A Mellin-Barnes Approach to Scattering in de Sitter

Charlotte Sleight

Durham University

1906.12302 C.S. 1907.01143, 2007.09993 C.S. and M. Taronna + to appear.

Scattering Amplitudes

... are the bridge between theory and experiment.

Scattering Amplitudes

... provide a theoretical laboratory to test our theories.

General Relativity

$$\mathcal{L}_{EH}\left[g\right] = \frac{1}{16\pi G_N} \sqrt{-g}R$$

Scattering of gravitons, $g_{\mu\nu} = \eta_{\mu\nu} + \sqrt{8\pi G_N} h_{\mu\nu}$:

UV divergent!

Scattering Amplitudes

Challenge: Quest for physics beyond the SM and GR

Access to theoretical and experimental laboratories is limited:

• Computing scattering amplitudes is **hard**.

• At high energies we **lack** experimental data.

Challenge: Classify the set of consistent theories

Scattering Amplitudes: Bootstrap Approach

Challenge: Carve out space the of consistent theories

Collect theoretical data points by imposing basic physical criteria:

Lorentz invariance

• Unitarity $SS^{\dagger} = 1$

The AdS-CFT Correspondence

Maldacena 1997

Quantum Gravity in anti-de Sitter space

Conformal Field Theory on the boundary at infinity

The AdS-CFT Correspondence

Maldacena 1997

Observables in Quantum Gravity in anti-de Sitter space Conformal Field Theory on the boundary at infinity

Scattering in AdS

The AdS-CFT Correspondence

Maldacena 1997

Observables in Quantum Gravity in anti-de Sitter space Conformal Field Theory on the boundary at infinity

Defined non-perturbatively by:

- Conformal symmetry
- Unitarity
- Consistent Operator
 Product Expansion

Scattering in AdS

Scattering in anti-de Sitter

... in AdS we have a pretty good understanding.

Can we adapt extend this understanding and techniques beyond the relative security of AdS space?

Scattering in de Sitter

Scattering in de Sitter

Cosmological Collider Physics

Many groups, e.g.: Chen and Wang 2009, Baumann and Green 2011, Noumi, Yamaguchi and Yokoyama 2013, Arkani-Hamed and Maldacena 2015; Arkani-Hamed, Baumann, Lee and Pimentel 2018, ...

Task: Classify the imprints of new degrees of freedom

The Cosmological Bootstrap:

Maldacena 2015; Arkani-Hamed, Benincasa, Mcleod, Parisi, Postnikov, Vergu 2017-; Arkani-Hamed, Baumann, Duaso-Pueyo, Jen and Pajer 2020; Pajer, David Stefanyszyn, Jakub Supeł 2020; Goodhew, Jazayeri, Pajer 2020; Céspedes, Davis, Melville 2020;

Scattering in de Sitter

the bulk time integral follows the in-in contour

Outline

Part I: Can we place boundary correlators in (A)dS on a similar footing?

Mellin-Barnes representation in momentum space

cf. Mellin-Barnes representation of the Gauss Hypergeometric function

$${}_{2}F_{1}\left(a,b;c;z\right) = \frac{\Gamma\left(c\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \int_{-i\infty}^{i\infty} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(b+s\right)\Gamma\left(-s\right)}{\Gamma\left(c+s\right)} \left(-z\right)^{s}$$

Part II: Applications.

