJ

χQQ
k2 −

i
2χ2

QQ
(Ξ χJJ + σd χQQ) k2

• The mode is well behaved

Ξ χJJ ∼ finite



Near Tc

• Diffusive mode of normal phase “jumps” at the phase transition

ℜω

ℑω

ℜω

ℑω

ℜω

ℑω

T → T+
c

T → T−
c T < Tc

• In more complicate setup Arean, Baggioli, Grieninger, Landsteiner



Outlook

• Powerful holographic techniques to extract transport coefficients 

• Understand better the hydro convergence at the phase transition 

• Study inhomogeneous superfluids 

• Finite chemical potential 

• Dissipation at T → 0


