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JT gravity with defects and the Aharonov-Bohm effect

MOTIVATIONS
• In recent years, some exactly solvable systems of quantum gravity in lower
dimension have led to a major breakthrough in the black hole information problem.

• The “island” proposal correctly produced the Page curve of an evaporating
black hole from a low-energy gravity theory:

tPage t

S

• But there is also another important development for quantum gravity theory:
a “new” type of AdS/CFT correspondence including ensemble average.
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AdS/CFT with ensemble average

• Jackiw-Teitelboim (JT) gravity is remarkable, especially when it is defined on
Euclidean negatively curved backgrounds:

I = − S0

2π

[
1
2

∫
M

√
gR+

∫
∂M

√
hK

]
︸ ︷︷ ︸

topological term = S0 χ(M)

−
[

1
2

∫
M

√
gφ(R+ 2)︸ ︷︷ ︸

sets R = −2

+
∫
∂M

√
hφ(K − 1)︸ ︷︷ ︸

gives Schwarzian action

]

• There is a strong evidence that if the partition function is defined as sum over
all higher genus topologies:

〈
Z(β)

〉
= ++ + . . . 

the dual of JT gravity is a random ensemble of some quantum mechanical systems.
[Saad, Shenker & Stanford ’19]
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Genus expansion

• For JT gravity, the physical d.o.f. is localized at the boundary, which is given
by Schwarzian theory.

• The leading topology (Poincare disk) is described by the SL(2,R) Schwarzian
theory, while all higher genus topology is described by the U(1) hyperbolic
Schwarzian theory:

geodesic of 

length �
• Therefore, we can formally write down the genus expansion as

〈Z(β)〉 ' eS0 Zdisk
Sch (β) +

∞∑
g=1

e(1−2g)S0

∫ ∞
0

db b Vg,1(b)Ztrumpet
Sch (β, b)
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Multi-boundaries

• More generically we consider connected n-point functions

〈Z(β1)...Z(βn)〉conn '
∞∑
g=0

Zg,n(β1, ..., βn)
(eS0)2g+n−2

where each component is like

Zg=2,n=3(β1, β2, β3) =

• Again, we can formally write down the decomposition as

Zg,n(β1, · · · , βn) =
∫ ∞

0
b1db · · ·

∫ ∞
0

bndbn Vg,n(b1, ..., bn)

× Ztrumpet
Sch (β1, b1)...Ztrumpet

Sch (βn, bn)
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JT gravity on disk/trumpet

• Let us first study the Poincare disk/trumpet case:

IJT = − 1
2

∫
M

√
g φ(R+ 2) +

∫
∂M

√
hφ(K − 1)

• Variation of φ leads to R = −2, so that the EH Action is reduced to the Euler
characteristic χ.

� �� �
end is a geodesic 

of length �

• The two simplest on-shell geometries are the disk D and the trumpet T (b):

ds2
D = dρ2 + sinh2 ρ dθ2 , (0 ≤ θ < 2π)

ds2
T = dρ2 + cosh2 ρ dτ2 , (0 ≤ τ < b)

The periodicity of τ breaks SL(2,R) → U(1).

� �� �
end is a geodesic 

of length �
• The solution of the dilaton field for each geometry is given by

φD = γD cosh ρ , φT = γT sinh ρ
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Schwarzian action
• On-shell actions are given by the Schwarzian action [Maldacena, Stanford &
Yang ’16]

IdiskSch = − γD
∫ β

0
du

{
tan

(
θ(u)

2

)
, u

}
Itrumpet
Sch = − γT

∫ β

0
du

{
tanh

(
τ(u)

2

)
, u

}
where {

F (u), u
}
≡ F ′′′(u)

F ′(u) −
3
2

(
F ′′(u)
F ′(u)

)2

• Therefore, the partition functions are

Zdisk
Sch (β) =

∫
dµ[θ]

SL(2,R) exp
[
−γ2

∫ β

0
du

(
θ′′2

θ′2
− θ′2

)]

Ztrumpet
Sch (β, b) =

∫
dµ[τ ]
U(1) exp

[
−γ2

∫ β

0
du

(
τ ′′2

τ ′2
+ τ ′2

)]
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Topological Recursion

• We now consider the Weil-Petersson volume Vg,n.