- Contact diagrams
- Exchanges

Constraints on interactions of massless spinning particles

The AdS-CFT Dictionary

Maldacena 1997

Quantum Gravity in anti-de Sitter space

boundary value

 $Z_{\rm QG \ AdS} \left[\varphi \to \bar{\varphi} \right]$

Conformal Field Theory

source \downarrow $Z_{
m CFT}[ar{arphi}]$

Elementary field $\, \varphi \,$

spin J, mass $m^2 R^2 = -(\Delta_+ \Delta_- + J)$

 $\Delta_+ + \Delta_- = d$, $\Delta_+ \geq \Delta_-$

spin J, scaling dimension Δ_+

The AdS-CFT Dictionary

XFORD

AdS - CFT DICTIONARY

Klebanov Polyakov Witten Maldacena 1997

Quantum Gravity in anti-de Sitter space

boundary value

 $Z_{\rm QG \ AdS} \left[\varphi \to \bar{\varphi} \right]$

Elementary field $\, \varphi \,$

spin J, mass $m^2 R^2 = -(\Delta_+ \Delta_- + J)$

 $\Delta_+ + \Delta_- = d \ , \ \Delta_+ \geq \Delta_-$

n-point scattering of particles φ_i

\downarrow

source

Conformal **Field Theory**

 $Z_{
m CFT}\left[\bar{\varphi}
ight]$

Local operator $\ensuremath{\mathcal{O}}$

spin J, scaling dimension Δ_+

n-point correlator of operators \mathcal{O}_i

E.g. 3pt contact diagram, spins J1-J2-J3:

 $k_1 + k_2 + k_3 = 0$

$$s_1 + s_2 + s_3 = \frac{d + 2(J_1 + J_2 + J_3)}{4}$$

Propagators in EAdS and dS take a universal form, constructed from 3 building blocks. In EAdS we have:

Harmonic function, $\left(
abla^2 - m^2
ight) \Omega_{\Delta,J} = 0$

 $\omega_{D/N}(\mathbf{u}, \mathbf{\bar{u}})$ project onto Dirichlet/Neumann boundary conditions:

$$\begin{split} m^2 R^2 &= - \left(\Delta_+ \Delta_- + J \right) \\ \Delta_+ + \Delta_- &= d \ , \ \Delta_+ \geq \Delta_- \end{split}$$

$$\omega_{D/N}\left(\boldsymbol{u},\bar{\boldsymbol{u}}\right) = \frac{1}{2}\sin\left(\pi\left(\boldsymbol{u}+\frac{1}{2}\left(\Delta_{\mp}-\frac{d}{2}\right)\right)\right)\sin\left(\pi\left(\bar{\boldsymbol{u}}+\frac{1}{2}\left(\Delta_{\mp}-\frac{d}{2}\right)\right)\right)$$

Recall the general solution to the wave equation near the boundary of EAdS, $z \rightarrow 0$:

$$\begin{split} \varphi\left(z,\mathbf{k}\right) &= \alpha \, z^{\Delta_{+}} \left[\mathcal{O}_{\Delta_{+}}\left(\mathbf{k}\right) + O\left(z^{2}\right)\right] + \beta \, z^{\Delta_{-}} \left[\mathcal{O}_{\Delta_{-}}\left(\mathbf{k}\right) + O\left(z^{2}\right)\right] \\ & \\ \text{Dirichlet boundary condition,} \\ & \text{selected by } \omega_{D}\left(u,\bar{u}\right) \\ \end{split} \quad \text{Neumann boundary condition,} \\ & \text{selected by } \omega_{N}\left(u,\bar{u}\right) \\ \end{split}$$

$$ds^{2} = \left(\frac{R_{\rm AdS}}{z}\right)^{2} \left(dz^{2} + d\mathbf{x}^{2}\right)$$

Propagators in EAdS and dS take a universal form, constructed from 3 building blocks. In EAdS we have:

Harmonic function, $\left(
abla^2 - m^2
ight) \Omega_{\Delta,J} = 0$

 $\omega_{D/N}(\mathbf{u}, \mathbf{\bar{u}})$ project onto Dirichlet/Neumann boundary conditions:

 $m^2 R^2 = - \left(\Delta_+ \Delta_- + J \right)$ $\Delta_+ + \Delta_- = d \ , \ \Delta_+ \ge \Delta_-$

$$\omega_{D/N}\left(\boldsymbol{u},\bar{\boldsymbol{u}}\right) = \frac{1}{2}\sin\left(\pi\left(\boldsymbol{u}+\frac{1}{2}\left(\Delta_{\mp}-\frac{d}{2}\right)\right)\right)\sin\left(\pi\left(\bar{\boldsymbol{u}}+\frac{1}{2}\left(\Delta_{\mp}-\frac{d}{2}\right)\right)\right)$$

On shell, the factor $\csc(\pi(\mathbf{u} + \bar{\mathbf{u}}))$ gets cancelled:

i.e. $\csc(\pi(\mathbf{u} + \bar{\mathbf{u}}))$ is generated by the source term in the propagator equation.

