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(QUEST FOR PARTITION FUNCTION
OF STRONGLY COUPLED QFT'S

** Object Z that contain (pretty much) all information: usually very

difficult to compute

¥ Sometimes it can be expressed in a simple form e.g. in those with

holographic dual

Zlg.a] = exp [—ngv(G,A)]
GlaNg’AlaNa

*®* For IR physics, one useful way is EFT:
(educatedly) guess what is Z using global symmetry

o I will talk about one of such EFT — hydrodynamics

2



HEURISTIC EXPLANATION OF HYDRO-LIMIT

*® All operators decays much faster

than scale of interest (except conserved currents)

1/ tdecay
Other
operators

Large

** No branch cut near at small w, k or at late time

All 1-pt functions at late time ~ exp(—t/t,,.,,)

- Theories with same global symmetries. Separation

Conserved
Currents

can be describe by the same equations!

- Intimately link to (bosonic sector of) holography

Policastro, Son & Starinets ‘01, ‘02; ... ; Bhattacharyya et. al ‘0S,...



HYDRODYNAMICS AS A SURPRISINGLY GOOD EF'T

For a partition function which Z[g,a]l =Z[g+ & 8,4+ A «a+ di]

Tl
[ d,.J" =0
Consv. of “number”

Write T and j# in terms of some “proxies” {T,u”, u} and background

Consv. of energy and momentum

fields {g,,,a,} then do gradient expansion

( )

T" = (e + p)uu” + pg"” + O(9),
J' = put + O(0)

- Relativistic ideal fluid

o Only inputs: global symmetries, macroscopic constraints &

osradient expansion

o Amazingly reliable for strongly interacting QFT

e.g. quark-gluon plasma, graphene



ENCAPSULATE SYMMETRIES OF QFT'S

** Ordinary symmetry : Zla,] =Zla,+ 0,4]

Or when anomalous Z[a, + d,A] = Z[a] X (U(1)phase)

** 1-form symmetry : Z[b, ] = Z[b,, + 20, A ]

% (even) higher-form symmetry Zlcy, 4]

- Product between ordinary and higher-form

Or extension of ordinary by higher-form symmetry

o Stuffs that aren’t even obey group axioms
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DREAMS...

** Ordinary, higher-form, higher-group global symmetry exist

o Can one always build hydrodynamics of higher-form, higher-

group or any symmetry as an IR EFTs for strong coupling?

- Observable and universal prediction?

** Holographic dual ?

o Guide & Testing ground for hydrodynamics’ prediction

- Template to understand global symmetry in top-down models



DREAMS...AND PLAN

** Simple examples of QFTs with 1-form U(1)
and 2-group built out of O-form U(1) and 1-form U(1)

** Building hydrodynamics for 2-group global symmetry

** Minimalist holographic dual to 2-group hydrodynamics



EXAMPLE: 1-FORM U(1) SYMMETRY IN QED,

¥ Maxwell theory has U(1),x U(1),, global symmetry associated with

Wilson and ‘t Hooft line
d%F=0 [d*]zﬂhd)
Consv. of Electric flux Consv. of Magnetic flux

*® Coupled this to, say, electrically charged scalar

, | dxJ=dF=0
Cor-.. of Electric n..- Consv. of Magnetic flux

** Partition function suitable for EFT is Z[b] = Z[b + dA]

_ 1 1 _
Z18,,,b,,1 ~ <exp —[d“x <5T’“"’gﬂy + Eﬂwbﬂy> >




EXAMPLE: 1-FORM U(1) SYMMETRY IN QED,

*®* You may want to think about this in terms of gauging

€

Z= J@[A]ZU(I)[g,A]eXp <ﬁ JdA A *dA)

*®* But this is inefficient in many ways
-~ Maxwell Eqn break gradient expansion d x F [0%] ~ % jU(l)[OO]
o Classically: assume factorisation of partition function
- Rely on gauge symmetry, which is not a real symmetry
~ Gauge symmetry not manifested in Hilbert space

© Nobody would want to do this for SU(N) colour symmetry



EXAMPLE: 2-GROUP SYMMETRY IN QEDy,

** Consider matter sector with one mixed anomaly between two U(1)s

e . B W A ™)
d* (j;)=0 d * (j,) = k(*xJ) A (da,)
| d% () = k(day) A (day) —  dxs=0 )

Guacing U(1),

® After gauging, full theory is not anomalous.

To get desired Ward identities, we need Invariant under

1 s a— a+di R
- _ 4 U — JHv
Zla,b,,] <exp [ Jd x <J Gt 57 buv>]> | b— b+dA+ xi(da)

** Many more examples (mostly 1-form symmetry is (centre) Z, )

- QED & QCD-ish : Cordova, Dumitrescu, Intriligator ‘18-...; Benini, Cordova & Hsin ‘18; Hsin & Lam ‘20
- 6d: Saeman ‘19; Del Zotto & Ohmori ‘20,...
- Topological-ish: Kapustin & Thorngren ‘13; Barkeshli et. al ‘14; Tachikawa’ 17; Delcamp & Tiwari ‘18,...