Zg,n(β1, · · · , βn) =
∫ ∞

0
b1db · · ·

∫ ∞
0

bndbn Vg,n(b1, ..., bn)

× Ztrumpet
Sch (β1, b1)...Ztrumpet

Sch (βn, bn)

• It is know that they satisfy a topological recursion relation, which is, in terms
of resolvent, written as [Eynard, ’04] [Mirzakhani, ’07]

Wg,n(z1,

J︷ ︸︸ ︷
z2, . . . , zn) = Res

z→0

{
1

(z2
1 − z2)

1
4y(z)

[
Wg−1,n+1(z,−z, J)

+
′∑

I∪I′=J;h+h′=g
Wh,1+|I|(z, I)Wh′,1+|I′|(−z, I ′)

]}

where W0,1 = 2z y(z) is the input.
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A few solutions

• For JT y(z) = sin(2πz)/4π, and the recursion relation can be solved explicitly:

W0,1 = 2z1
sin(2πz1)

4π , W0,2 = 1
(z1 − z2)2 , W0,3 = 1

z2
1z

2
2z

2
3

W1,1 = 3 + 2π2z2
1

24z4
1

, W2,1 =
(

105
128z10

1
+ 203π2

192z8
1

+ 139π4

192z6
1

+ 169π6

480z4
1

+ 29π8

192z2
1

)
W1,2 = 5(z4

1 + z4
2) + 3z2

1z
2
2 + 4π2(z4

1z
2
2 + z4

2z
2
1) + 2π4z4

1z
4
2

8z6
1z

6
2

• The Weil-Petersson volume Vg,n can be found by

Wg,n(z1, ..., zn) =
∫ ∞

0
db1 b1 e

−b1z1 ...

∫ ∞
0

dbn bn e
−bnzn Vg,n(b1, ..., bn)

Kenta Suzuki | YITP, Kyoto University 9/27



JT gravity with defects and the Aharonov-Bohm effect

Topological expansion of one-hermitian matrix integral

• In fact, the same recursion relation is also satisfied by n-point functions of the
loop operators

Zn(`1, ... , `n) ≡
〈
Tr
(
e−`1H

)
· · ·Tr

(
e−`nH

)〉
in the one-hermitian matrix integral [Eynard, ’04]

Z =
∫
dH e−NTrV (H)

• In the large N limit, this also leads to a genus expansion:

Zn(`1, ... , `n) =
∞∑
g=0

N−2g Zg,n(`1, ... , `n)

• One can check that all Zg,n match with the JT gravity results. Therefore,
JT gravity defined by summing over all higher genus topologies is dual to the
one-hermitian matrix integral!

Kenta Suzuki | YITP, Kyoto University 10/27



JT gravity with defects and the Aharonov-Bohm effect

Trumpet & punctured disk geometries

• The trumpet geometry is related to the punctured disk (i.e. the hyperbolic disk
with a conical defect) by a simple analytical continuation by b → iα:

⇒
conical deficit

angle α

• Also Riemann surfaces with conical singularities naturally arise when we gener-
alize the dilaton potential of JT gravity to some exponential form.
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Outline

1. Deformed JT Gravity

2. Charged Particle Picture

3. Quantum Mechanical System

4. Topological Entropies

5. Conclusions
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1. Deformed JT Gravity

• We study the generalized JT gravity in Euclidean signature (φ0 � φ):
[Maxfield & Turiaci ’20] [Witten ’20]

I = − φ0

2

(∫
M

dx2√gR + 2
∫
∂M

√
hK

)
︸ ︷︷ ︸

Einstein-Hilbert Action

− 1
2

(∫
M

dx2√g
(
φR+W (φ)

)
+ 2

∫
∂M

√
hφb(K − 1)

)
︸ ︷︷ ︸

Modified JT Action

• We consider the following form of the potential:

W (φ) = 2φ + 2ε e−αφ + O(ε2)

• O(ε0) corresponds to the original JT gravity.
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Expansion in ε
• Expanding in ε for the partition function

exp
(
− I
)

= exp
(
− I(0)

)(
1 + ε

∫
d2x1

√
g(x1) e−αφ(x1) + O(ε2)

)
• For O(ε0), variation of φ leads to R = −2, so that the EH Action is reduced
to the Euler characteristic χ: [Figs taken from SSS ’19]

I(0) = − 2πφ0χ(M) − φb

∫
∂M

(K − 1)

• The two simplest on-shell geometries are the disk D and the trumpet T (b):

