Fingerprints of quantum criticality in locally resolved transport
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What are the dynamics of electrons in strange metals?




There’s universal Planckian transport, with
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[Bruin et al (2013)]



What is the mechanism for T-linear resistivity? Does it change
from one material to the next?

> classical phonon scattering (above T' > Tpg?)
» Planckian non-quasiparticle transport?
> something else?

The bulk resistivity is given by

o(k,w) = GJny(k ,w)

Perhaps o(k,w) tells apart dlfferent mechanisms?



@ A constriction geometry is an indirect (though experimentally
easy) way to probe the k-dependence in the conductivity.

AY

We can either determine the conductance G = 1/R, or look at
local current patterns.



A physically consistent flow pattern (with uncertain boundary
conditions) can be found through the following algorithm:

Ji(z) = /deUij(fL’ —Y)E;(y),

oij(x —y) =F.T. of o(k,w = 0).
Ej(z) = B + B/ (x)

EM™(2) = — / A%y (064360 y + 0i(z — )] LW ED (b 0).

inside
This is numerically efficient to implement: only need to invert a
matrix at grid points inside the constriction!
[Guo, Ilseven, Falkovich, Levitov; 1607.07269]
[Huang, Lucas; 2105.01075]



@ As a toy example, let’s discuss what happens in a isotropic metal
with a possible viscous hydrodynamic regime:

aij(k) = <5z’j - k,;?) (k)

1
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» ohmic/diffusive: k < (ﬁeeﬁmr)_lﬂz

(k)

D(k) ~ k°
> viscous: (leolinr) V2 < k < 0}
2(k) ~ k72

> ballistic: /! < k:
D(k) ~ k71



The spatial flow of current through the constriction illustrates
the differing regimes.
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NV center magnetometry can be used to probe current profiles.

Inverting Biot-Savart we can infer J from B, with spatial
resolution of ~ 150 nm.
[Jenkins et al; 2002.05065]



We observe Ohmic transport at 298 K, imaging current flows
through a constriction in monolayer graphene.

experiment simulation
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[Jenkins et al; 2002.05065]



At low temperatures, we appear to see the onset of viscous flow
in monolayer graphene. But systematic errors make analysis of
images subtle.
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[Jenkins et al; 2002.05065]



What would happen in a quantum critical theory?

» hydrodynamic: k < T (inverse Planckian length scale)
> quantum critical: k> T

What does (conformal, z = 1) criticality suggest about o(k)?

GY g, (kp,w) = Criv/k2 — w?,

so for k > 0,
Y(k)crr = 0.

Finite temperature resolution is important!



Holographic models suggest that
(k) ~e T (k>T)

i.e. spectral weight is exponentially suppressed at high frequency.
We therefore want to push “all” current through the smallest &
mode we can, which suggests:

™
kmin =

and we will see a sinusoidal current profile.
[Huang, Lucas; 2105.01075]



We have numerically computed X'(k) in the
AdS,-Einstein-Maxwell theory:

1
S:/d41} <R+6—4F2>,

1 dr?
2 _ 2 2 2 _
ds® = 2 <—f(7“)dt + m +dz* + dy > , A=g(r)dt.
The computation of X'(k) requires looking for solutions of the
form

5Ay ~ ay(r)eikx—iwt, (Sgty _ hty(r)eikx—iwt

which can be handled using master fields.
[Edalati, Jottar, Leigh; 1001.0779]



At charge neutrality, we see an ohmic-to-quantum critical

crossover:
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[Huang, Lucas; 2105.01075]



At finite density, we see a viscous-to-quantum critical crossover.
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[Huang, Lucas; 2105.01075]



The charge neutral quantum critical crossover is consistent with
the experimental data from graphene.

o data 207 K

7y |— 1T, = 005
7| % data 128K

0.6 ! —fit 1/ Ty, = 011
= =quantum critical

0.7

We used an effective Planckian length scale
o Chop
Pl ~ Y

with C = 5 our sole fit parameter, which is compatible with
another experiment. [Gallagher et al (2019)]



Our quantum critical prediction also holds for free Dirac
fermions, suggesting it is a robust prediction of criticality and is

not sensitive to holography:
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[Huang, Lucas; 2105.01075]



In the absence of imaging probes, we can also measure the
conductance of the slit:

Gaig ~ Z(k ~w™).
This heuristic argument predicts:

w ohmic
G w! ballistic
: ~Y
slit w? viscous

exp[—¢p;/w] quantum critical

and is (up to logarithms) compatible with numerics.
[Huang, Lucas; 2105.01075]



Take home messages:

> New experiments can image local transport phenomena. Can
these distinguish between theories of T-linear resistivity?

> Quantum criticality seems to have a clear signature in local
transport.
» QOur formalism can easily be generalized to other geometries

and (more importantly) other models (holographic, field
theoretic, kinetic, etc...).