Propagators in EAdS and dS take a universal form, constructed from 3 building blocks. In dS, for the $\pm \hat{\pm}$ branch of the in-in contour, we have:

Recall the general solution to the wave equation near the boundary of dS, $\eta \to 0$

$$\varphi\left(\eta,\mathbf{k}\right) = \alpha_{\pm \pm} \left(-\eta\right)^{\Delta_{+}} \left[\mathcal{O}_{\Delta_{+}}\left(\mathbf{k}\right) + O\left(\eta^{2}\right)\right] + \beta_{\pm \pm} \left(-\eta\right)^{\Delta_{-}} \left[\mathcal{O}_{\Delta_{-}}\left(\mathbf{k}\right) + O\left(\eta^{2}\right)\right]$$

Selected by $\omega_{D}\left(u,\bar{u}\right)$ Selected by $\omega_{N}\left(u,\bar{u}\right)$

$$ds^{2} = \left(\frac{R_{\rm dS}}{\eta}\right)^{2} \left(-d\eta^{2} + d\mathbf{x}^{2}\right)$$

For the Bunch Davies (Euclidean) vacuum we have:

 $\alpha_{\pm\pm} = \beta_{\mp\mp} = \csc\left(\pi\left(\frac{d}{2} - \Delta_{\pm}\right)\right) \exp\left[-\left(\Delta_{\pm} - \frac{d}{2}\right)\pi i\right], \qquad \alpha_{\pm\mp} = -\beta_{\mp\pm} = \pm\csc\left(\pi\left(\frac{d}{2} - \Delta_{\pm}\right)\right) \exp\left[\left(\Delta_{\pm} - \frac{d}{2}\right)\pi i\right]$

Propagators in EAdS and dS take a universal form, constructed from 3 building blocks. In dS, for the $\pm \hat{\pm}$ branch of the in-in contour, we have:

dS and EAdS Harmonic functions differ by a simple phase:

Also the bulk-boundary propagators:

$$\begin{bmatrix} \mathbf{s}, \mathbf{k} \\ \Delta, J \end{bmatrix}_{\pm} = \exp\left[\mp\left(\mathbf{s} + \frac{1}{2}\left(\Delta - \frac{d}{2}\right)\right)\pi i\right] \underbrace{\Delta, J}_{\pm}$$

3pt Contact

3pt Contact

Contact amplitudes in dS can be obtained directly from their EAdS counterparts:

Above we simply used that:

3pt Contact

The full de Sitter 3pt function is the sum from each branch of the in-in contour:

 $\mathbf{s_1}, \, \mathbf{k}_1$

The full de Sitter 3pt function is the sum from each branch of the in-in contour:

The full de Sitter Spt function is the sum from each branch of the in-in contour:

de Sitter contact diagrams can vanish when the sine factor has a zero!

The full de Sitter Spt function is the sum from each branch of the in-in contour:

de Sitter contact diagrams can vanish when the sine factor has a zero!

E.g. conformally coupled scalars for d=3 $(\Delta_i = 1, J_i = 0)$:

Shown to follow from unitarity by Goodhew, Jazayeri & Pajer - [Cosmological Optical Theorem, 2020]

Exchanges

Exchanges are straightforwardly reconstructed from their on-shell part:

Factorisation and Conformal Symmetry:

"Conformal Partial Wave", single valued Eigenfunction of Conformal Casimirs

Mack, Dobrev, Petkova, Petrova, Todorov, 1974-7

 $m^2 R_{\rm AdS}^2 = -\left(\Delta_+ \Delta_- + J\right)$

Factorisation and Conformal Symmetry:

"Conformal Partial Wave", single valued Eigenfunction of Conformal Casimirs

Mack, Dobrev, Petkova, Petrova, Todorov, 1974-7

 $m^2 R^2_{\Delta dS} = -\left(\Delta_+ \Delta_- + J\right)$

e.g. Leonhardt, Manvelyan, Rühl 2003; Costa, Gonçalves, Penedones 2014

Factorisation and Conformal Symmetry:

Mack, Dobrev, Petkova, Petrova, Todorov, 1974-7

 $m^2 R_{\rm AdS}^2 = -\left(\Delta_+ \Delta_- + J\right)$

e.g. Leonhardt, Manvelyan, Rühl 2003; Costa, Gonçalves, Penedones 2014

This duality is made manifest by the "split representation" of $\Omega_{\Delta,J}$

Factorisation, Conformal Symmetry and boundary conditions:

Factorisation and Conformal Symmetry

Factorisation, Conformal Symmetry and boundary conditions:

Factorisation and Conformal Symmetry

The full exchange is reconstructed via:

 $m^2 R_{\rm AdS}^2 = -\left(\Delta_+ \Delta_- + J\right)$

Factorisation and Conformal Symmetry:

Factorisation and Conformal Symmetry:

Factorisation, Conformal Symmetry and boundary conditions:

For the Bunch Davies (Euclidean) vacuum:

$$\alpha_{\pm\pm} = \beta_{\mp\mp} = \csc\left(\pi\left(\frac{d}{2} - \Delta_{\pm}\right)\right) \exp\left[-\left(\Delta_{\pm} - \frac{d}{2}\right)\pi i\right], \qquad \alpha_{\pm\mp} = -\beta_{\mp\pm} = \pm\csc\left(\pi\left(\frac{d}{2} - \Delta_{\pm}\right)\right) \exp\left[\left(\Delta_{\pm} - \frac{d}{2}\right)\pi i\right]$$

Factorisation, Conformal Symmetry and boundary conditions:

Factorisation + Conformal Symmetry

The full exchange is reconstructed via:

For the Bunch Davies (Euclidean) vacuum:

$$\alpha_{\pm\pm} = \beta_{\mp\mp} = \csc\left(\pi\left(\frac{d}{2} - \Delta_{\pm}\right)\right) \exp\left[-\left(\Delta_{\pm} - \frac{d}{2}\right)\pi i\right], \qquad \alpha_{\pm\mp} = -\beta_{\mp\pm} = \pm\csc\left(\pi\left(\frac{d}{2} - \Delta_{\pm}\right)\right) \exp\left[\left(\Delta_{\pm} - \frac{d}{2}\right)\pi i\right]$$

dS exchange in the Bunch-Davies vacuum is a linear combination of AdS exchanges:

Factorisation, Conformal Symmetry and boundary conditions:

Factorisation + Conformal Symmetry

The bridge to the EAdS exchanges is via:

For the Bunch Davies (Euclidean) vacuum:

$$\alpha_{\pm\pm} = \beta_{\mp\mp} = \csc\left(\pi\left(\frac{d}{2} - \Delta_{\pm}\right)\right) \exp\left[-\left(\Delta_{\pm} - \frac{d}{2}\right)\pi i\right], \qquad \alpha_{\pm\mp} = -\beta_{\mp\pm} = \pm\csc\left(\pi\left(\frac{d}{2} - \Delta_{\pm}\right)\right) \exp\left[\left(\Delta_{\pm} - \frac{d}{2}\right)\pi i\right]$$

dS exchange in the Bunch-Davies vacuum is a linear combination of AdS exchanges:

This identity can be used to directly import techniques and results from AdS to dS!

Some small steps in 2007.09993 [hep-th]:

AdS exchanges are basic solutions to the crossing equation (associativity of operator algebra)

- → dS exchanges are also solutions to crossing. Their decomposition into conformal blocks (in all channels) is inherited from those of AdS exchanges (which are known)
- Mellin amplitudes for dS correlators. For AdS, Mellin amplitudes have been an instrumental tool owing to striking parallels with scattering amplitudes — Mack 2009, Penedones 2010

The imprints of a particle exchange are particularly sharp in the limit $|\mathbf{k}_I| \ll |\mathbf{k}_j|$ (OPE limit)

The expansion in this limit is generated by residues of poles in u, \bar{u} . If all the fields are scalars:

integration contour

$$\begin{array}{c} \mathbf{k}_{1} \quad \mathbf{k}_{2} \quad \mathbf{k}_{3} \quad \mathbf{k}_{4} \\ \hline \mathbf{\Delta}_{1,0} \quad \mathbf{\Delta}_{2,0} \quad \Delta_{3,0} \quad \mathbf{k}_{4} \\ \hline \mathbf{k}_{I} \mid \ll |\mathbf{k}_{I}| \ll |\mathbf{k}_{I}| \\ \approx |\mathbf{k}_{I}| \ll |\mathbf{k}_{I}| \\ \approx |\mathbf{k}_{I}| \\ \approx$$