ϕ

ds2
D = dρ2 + sinh2 ρ dϕ2 , (0 ≤ ϕ < 2π)

ds2
T = dρ2 + cosh2 ρ dϕ2 , (0 ≤ ϕ < b)

• The solution of the dilaton field for each geometry is given by
ϕ

φD = γD cosh ρ , φT = γT sinh ρ
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Order O(ε)

• Pulling the integral over x1 outside of the path integral, the corresponding
action is

I(1) = − φ0

2

(∫
M

R+ 2
∫
∂M

K

)
−
(

1
2

∫
M

φ
(
R+ 2

)
− αφ(x1) +

∫
∂M

φbK

)

• Now the variation of φ leads to R(x) + 2 = 2αδ2(x− x1). Besides the point
x = x1, this is still described by (Euclidean) AdS2, but it has a conical singularity
at x = x1:

ds2
Dα = dρ2 + sinh2 ρ dϕ2 , (0 ≤ ϕ < 2π − α)

and φDα = γDα cosh ρ , so that

I(1) = − (2π − α)φ0χ(M) − φb

∫
∂M

(K − 1)
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Schwarzian action

• We introduce a boundary cutoff at ρ = ρ0 and at the boundary we fix the
metric along the boundary and the value of the dilaton field:

ϕ
∣∣
ρ0

= φb u , with φb = φ(ρ0)

where u is the time of boundary theory.
• The gravitational dynamics solely comes from the boundary term:

Ibdy = −φb
∫
∂M

dϕ
√
g
(
K − 1

)
• If we regard the bulk angular coordinate as a function of the boundary time
ϕ = ϕ(u), evaluating the extrinsic curvature in the ρ0 →∞ limit, one gets the
Schwarzian action [Maldacena, Stanford & Yang ’16]

ISch = −C
∫ β

0
du

{
tan

(
ϕ(u)

2

)
, u

}
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2. Charged Particle Picture
• We can also write the effective actions in the charged particle picture:

I∂M = − q
(

∆ϕχ(M) +AM − LM
)

where we used the Gauss-Bonnet theorem∫
∂M

du
√
g K = ∆ϕχ(M) + AM

with the area and boundary circumference

AM ≡
∫
M

d2x
√
g , LM ≡

∫
∂M

dϕ
√
g

and
β = C lim

ρ0→∞

LM
φb

, q ≡ φb
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Constant background magnetic field (for D)

• The area termAD = 2π(cosh ρ0−1) can be expressed in terms the corresponding
gauge field AD = (cosh ρ− 1)dϕ as [Kitaev & Suh ’18] [Yang ’18]

q AD = q

∫
∂D

AD = q

∫
D

BD

where BD = dAD = sinh ρ dρ ∧ dϕ.

• Therefore BD has the constant × volume form and indeed interpreted as a
constant magnetic field.

• It is also useful to express

AD = −
∫
D

d2x
√
g
R

2 = −
∫
D

dω

where ω is the spin-connection.
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Aharonov-Bohm gauge field (for Dα)

• In order to see the topological contribution for Dα, it is useful to rescale
ϕ→ ζ ϕ, so that

ds̃2 = dρ2 + ζ2 sinh2 ρ dϕ2 , (0 ≤ ϕ < 2π) ,
(
ζ = 2π − α

2π

)

• In terms of the new coordinates, the effective action reads

IDα ⊃ −qαADα + qαLDα = −qÃDα + qL̃Dα − q
∫

A(α)

where the pure gauge Aharonov-Bohm (AB) gauge field is

A(α) = − αζ

2π
(

cosh ρ0 − 1− sinh ρ0
)
dϕ
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3. Quantum Mechanical System
• We need to study the charged particle with a condition: LM = constant.
Inserting a delta function imposing this condition into the path-integral, relativistic
line-element is reduced to the non-relativistic one. [Kitaev & Suh ’18] [Yang ’18]

LD = 1
2
(
ρ̇2 + sinh2 ρ ϕ̇2) + q cosh ρϕ̇

HD = 1
2

[
p2
ρ + 1

sinh2 ρ

(
pϕ − iq cosh ρ

)2
]

• The propagator is obtained by the Schrödinger equation(
∂u + Ĥ

)
G(x, ϕ;x′, ϕ′;u) = 0

and the partition function is given by the vacuum diagram

ZD = A−1
D

∫
D

dx2
√
g(x)G(x, ϕ;x, ϕ;β) =

∫ ∞
0

ds e−β
s2
2 ρ(s)
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Partition function for D

