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=⇒ Landau-Lifshitz, vol5, Thermodynamic inequalities:

cv
s

≡ T

s

(
∂s

∂T

)

v

> 0

i.e., a condition of the equilibrium thermal stability

=⇒ According to gauge/string theory correspondence, black holes/black

branes in equilibrium are dual to thermal equilibrium states of the

corresponding boundary holographic theory

=⇒ Black holes/branes are stable if their QNMs are stable:

w(q) =
w(q)

2πT
, q =

k

2πT
, Im [w] > 0



=⇒ In early 2000’ Gubser and Mitra in a series of paper formulated a

correlated stability conjecture:

A black brane thermodynamic instability correlates with its dynamical

instability

• translational invariance of the horizon

• Schwarzschild black holes are stable

• dynamical instability means the presence of the unstable QNMs



=⇒ In one direction the conjecture is trivial (AB, hep-th/0507275):

thermodynamic instability =⇒ dynamical instability

Indeed:

s

cv
= c2s =⇒ cv < 0 ⇔ c2s < 0 =⇒ cs is purely imaginary

and the sound mode, i.e., the scalar channel black brane QNM,

w(q) = ±cs q−−2πi
η

s

(
2

3
+

ζ

2η

)

q2 +O(q3)

=⇒
Im[w] ∝ ±Im[cs] < 0

for some sign and for small enough q.

=⇒ Have been checked explicitly in a number of examples in holography

(also later in this talk)



=⇒ In the other direction the conjecture is simply wrong (a recent very

explicit case AB, arXiv:2011.11509)

thermodynamic stability ✘
✘❳
❳=⇒ dynamical stability

=⇒ Example: Holographic conformal order



• It is easy to construct holographic models in asymptotically AdSd+2

with, say Z2 global symmetry, such that

F
T d+1

= − const2
︸ ︷︷ ︸

∝ c

×







1, 〈O〉 = 0 =⇒ Z2 is unbroken;

κ, 〈O〉 6= 0 =⇒ Z2 is broken

where 0 < κ < 1 is a constant.

• the thermodynamics and the hydrodynamics of both phases is identical,

i.e., that of the CFTd+1

• There is a (non-hydrodynamic) branch of the scalar sector QNMs that

renders the symmetry broken phase perturbatively unstable, i.e., there is

QNM with

Im[w(q = 0)] > 0



=⇒ In this talk I will try to ’fix’ the instabilities of the extended horizons by

compactifying the space of holographic CFTd+1

R
d −→ L2 Sd , K ≡ 1

L2

Motivation:

• fix instabilities in the hydrodynamic sector, models with c2s < 0; example:

Klebanov-Strassler black branes/holes

• fix instabilities in the non-hydrodynamic sector; example:

holographic conformal order on Sd



Outline

• General formalism for the QNMs

• an application: N = 2∗ model



=⇒ Most of you are familiar with the formalism of Kovtun-Starinets for

computing the QNMs of black branes:

• form gauge invariant fluctuations (wrt residual diffeomorphisms

preserving the black-brane metric ansatz)

tensor sector/scalar channel (helicity h = 2) [shear viscosity and universality]

vector sector/shear channel (helicity h = 1) [diffusion]

scalar sector/sound channel (helicity h = 0) [bulk viscosity]

• derive EOM, impose the incoming-wave bc, (typically numerically) solve

them

• interpret results as in various talks on HoloTube



=⇒ Advantages of Kovtun-Starinets:

• intuitive and straightforward

• hydro regime w → 0 and q → 0 can often be treated analytically

=⇒ Disadvantages of Kovtun-Starinets:

• not suitable for Sd, as we need

• difficult to prove general stability theorems (in alternative method a theorem can be

proven that there can never be instabilities in h = 2 and h = 1 (no bulk gauge fields) sectors )

• the difficulty (above) is due to the fact that in Kovtun-Starinets QNM

eqs both w and q enter in a highly nonlinear fashion



=⇒ The world before Kovtun-Starinets, Kodama-Ishibashi,

hep-th/0305147:

A master equation for gravitational perturbations of maximally

symmetric black holes in higher dimensions

=⇒ A very relevant generalization to Einstein-Maxwell-single scalar system

in space-time with Λ 6= 0 and K 6= 0 by Jansen-Rostworowski-Rutkowski

(JRR):

Master equations and stability of Einstein−Maxwell − scalar

black holes



=⇒ Advantages of JRR:

• what we need!

• as I review in a sec, master equations are nonlinear in q, but quadratic w

— this was leveraged to prove the theorem that no instabilities in h = 2

and h = 1 sectors of the QNMs

=⇒ Disadvantages of JRR/shortcomings:

• need to generalize to systems with many scalars

• (I believe) impossible to do take analytic hydrodynamic limit — the

h = 2 sector equations are singular in the limit q = 0.

