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Spontaneous symmetry breaking: Generalities

A continous symmetry is said to be spontaneously broken
when the ground state has a lower amount of symmetry
than the Hamiltonian/Lagrangian/action of the system itself.

This typically occurs when the system goes through a phase
transition (thermal, quantum) from a disordered state to an
order state: an ‘order parameter’ condenses ≡ obtains a
nonzero vev.

This has a macroscopic manifestation: a new set of gapless
modes appear, the Goldstone bosons. Their number depends
on the number of broken generators and the type of broken
symmetry (internal vs spacetime).

[Beekman, Rademaker & van Wezel, SciPost Lecture Notes 2019]
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Baby example: SSB of U(1)

Consider a complex scalar
Φ = φeiϕ with the following
Mexican hat potential:

V (Φ) = Vo−
1
2m2ΦΦ∗+ λ

2 (ΦΦ∗)2 ,

λ,m2 > 0

[Schmitt, Intro to Superfluidity 2014]

The potential does not depend on the value of the phase:
U(1) symmetry. Below a critical temperature, the system
condenses in a state with a nonzero vev 〈φ〉 = m/

√
λ.

Phase: gapless degree of freedom (flat
direction)

Lϕ = −1
2(∂tϕ)2 + c2

s
2 (~∂ϕ)2
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Baby example: pseudo-SSB of U(1)

Turn on a small, phase-dependent deformation of the potential

V (Φ) = V (|Φ|) + δV (|Φ|, ϕ)

Breaks the U(1) symmetry explicitly:
gaps out the Goldstone.

Acquires a small mass q2
o ∼ ∂2

ϕδV ,
related to the scale of explicit symmetry
breaking (Gell-Mann-Oakes-Renner).

Lϕ = −1
2(∂tϕ)2 + c2

s
2

(
(~∂ϕ)2 + q2

oϕ
2
)

Symmetry breaking scale small
compared to vev: pseudo-Goldstone,
light dof.
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Key point of this talk

At nonzero temperature and including
dissipation, locality fixes the damping
rate of pseudo-Goldstones in terms of the
Goldstone mass q2

o and diffusivity Dϕ, to
leading order in the scale of explicit
symmetry breaking:

Ω = q2
oDϕ

This relation was first uncovered in holographic analyses of
broken symmetry phases: applied holography success!

This applies to a variety of cases and physical systems: U(1)
(superfluid), translations (crystals, density waves), rotations
(nematic phases), QCD in the chiral limit, and likely others we
have not explored yet (pseudo-dilatons...).
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Locality of hydrodynamic equations

At scales large compared to the thermalization scales τth, `th,
interacting systems can be described by hydrodynamics, ie by
the slow relaxation of their conserved densities

∂tna(t, x) +∇ · ja(t, x) = 0
At such scales, the j ’s are fast variables, which relax quickly
in the bath of the n’s. They are in local equilibrium and can
be expanded locally in terms of the conserved densities

ja = αabnb − Dab∇nb + O(∇2)
[Kovtun’12, Glorioso & Liu’18]7
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Locality of hydrodynamic equations

Plugging back in the conservation equations:

∂tn(t, q) + M(q) · n(t, q) = 0

M(q) is automatically local at scales large compared to `th:

M(q`th � 1) = M0 + M1`thq + M2`
2
thq2 + O(`3thq3)
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Locality of hydrodynamic equations: sources

We now turn on external sources for the conserved densities

H0 7→ H(t) = H0 −
∫

ddxδµa(t, x)na(t, x)

The equations of motion change as [Kadanoff & Martin, Chaikin-Lubenski]

∂tn(t, q) + M(q) ·
(
n(t, q)− χ(q) · δµ(t, q)

)
= 0

χ(q) is the matrix of static susceptibilities derived from the
equilibrium thermal free energy W (q)

χab(q) = − δ2W (q)
δµa(q)δµb(−q) , W = − 1

β
log Tre−βH
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Locality of hydrodynamic equations

∂tn(t, q) + M(q) · n(t, q)− M(q) · χ(q) · δµ(t, q) = 0

The static susceptibilities themselves are local at scales larger
than the thermal screening length: M · χ is also local.

In hydrodynamic regime t � τth, x � `th, integrating out
the hydrodynamic modes only source of non-locality.

Eg in an effective action approach, integrating out the modes
gives the generating function in terms of sources only,
matrix-multiplied by the retarded Green’s functions which are
non-local due to the hydrodynamic modes [Crossley, Glorioso &

Liu’15], [Haehl, Loganayagam & Rangamani ‘15].