• It is convenient to define the resolvent by

G(x, ϕ;x′, ϕ′;u) =
∫
dE e−Eu Π(x, ϕ;x′, ϕ′;E)

where b = iq, 2E = j(1− j) and x = tanh2 ρ
2 [Comtet ’87] [Kitaev ’17]

Π(x, ϕ; 0, ϕ′;E) =
∣∣abj,b∣∣2 e−ib(ϕ−ϕ′)(1− x)j 2F1(j − b, j + b; 1; x)

• Hence the exact spectral density is given by [Kitaev & Suh ’18] [Yang ’18]

ρ(s) = s sinh(2πs)
cos(2πb) + cosh(2πs)

• The Schwarzian limit is defined by setting b = iq and taking q → ∞ with s
fixed. In this limit the spectral density becomes

ρ(s) ≈ 2s sinh(2πs)
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Partition function for D(α)
• The effect of the AB field is just to shift the angular momentum [Lisovyy ’07]

HD(α) = 1
2

[
p2
ρ + 1

sinh2 ρ

(
pϕ + ξ − iq cosh ρ

)2
]

where
ξ = − iq2π

∮
∂M

A(α)

• The exact spectral density is given by

ρ(ξ)(s, b) ∝ 1
s

[
s sinh 2πs+ ( 1

2 − b+ ξ) sin 2π(b− ξ)
cosh 2πs+ cos 2π(b− ξ)

−
s sinh 2πs+ ( 1

2 − b+ ξ) sin 2πb
cosh 2πs+ cos 2πb

]
and the Schwarzian limit is

ρ(α)(s) ≈ cosh
[
(2π − α)s

]
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4. Topological Entropies
• Entanglement entropy can be computed by the Euclidean replica trick

S ≡ − ∂n
(
Zn
Zn1

)∣∣∣∣
n=1

with the n-th Rényi partition function Zn.

• For disk D, the Rényi partition function is just Zn(β) = Z1(nβ) so that

Zn =
∫ ∞

0
ds s e−nβ

s2
2 ρ(s)

This leads to the entanglement entropy for D [Lin ’18]

SD =
∫ ∞

0
ds s ps

[
− log ps + log(dimR)

]
where

ps = Z−1
1 dimR e−β

s2
2 , dimR = ρ(s)
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Entanglement entropy for D(α)

• For punctured disk D(α), the spectral density also depends on n:

Z(AB)
n =

∫ ∞
0

ds s e−nβα
s2
2 ρ(α)

n (s)

where
ρ(α)
n (s) ∝ n

2j − 1

∫ 1

0
dv
(
vj−1−b I+(v) − vj−1+b I−(v)

)
with j = is+ 1/2 and

I±(v) = 2n− (1− v)(n± 1± 2ξ)
2(1− v)2 ± v±

ξ
n

(1− v∓ 1
n )(1− v)
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Topological Contribution

• This leads to the entanglement entropy (in the Schwarzian limit q →∞)

S(AB) = S1 + S2 =
∫ ∞

0
ds s ps

[
− log ps + log(dimR)

]
+ 1 + ζ

2

where now
ps = Z−1

1 dimR e−βα
s2
2 , dimR = ρ

(α)
1 (s)

• S1 contribution in the semi-classical limit

S1 = log cosh
[
(2π − α)s

]
s= 2π−α

β

= (2π − α)2

β
= (1− β∂β) logZDα(β)

agrees with the Bekenstein-Hawking entropy. [Lin ’18]

• On the other hand, the constant contribution from S2 does not depend on
β and is therefore a global IR contribution which becomes dominant at low
temperatures.
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5. Conclusions

• We saw JT gravity defined by summing over all higher genus topologies is dual
to the one-hermitian matrix integral.

• We formulated JT gravity on a punctured disk as the ordinary quantum
mechanics of a charged particle on a hyperbolic disk in the presence of a constant
background magnetic field plus a pure gauge Aharonov-Bohm field.

• This picture allowed us to exactly (not only in the Schwarzian limit) calculate
the propagators and spectral density of the corresponding gravitational dynamics.

• We also computed the entanglement entropies for the Hartle-Hawking state
and found an extra topological contribution that becomes dominant at low
temperatures.
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Thank you!