External conformally coupled/massless scalars: Arkani-Hamed and Maldacena 2015; Arkani-Hamed, Baumann, Lee and Pimentel 2018

 \mathbf{x}_3

 \bullet **x**₄

The imprints of a particle exchange are particularly sharp in the limit $|\mathbf{k}_I| \ll |\mathbf{k}_j|$ (OPE limit)

The expansion in this limit is generated by residues of poles in u, \bar{u} . If all the fields are scalars:

 \mathbf{x}_3

 \bullet **x**₄

The imprints of a particle exchange are particularly sharp in the limit $|\mathbf{k}_I| \ll |\mathbf{k}_j|$ (OPE limit)

The expansion in this limit is generated by residues of poles in u, \bar{u} . If all the fields are scalars:

The imprints of a particle exchange are particularly sharp in the limit $|\mathbf{k}_I| \ll |\mathbf{k}_j|$ (OPE limit)

The expansion in this limit is generated by residues of poles in u, \bar{u} . If the exchanged field has spin J:

 \mathbf{x}_3

 \mathbf{x}_4

The imprints of a particle exchange are particularly sharp in the limit $|\mathbf{k}_I| \ll |\mathbf{k}_j|$ (OPE limit)

The expansion in this limit is generated by residues of poles in u, \bar{u} . If the exchanged field has spin J:

Toy model: Cubic coupling of a massless spin-J field to scalars.

 $\Delta_3^+ = d - 2 + J$

Decomposition into helicities m = 0, 1, ..., J:

Toy model: Cubic coupling of a massless spin-J field to scalars.

 $\Delta_3^+ = d - 2 + J$

Recall that bulk contact singularities are encoded in Dirac delta functions in the external Mellin variables.

For the helicity-m component we have:

Toy model: Cubic coupling of a massless spin-J field to scalars.

 $\Delta_3^+ = d - 2 + J$

Recall that bulk contact singularities are encoded in Dirac delta functions in the external Mellin variables.

Gauge invariance requires that for the lower helicity components m < J we must have:

(Consistent with Berends, Burgers and van Dam 1986)

Toy model: Cubic coupling of a massless spin-J field to scalars.

 $\Delta_2^+ = d - 2 + J$

Recall that bulk contact singularities are encoded in Dirac delta functions in the external Mellin variables.

Gauge invariance requires that for the lower helicity components m < J we *must have*:

A non-trivial Ward-Takahashi identity is generated by the finite number of poles that satisfy:

$$\frac{d+2J}{4} - (J-m) - s_1 - s_2 - s_3 = 0$$

which are: $s_1 = \pm \frac{1}{2} \left(\Delta - \frac{d}{2} \right) - n_1, \qquad s_2 = \mp \frac{1}{2} \left(\Delta - \frac{d}{2} \right) - n_2, \qquad s_3 = \frac{1}{2} \left(\Delta_3^+ - \frac{d}{2} \right) - n_3, \qquad n_i \in \mathbb{N}$

with
$$(n_1 + n_2 + n_3) = (J - 1 - m)$$

Toy model: Cubic coupling of a massless spin-J field to scalars.

 $\Delta_3^+ = d - 2 + J$

Recall that bulk contact singularities are encoded in Dirac delta functions in the external Mellin variables.

Gauge invariance requires that for the lower helicity components m < J we must have:

A non-trivial Ward-Takahashi identity is generated by the finite number of poles that satisfy:

$$\frac{d+2J}{4} - (J-m) - s_1 - s_2 - s_3 = 0$$
For example:
$$\begin{bmatrix} \mathbf{k}_1 & \mathbf{k}_2 & \mathbf{k}_3 \\ \hline \Delta, 0 & \Delta_3^{\dagger}, J \neq \mathbf{k}_4 \end{bmatrix} \sim (\xi \cdot \mathbf{k}_{12})^{J-1} \langle \mathcal{O}_{\Delta} (\mathbf{k}_1) \mathcal{O}_{\Delta} (-\mathbf{k}_1) \rangle - (\xi \cdot \mathbf{k}_{12})^{J-1} \langle \mathcal{O}_{\Delta} (\mathbf{k}_2) \mathcal{O}_{\Delta} (-\mathbf{k}_2) \rangle$$
where $\xi \cdot \xi = 0$, $\xi \cdot \mathbf{k}_3 = 0$

J > 2: $g_2 = g_3 = g_4 = 0$, no consistent coupling (in local theories)

cf. Weinberg soft theorem in flat space!