• all the right words, clear presentation, and extremely many typos, pretty

much forced me to rederive everything



=⇒ KI-JRR formalism (as in appendix of my forthcoming paper):

• An effective action:

S5 =

∫

M5

d3+2ξ
√−g

[

R −
p

∑

j=1

ηj (∂φj)
2 − V ({φj})

]

arbitrary number of scalars j = 1 · · · p, constants ηj , arbitrary potential V

• black hole/black brane background

ds25 = −c21 dt2 + c22 dX2
3,K + c23 dr2

where ci = ci(r), φj = φj(r) and

dX2
3,K =







dx2 ≡ dx2
1 + dx2

2 + dx2
3 , K = 0 , planar

dΩ2
(3) , K > 0 , spherical

dH2
(3) , K < 0 , hyperbolic

explicitly:

dX2
3,K =

dx2

(1−Kx2)
+ (1−Kx2)

[
dy2

(1−Ky2)
+ (1−Ky2) dz2

]



=⇒ We organize all the gauge invariant fluctuations into three sets of master

scalars of different helicity h:

• the helicity h = 2 set, {Φ(2)
2 };

• the helicity h = 1 set, {Φ(1)
2 };

• the helicity h = 0 set, {Φ(0)
2 ,Φ

(0)
(0,j)}, j = 1 · · · p.

=⇒ Any master scalar Φ
(h)
s (s = 2 or s = (0, j) and h = {0, 1, 2}) is assumed

to have the following dependence:

Φ(h)
s (ξ) = F (h)

s (t, r) S(X3,K)

where

∆K
︸︷︷︸

Laplacian on X3,K

S + k2 S = 0

planar horizon : S = eikx , k = |k| is any
S3 horizon : k2 = Kℓ(ℓ+ 2) , ℓ = 0, 1, 2, · · ·



• Each of the master scalars satisfies a coupled master equation

Φ(h)
s −W

(h)
s,s′(r, k) Φ

(h)
s′ = 0

where is the wave operator on the full D = 5 metric

• Note:

w dependence comes only from the , thus master equations are only

quadratic in w

potentials are symmetric (even with multiple scalars!)

W
(h)
s,s′ = W

(h)
s′,s

explicit expressions in my paper, but for now:

hxr =
c22c

2
3c1
D

p
∑

j=1

{√
ηj
2
φ′

j F
(0)
(0,j)

}

+

(

−3
√
3c1c2c

′
2c

2
3K

kk̃ D

+
c2c

2
3 k

2
√
3c′2D k̃

(

c23c1k
2 + 3(c′2)

2c1 + 3c′1c
′

2c2

))

F
(0)
2 +

√
3c22

2 kk̃
∂rF

(0)
2



• where

k̃2 ≡ K

(

ℓ(ℓ+ 2)− 3

)

=⇒
kk̃ = 0 ⇐⇒ ℓ = 0 or ℓ = 1

The reason for the ℓ = {0, 1} singularity is because in this cases the

metric fluctuations are pure gauge; must (and can) be treated separately

• Can prove (with math rigor), even with multiple scalars, that all QNMs

in h = 2 and h = 1 sectors have

Im[w] < 0

i.e., , are stable



=⇒ Onto application:

S5 =

∫

M5

d3+2ξ
√−g

[

R −
p

∑

j=1

ηj (∂φj)
2 − V ({φj})

]

=⇒ A holographic dual to N = 4 SYM with a bosonic mass term, aka

N = 2∗ model:

•

p = 1

•

φ1 ≡ α , η1 = 12

•

V = −e−4α − 2 e2α

•

α =
8m2

3
ρ2 ln ρ+ · · · , c2 =

1

2ρ
+ · · ·
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=⇒ Can you trust my numerics?
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=⇒ Magenta point hydrodynamics:
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=⇒ We are now going to follow the flow of the QNM from m = 0 to our

magenta point

•
m2

T 2 = 0, i.e., AdS5 QNMs

• s = 0 at q = 0 (left) and s = 2 at q = 1
100 (right)
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• s = 0 at q = 0
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=⇒ We now turn on K 6= 0, focusing on magenta points.



• ℓ = 0 (solid curves) and ℓ = 1 (dashed curves), fixed m2
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=⇒ unstable
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• ℓ = 0 QNMs, fixed m2
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=⇒ What about s = 0 AdS5 ’excited’ QNM?
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• ℓ = 2 QNMs, fixed m2
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=⇒ unstable

0 ≤ K

m2
. 0.052

=⇒ Note 2 sub-branches of the ℓ = 2 QNMs: from the magenta points, and

from the ’hydrodynamic’ point



=⇒ arbitrarily higher ℓ’s are also unstable (the instability is driven by the

hydrodynamic point), but are stabilized sooner:
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Conclusions

• Extended horizons with ’crumpling’ instability can be stabilized by

positively curving them

• For small K, the instability is driven by ’deformed’ hydrodynamic sound

mode; implying that all higher ℓ modes are unstable

0 ≤ K

m2
≤ Kunstable

ℓ=2

m2

• Hidden (at K = 0) instability appears in ℓ = 0 sector once K is large

enough, and it can be cured again with sufficiently large K:

Kstable
ℓ=0

m2
≤ K

m2
≤ Kunstable

ℓ=0

m2



• No instability in ℓ = 1 sector. (Is this always the case?)

• Stability range (is it always present?):

Kunstable
ℓ=2 ≤ K ≤ Kstable

ℓ=0

Future

• Compactified conformal order

• Klebanov-Strassler black holes

• Explore universal(?) aspects of stabilization