(COHERENT) 2-GROUP GLOBAL SYMMETRY
PHYSICAL EXAMPLE(S)

*® Abrikosov-Nielsen-Olesen string with in superconductor

QED with a certain anomaly
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2d massless fermion is
anomalous

** These zero modes affect macroscopic descriptions

Total system is
anomaly free



(SERIOUSLY )OVERSIMPLIFIED INTRO TO 2-GROUP

é )

K COHSidGI’ Z[Clﬂ, b/w] Where a— a+dAa
b — b+ dA\ + ki(da)

\ J

** This means that the “physical” flux is [H =db —kxa A da]

or in group cohomology langauge

Where the class of 4 R Ajk

AAAT =1 -
B:GXGxXG — l-form o I IS
A Ak
Characterized by integer « J Fez i
Mo
N\ _J
r N

*®* For more see

Bjj — Biy + Byjy + By = P(Ayj, Ajp Ay)

- Benini, Cordova & Hsin ‘ 18

- Cordova’s talk at strings 2020 J (db—kaAda) € Z
- Baez & Lauda ‘03; Baez & Huerta ‘10 My




(ANOTHER)OVERSIMPLIFIED INTRO TO 2-GROUP

** In the usual charge Q[g] = JdVﬂ Jj#[g] we have Ul[g] = exp(iQ[g])

J o
8‘ \<ﬁ.& ! j is d 2 Vs
Ulg1Ulg,] = Ulg,l _ N\
%\Z \<2$ i \/
Jiz2a

ASSOCIATIVITY

** But this doesn’t happen in 2-group
J I Is

2 U Ulg21Ulgs] # Ulg1Ulgo3]
122 / = P81, & &3] Ulg11U1gx3]
Sum
J2 s
= \@\/
CODIM 2 SURFACE . __ S>> —7
Ji22



BUILDING HYDRODYNAMICS -1

*® For ordinary symmetry logZ = p(T, u) + O(0) St% oribal
———t—
which gives Q
(J") = pu”* + 0(0) Bl=uwll
(™) = (e + pyuu + pg + O(0) —
And automatically gives ( 1/T ~ size of thermal cycle)
dp = sdT + p,du,,, r D

i, /T ~ In Pellsi? ~ J'aﬂu”df

e+p=sT+u,p,

~ background U(1) holonomy

N y
** Alternatively, demand no entropy production

oM =pu:” — <ﬁ> THY — <&>]ﬂ JKKMRY :12
T T BBBJMS ‘12

Haehl, Loganayagamd& Rangamani ‘15

= su*

Get same constraints when 0ﬂs” = ()
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DECONSTRUCTING HYDRODYNAMICS -1

1
® Take S, = —J\/ ~GF_F% with A, = =(A,,A,) and take

A, (r— o0,x) = a,(x) gb(rx)-J dr'A (r', x) /

** Choosing radial gauge

** Regularity condition & (r;,,x) = 0 left residual gauge transformation

¢ — ¢+ c(x')

JdrA
A, > d,=A,+0,0,
A —->d,. =0

Nickel & Son ‘10
de Boer, Heller, Pinzani-Forkeeva ‘15, ‘18
Glorioso, Crossley & Liu ‘18

The only invariant quantity is p, = A (r = o)
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BUILDING HYDRODYNAMICS -2

** For 1-form symmetry log Z = p(T, i) + O(0)
which gives
(JH') = pp(u#h? — u*h*) + 6(0)
(T*) = (¢ + p)utu® + pgh* — w,p,h*h* + O(0)

And automatically gives

p lines per unit area

dp = sdT + p,du,,, each with chem. pot. u
e+p=sT+u,p, C 1/T ~ size of thermal cycle)
f )
wy, ~ In Pexp <1J b) ~ J(bﬂyu”h”)dza
T2
L ~ Wilson surface Anile ‘S9

Emparan et. al ‘09

Schubring ‘14;

Grozdanov, Hofman & Igbal ‘16
Armas & Jain ‘17-...; Glorioso & Son ‘18

* Consistent with (no) entropy production constraint



RELATIONS TO IDEAL MHD

*® To related to traditional MHD, take UM = (1,Vi), ht = ((),Bi/ Pp)

1. | @
*® The electric field isE?’ = Eel]kjjk = — (VX B)’j " IDEAL OHM’S LAW

E+VXB=L—>O

O

** Ward identity d,J* = 0, encodes

/ﬂ?@BEo] @tBi+(V><E)i=(D

GAUSS’ LAW 1
S i = —u? ~
Assuming p = ...+ 2/"19 so that u,/p, ~ const

&%« FARADAY’S LAW

Ec;(aﬁ V-0)Vi=—0dp+ ((0xB) xB)ﬂ

=0

‘%"- EULER + LORENTZ FORCE + AMPERE’S LAW J=VXB —/}ff)



DECONSTRUCTING HYDRODYNAMICS -2

1 Hofman & Iqbal ‘18
o Take Sbulk — ZJ' V _G(dB)abc(dB)abc Grozdanov & NP ‘18-‘19

Grozdanov, Lucas & NP ‘19

with B,, = (B,,,B,,) and take

ru?