Summary

Plenty of diverse directions for the future!

Higher points and Loops. Nice parallel with generalised unitarity methods/Cutkosky rules:

- Bootstrap of Euclidean CFTs dual to dS physics?
- Celestial Amplitudes?

Back up slides

Contact Amplitudes

AdS 3pt contact amplitude of generic scalars

$$\sum_{s_{3}}^{s_{1}} \sum_{\Delta_{2},0}^{s_{1}} \sum_{s_{2}}^{s_{3}} \left(\frac{d}{4} - (s_{1} + s_{2} + s_{3}) \right) \prod_{j=1}^{3} \Gamma\left(s_{j} + \frac{i\nu_{j}}{2}\right) \Gamma\left(s_{j} - \frac{i\nu_{j}}{2}\right) \left(\frac{k_{j}}{2}\right)^{-2s_{j} + i\nu_{j}}$$

bulk integration external legs
$$m_{j}^{2}R^{2} = \Delta_{j} (\Delta_{j} - d)$$
$$\Delta_{j} = \frac{d}{2} + i\nu_{j}$$

The connection to the bulk is manifest!

Bulk-boundary propagator in Poincaré coordinates:

$$\mathrm{d}s^2 = R^2 \frac{\mathrm{d}z^2 + \mathrm{d}\mathbf{y}^2}{z^2}$$

$$\int_{-i\infty}^{\Delta,0} = z^{\frac{d}{2}} \left(\frac{k}{2}\right)^{i\nu} K_{i\nu}\left(zk\right) = \int_{-i\infty}^{i\infty} \frac{\mathrm{d}s}{2\pi i} z^{\frac{d}{2}-2s} \Gamma\left(s+\frac{i\nu}{2}\right) \Gamma\left(s-\frac{i\nu}{2}\right) \left(\frac{k}{2}\right)^{-2s+i\nu}$$
Modified Bessel function

of the second kind

Bulk integration is encoded in a Dirac delta function:

$$\delta\left(\frac{d}{2} - 2\left(s_1 + s_2 + s_3\right)\right) = \lim_{z_0 \to 0} \int_{z_0}^{\infty} \frac{dz}{z^{d+1}} z^{\sum_{j=1}^{3} \left(\frac{d}{2} - 2s_j\right)}$$

 The sum of the Mellin variables is thus conserved: $s_1 + s_2 + s_3 = \frac{d}{4}$

The Mellin-Barnes representation above captures the full analytic structure of the boundary correlators.

cf. Mellin-Barnes representation of the Gauss Hypergeometric function

$${}_{2}F_{1}\left(a,b;c;z\right) = \frac{\Gamma\left(c\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \int_{-i\infty}^{i\infty} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(b+s\right)\Gamma\left(-s\right)}{\Gamma\left(c+s\right)} \left(-z\right)^{s}$$

Useful to establish:

- Identities and Transformation formulas
- Asymptotic Expansions
- Resolution of Singularities

The Mellin-Barnes representation above captures the full analytic structure of the boundary correlators.

cf. Mellin-Barnes representation of the Gauss Hypergeometric function

$${}_{2}F_{1}\left(a,b;c;z\right) = \frac{\Gamma\left(c\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \int_{-i\infty}^{i\infty} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(b+s\right)\Gamma\left(-s\right)}{\Gamma\left(c+s\right)} \left(-z\right)^{s} \stackrel{c=b}{=} \left(1-z\right)^{-a} \int_{-i\infty}^{a} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(b+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \stackrel{c=b}{=} \left(1-z\right)^{-a} \int_{-i\infty}^{a} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \frac{ds}{2\pi i} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \frac{ds}{2\pi i} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \frac{ds}{2\pi i} \frac{ds}{2\pi$$