The hydrodynamic equations of motion with sources on
must be local.
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Locality of hydrodynamic equations: pinning

∂tn(t, q) + M(q) · (n(t, q)− χ(q) · δµ(t, q)) = 0

When a Goldstone mode is present in the spectrum, and a
small symmetry breaking term is turned on,

χ∇ϕ∇ϕ ∼
q2

q2 + q2
o

Locality of M · χ is no longer automatic – restoring it will
impose constraints on transport coefficients (which
generally do not follow from other constraints, eg Onsager
relations or positivity of entropy production).

We have discussed it at the level of eoms, but it is naturally
implemented in the Schwinger-Keldysh construction of
effective actions for hydrodynamics [Crossley, Glorioso & Liu’15],[Hael,

Loganayagam & Rangamani’15].
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Example 1: U(1) symmetry breaking (superfluid)

Consider a system with a global U(1):

∂tn +∇ · j = 0

If the U(1) is spontaneously
broken, a gapless mode ϕ appears
in the spectrum. The free energy
density becomes

f = ns
2 ∇ϕ

2 − δsϕϕ−
1
2χnnδµ

2

The static susceptibilities are

χ(q) '
(
χnn 0
0 1

nsq2

)
.

χϕϕ diverges as q → 0: long-range order.
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Example 1: U(1) symmetry breaking (superfluid)

The j constitutive relation and Josephson relation are

j = ns∇ϕ− Dn∇n + · · · , ϕ̇ = − 1
χnn

n + Dφ∇2ϕ+ · · · ,

so that both matrices of interest are local

M(q) '
(

Dnq2 −nsq2
1
χnn

Dϕq2

)
, M(q)χ(q) '

(
χnnDnq2 −1

1 Dϕ

ns

)
.

The hydrodynamic modes are the well-known second sound:

ω = ±csq −
i
2(Dn + Dϕ)q2

Positivity of dissipation imposes Dn,Dϕ > 0.
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Example 1: U(1) symmetry breaking (superfluid)

Now consider breaking the symmetry
explicitly . The free energy density
becomes

f = ns
2

(
∇ϕ2 + q2

oϕ
2
)
−δsϕϕ−

1
2χnnδµ

2

The static susceptibilities are

χ(q) '

 χnn 0
0 1

ns (q2+ q2
o )

 .

χϕϕ no longer diverges as q → 0.

14



Example 1: U(1) symmetry breaking (superfluid)

H 7→ Ho + δH , [Ho, n] = 0 , δH = g
∫

ddx Oϕ , i [n,O] = O

Integrating out O, the conservation equation changes to

∂tn +∇ · j = − Γ n + nsq2
oϕ

Γ is given by the imaginary part of GR
OO

Γ = 1
χnn

lim
ω→0

1
ω

ImGR
∂tn∂tn = g2

χnn
lim
ω→0

1
ω

ImGR
OO

The second term is given by the real part of GR
OO

nsq2
o = lim

ω→0
ReGR

∂tn∂tn = g2 lim
ω→0

ReGR
OO

This can all be made precise in the SK formalism.
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Example 1: U(1) symmetry breaking (superfluid)

New symmetry breaking term allowed in Josephson equation

ϕ̇ = − Ωϕ − 1
χnn

n + Dφ∇2ϕ+ · · · ,

The matrices appearing in the eoms are now

M(q) '
(

Γ + Dnq2 −ns(q2 + q2
o)

1
χnn

Ω + Dϕq2

)
, ⇒ local

M(q)χ(q) '

 χnn(Γ + Dnq2) −1

1 Ω+Dϕq2

ns (q2+q2
o)

 .
local only if Ω = q2

oDϕ .

Demanding locality is not optional: we did not integrate out
the massive mode.
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Example 1: U(1) symmetry breaking (superfluid)

In general hydro frames, locality will still need to be restored
by fixing Ω.

One specific frame choice is helpful (passing over to
relativistic notation):

uµ∂µϕ = −µ
(no dissipative corrections to the Josephson relation)

Then, it suffices to write dissipative corrections to the current:

Jµ = nuµ + ns
µ

Pµν∂νϕ− χnnDnPµν∂νµ+ χ2
nn
µ

ns
Dϕuµuλ∂λµ

together with
∂µJµ = ns

µ
q2

oϕ− ΓJ t

This is the natural frame we land on in the Schwinger-Keldysh
formulation, which is local by construction all the way to the
hydro cut-off instead of qo.17



Example 1: U(1) symmetry breaking (superfluid)

Ω: damping of the Goldstone due to weak explicit breaking

ω = ±qocs −
i
2
(

Γ + Ω
)

+ O(q3
o)

Fixed by locality in terms of the Goldstone mass and diffusivity

Ω = q2
oDϕ

It has nothing to do with phase relaxation by vortices.