Bﬂy(r —> ACMtOff’ X) ~/ b,ul/(x) ¢ﬂ(r9 -x) — [r d?‘ B’W(I”,)C)

** Choosing radial gauge

B/w — %’W = B/w + (dgo)/w :

[dx” @y~ de’“‘Jdr%’m
Bm — %’m =0

** Regularity condition &% (r;,x) = 0 left residual gauge transtormation

COO — 600 , ¢l — qol _|_ Cl(xj) Glorioso & Son ‘19
Landry ‘20
The only invariant quantity is p,h, ~ B, (r = Ny X)
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BUILDING HYDRODYNAMICS FOR 2-GROUP

** For 2-group symmetry logZ = p(T, u,, ) + ©(0). But there is a problem

ﬂbNJ b But now J b_>J‘ b_|_,e[ A(da)

, a—a+di
( Invariant under b — b+ dA ) chem pot transform like
anomalous partition function

* To allow finite “string” density

Dubovsky, Hui & Nicolis ‘11;
Jensen, Loganayagam & Yarom ‘12

Hp ~ [ b+ SWZ SWZ ~ K[dzx [/’t(eaﬂuaaﬂ)] Haehl, Logan & Rangamani ‘13
I Delacretaz & Glorioso ‘20

*®* Generated terms that ensure no entropy production

(TMY = ... = 2xu’p,u“h?, (J*) = ... = 2ku, p,h*



Pp lines per unit area

A

WHAT DOES THIS MEANS e, [

*®* New terms implies that there is h#

equilibrium currents

<j'u>h,u - = 2K/’lapb P, particles

per unit volume

- Unlike usual anomalous hydro, it occurs at ideal level (dimension independent)

o Related to fermion zero modes in microscopic picture

** New modes and modified speed of sound

( )

4 )
,\2 A2 2 Kpb
K b KR b bPb
wl( Napi\/v“(“ap))qz’ i- % M T N

E+DP E+Dp E+p

G J G J

- No need to perform gauging in hydrodynamic setup (break gradient expansion)

o 2-group can exist in any dimensions



HOLOGRAPHIC DUAL

Cordova, Dumitrescu & Intrilligator ‘18

grav

(A= 00=a,0 ) [ Byr— Auyypr) ~ by () )
G(r, x) = der’Ar(r’, X) @ (r,x) = der’ B, (r,x)+ ¢(dA),,
oo = | araen | wen =] arm A

** Choosing radial gauge A - A+4+dl B — B+ dA+ kA(dA)
A, —~>d,=A,+0,0,
B, — %’W =B, + qb(dA)W + (d(p)w

** Simplest holographic action S, = [dSX\/—G((dA)2 + (dB — kA A dA)z)

* After regularity &(r,) = 0, %, (r,) = 0, there is still residual

¢ = ¢+ c(x)
®», = @, + 5ﬂiCﬂ(xj) — ke(x) A p

O-form and 1-form chem pot.



HOLOGRAPHIC DUAL

*® Simplest holographic action §, = JdSX\/—G((alA)2 + (dB — kA A dA)2>

grav

2 Even in equilibrium and probe limit u, /i, < T around (J*) = p, 6"

V—G(d&i)”—Zz%( il )&iZ=CONST

V=G

—G(dﬂ)rZ—Zk( il )gt=o
v =

A, #0, WHEN A, #0 = [(j”)hﬂ = — 2l<,uapb]

More on Ward identities and holographic dictionary
see DeWolfe & Higginbotham 2010.06594



HOLOGRAPHIC DUAL

** Simplest holographic action S, = [dSX\/—G((a’A)2 + (dB — kA A dA)2>

grav

o Compute Longitudinal QNM
5°S

. . .y - grav
Quainormal modes = poles in (j#j*) =
oa,oa,
K = kpo/r}
0.3, - |
* L] \\Q\.
e < e K =1
0.2 \~\. o \'\.
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COMPARISON WITH ANOMALOUS FLUID

% Something obvious (THY = ... = 2Kku2p,u“h?, (J*) = ... = 2ku, p,h*

~ Anomaly induced transport occur at o 2-group transport always occur at Oth order
n — 1 derivative of 2n-dim QFT

o Magnetic field treated perturbatively o Magnetic field is at Oth order in
as a (1st derivative) source derivative expansion and is dynamical
- 1 sound + 2 diffusion in higher dim - 2 sounds (longitudinal + transverse)
1 sound +1 diffusion + 1 (chiral)sound +1 (chiral) sound + 1 diffusion
in 1+1d

- For some equation of states: can 2 No assumptions on EoS

coupled to Maxwell fields at a cost of

gradient expansions



SUMMARY AND OUTLOOK

** Expanding hydrodynamic framework to (at least one of)higher-structure

- Hydrodynamics of everything(gapless)?

** New phenomena similar to anomaly induced transports
- Gauging of others mixed anomaly?
- Bypass process of gauging?

Recently see: Hidaka, Nitta & Yonekura ‘20;
< More higher-group/structure? Brennan & Cordova ‘20;

Tanizaki & Unsal ‘19, Brauner ‘20,...

THANK YOU VERY MUCH!