For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.

e.g. massless spin-J exchange between conformally coupled scalars:

$$\underbrace{\mathbf{k}_{1} \quad \mathbf{k}_{2} \quad \mathbf{k}_{3} \quad \mathbf{k}_{4}}_{\text{belicity-J}} \propto (2\pi)^{3} \, \delta^{(3)} \left(\sum_{i=1}^{4} \mathbf{k}_{i}\right) \frac{1}{(E_{L})^{J} \left(E_{R}\right)^{J} \left(E_{T}\right)^{2J-1}} \left[\sum_{n=0}^{J-1} c_{n} \left(\left(|\mathbf{k}_{1}| + |\mathbf{k}_{2}|\right) \left(|\mathbf{k}_{3}| + |\mathbf{k}_{4}|\right) + |\mathbf{k}_{I}|^{2}\right)^{J-1-n} \left(|\mathbf{k}_{I}| E_{T}\right)^{n}\right] \underbrace{\mathbf{L}_{J}}_{\text{contact terms}}$$

cf. corresponding amplitude in (d+1)-dimensional flat space:

$$k_{2}$$

$$E_{L}$$

$$E_{R}$$

$$= (2\pi) \,\delta(E_{T}) \,(2\pi)^{3} \,\delta^{(3)} (\sum_{i=1}^{4} \mathbf{k}_{i}) \,\frac{1}{s} \,\Xi_{J}$$

$$E_{T} = |\mathbf{k}_{1}| + |\mathbf{k}_{2}| + |\mathbf{k}_{3}| + |\mathbf{k}_{4}|$$

$$E_{L} = |\mathbf{k}_{1}| + |\mathbf{k}_{2}| + |\mathbf{k}_{I}|, \quad E_{R} = |\mathbf{k}_{I}| + |\mathbf{k}_{3}| + |\mathbf{k}_{4}|$$

The Mellin-Barnes representation above captures the full analytic structure of the boundary correlators.

cf. Mellin-Barnes representation of the Gauss Hypergeometric function

$${}_{2}F_{1}\left(a,b;c;z\right) = \frac{\Gamma\left(c\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \int_{-i\infty}^{i\infty} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(b+s\right)\Gamma\left(-s\right)}{\Gamma\left(c+s\right)} \left(-z\right)^{s} \stackrel{c=b}{=} (1-z)^{-a} \int_{-i\infty}^{a} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \stackrel{c=b}{=} (1-z)^{-a} \int_{-i\infty}^{a} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \frac{ds}{2\pi i} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \frac{ds}{2\pi i} \frac{ds}{$$

For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.

e.g. massless spin-J exchange between conformally coupled scalars:

The Mellin-Barnes representation above captures the full analytic structure of the boundary correlators.

cf. Mellin-Barnes representation of the Gauss Hypergeometric function

 k_2

$${}_{2}F_{1}\left(a,b;c;z\right) = \frac{\Gamma\left(c\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \int_{-i\infty}^{i\infty} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(b+s\right)\Gamma\left(-s\right)}{\Gamma\left(c+s\right)} \left(-z\right)^{s} \stackrel{c=b}{=} (1-z)^{-a} \int_{-i\infty}^{a} \frac{ds}{2\pi i} \frac{\Gamma\left(a+s\right)\Gamma\left(a+s\right)}{\Gamma\left(a+s\right)} \left(-z\right)^{s} \left(-z$$

For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.

e.g. massless spin-J exchange between conformally coupled scalars:

$$\begin{array}{c}
\overset{\mathbf{k}_{1}}{\overbrace{}} \overset{\mathbf{k}_{2}}{\overbrace{}} \overset{\mathbf{k}_{3}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \\
\overset{\mathbf{k}_{2}}{\overbrace{}} \overset{\mathbf{k}_{3}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \\
\overset{\mathbf{k}_{3}}{\overbrace{}} \overset{\mathbf{k}_{3}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}} \overset{\mathbf{k}_{4}} \overset{\mathbf{k}_{4}} \overset{\mathbf{k}_{4}}{\overbrace{}} \overset{\mathbf{k}_{4}} \overset{\mathbf{k}$$