This relation was recently derived in a holographic superfluid
with weak explicit breaking by direct computation [Donos, Kailidis

& Pantelidou, arXiv: 2107.03680]. Also verified independently by [Ammon,

Areán, Baggioli, Gray & Grieninger, arXiv: 2111.10305].
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Example 2: QCD in the chiral limit

In QCD, chiral symmetry is broken by the quark mass, which
gives a small gap to the pions.

A hydrodynamic theory can be written for these soft pions [Son

& Stephanov, arXiv: hep-ph/0204226]. The non-Abelian
U(1)× SUL(2)× SUR(2) is broken to U(1)× SUV (2)
pseudo-spontaneously.

Locality fixes the damping rate of the axial pion in terms of
the pion mass and the pion diffusivity as before (the non-Abelian
character plays no role in linear response).

[Grossi, Soloviev, Teaney & Yan, arXiv: 2005.02885] used positivity of entropy
production to derive this result. This argument naively seems
to fail in the Abelian case due to total derivative ambiguities.
But properly constructing the entropy current can be subtle.
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Example 3: Phases breaking translations spontaneously

The same type of relation also appeared in earlier holographic
works describing the interplay of spontaneous and explicit
breaking of spatial translations, [Amoretti, Areán, Goutéraux & Musso,

arXiv: 1812.08118], [Donos, Martin, Pantelidou & Ziogas, arXiv: 1905.00398] (see also
[Ammon, Baggioli, Jiménez-Alba, arXiv: 1904.05785], [Baggioli and Grieninger, arXiv:

1905.09488], [Donos, Martin, Pantelidou & Ziogas, arXiv: 1906.03132]).

In isotropic 2d crystals, there are two Goldstone modes

fϕ = 1
2(B + G)(∂iϕ

i )2 + G
2 (εij∂iϕj)2 + G

2 q2
oϕ

2
i ,

where B and G are the bulk and shear moduli respectively.
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Example 3: Phases breaking translations spontaneously

For the sake of simplicity in this talk, let’s freeze charge and
energy fluctuations and keep only π‖, π⊥.

Then the relevant eoms are

∂tϕi = −Ωijϕj + v i + Dϕ∂
2
j ϕi + D̃ϕ∂i∂

jϕj ,

The same locality argument as before fixes

GD̃ϕ = BDϕ , Ωij = q2
oDϕδij

consistent with the holographic results.
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Example 3: Phases breaking translations spontaneously

Restoring charge and energy fluctuations does not affect this
result (new terms appear in the currents constitutive relations) but allows
to identify an important phenomenological consequence.

Consider a Galilean-invariant state.

Without Ω, the ac conductivity

σ(ω) =
(

ne2

m

)
−iω

−iω(Γ− iω) + ω2
o
,

ω2
o = G

mnq2
o = c2

s q2
o

which vanishes at ω = 0: insulator.
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Example 3: Phases breaking translations spontaneously

Taking into account damping Ω = q2
oDϕ

σ(ω) =
(

ne2

m

)
Ω− iω

(Ω− iω)(Γ− iω) + ω2
o

σdc = ne2

m
1

Γ + c2
s

Dϕ

The second contribution to the scattering rate is universal and
does not depend on the strength of explicit breaking.

Potentially interesting [Delacrétaz, B.G., Hartnoll & Karlsson’16], [Amoretti,

Areán, B.G. & Musso’18] for the physics of strange metals where
charge density fluctuations now observed [Arpaia & Ghiringhelli’21].
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Example 3: Phases breaking translations spontaneously

ρdc = m
ne2

(
Γ + c2

s
Dϕ

)

Assume now that the diffusivity
saturates a Planckian bound
[Hartnoll’14]:

Dϕ '
c2

s
α

~
kBT

The resistivity receives a T -linear
contribution with a
disorder-independent slope.

ρdc = m
ne2

(
Γ + α

kBT
~

)
ion-irradiated YBCO7,
[Rullier-Albenque et al, PRL’03]

increases disorder without
changing doping.
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Other examples

Wigner crystals in the presence of a large magnetic field
(2DES, GaAs heterostructures). Holographic results in [Donos,

Pantelidou, Ziogas’21], [Amoretti, Areán, Brattan & Martinoia’21].

Nematic phases (spontaneously broken rotations): these are
observed eg in high Tc superconductors. These materials
often also have some intrinsic anisotropy.

Ferromagnets.

Others (eg pseudo-dilatons)?
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Summary

In the hydrodynamic regime, all non-localities are pushed
beyond the hydrodynamic cut-off by construction.

When light degrees of freedom are retained in the effective
description (pseudo-Goldstones), locality is not automatic in
the hydrodynamic equations, depending on the choice of
frame. If so, it must be restored, and this imposes constraints
on transport coefficients.

In this regard, the Schwinger-Keldysh construction is
particularly powerful as locality is automatically built-in.

Thanks!
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