$$E_{E_{L}} \times \frac{1}{(E_{T})^{\text{power}}} = (2\pi)^{3} \delta^{(3)} (\sum_{i=1}^{4} \mathbf{k}_{i}) \frac{\Xi_{J}}{\mathbf{s}} \times \frac{1}{(E_{T})^{2J-1}}$$

$$(d+1)-\text{dim. null momentum: } k_{i} = (|\mathbf{k}_{i}|, \mathbf{k}_{i})$$

$$E_{T} = |\mathbf{k}_{1}| + |\mathbf{k}_{2}| + |\mathbf{k}_{3}| + |\mathbf{k}_{4}|$$

$$E_{L} = |\mathbf{k}_{1}| + |\mathbf{k}_{2}| + |\mathbf{k}_{I}|, \quad E_{R} = |\mathbf{k}_{I}| + |\mathbf{k}_{3}| + |\mathbf{k}_{4}|$$

For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.

e.g. 4pt exchange in Yang-Mills theory

$$\int_{A} \int_{B} \int_{C} \int_{D} \int_{ABE} \int_{ECD} (2\pi)^{3} \delta^{(3)} (\sum_{i=1}^{4} \mathbf{k}_{i}) \times \frac{1}{|\mathbf{k}_{I}| E_{L} E_{R} E_{T}} \times (|\mathbf{k}_{I}| + E_{T}) \times \mathsf{p}_{+}^{\mathrm{YM}} (\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{I}; \xi_{1}, \xi_{2}, D_{\xi}) \mathsf{p}_{-}^{\mathrm{YM}} (-\mathbf{k}_{I}, \mathbf{k}_{3}, \mathbf{k}_{4}; \xi, \xi_{3}, \xi_{4})$$

$$contraction of the 3pt tensorial structures$$

$$Flat limit \qquad E_{T} \rightarrow 0$$

$$f_{ABE} f_{ECD} (2\pi)^{3} \delta^{(3)} (\sum_{i=1}^{4} \mathbf{k}_{i}) \frac{1}{\mathsf{s}} \times \int_{\xi_{2}, k_{2}}^{\xi_{1}, k_{1}} \int_{\xi_{2}, k_{2}}^{\xi_{3}, k_{3}} \int_{\xi_{4}, k_{4}}^{\xi_{3}, k_{3}}$$

The highest helicity component is simple and given by the 3pt Yang-Mills amplitude in flat space:

$$\mathsf{p}_{\pm}^{\mathrm{YM}}\left(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{I};\xi_{1},\xi_{2},\xi\right)\Big|_{\lambda=\pm1} = -i\left[\left(\xi_{1}\cdot\mathbf{k}_{2}\right)\left(\xi_{2}\cdot\xi\right) + \left(\xi_{2}\cdot\mathbf{k}_{I}\right)\left(\xi\cdot\xi_{1}\right) + \left(\xi\cdot\mathbf{k}_{1}\right)\left(\xi_{1}\cdot\xi_{2}\right)\right] = \sum_{\substack{\xi_{1},k_{1}\\\xi_{2},k_{2}\\\xi_{2},k_{2}}}^{\xi_{1},k_{1}}$$

For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.

e.g. 4pt exchange in Yang-Mills theory

$$\frac{J_A \quad J_B \quad J_C \quad J_D}{\int_{ABE} \int_{BE} \int_{BE} \int_{BE} \int_{BE} \int_{BE} \int_{BE} \int_{BE} \int_{BE} \int_{ABE} \int_{$$

e.g. 4pt exchange in Gravity

$$\frac{T}{\kappa} \frac{T}{\kappa} \frac{T}$$

The double-copy structure of flat scattering amplitudes is encoded in dS correlators:

$$\mathsf{p}_{\pm}^{\mathrm{GR}}\left(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{I};\xi_{1},\xi_{2},\xi\right)\Big|_{\lambda=\pm2}=\left(\mathsf{p}_{\pm}^{\mathrm{YM}}\left(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{I};\xi_{1},\xi_{2},\xi\right)\Big|_{\lambda=\pm1}\right)^{2}$$