
A Mellin-Barnes Approach to 
Scattering in de Sitter

Charlotte Sleight
Durham University

1906.12302 C.S.
1907.01143, 2007.09993 C.S. and M. Taronna
+ to appear.



Scattering Amplitudes

… are the bridge between theory and experiment.



Scattering Amplitudes

General Relativity

Tree 1-loop 2-loop

UV divergent!

…provide a theoretical laboratory to test our theories.

Scattering of gravitons, :



Scattering Amplitudes

Challenge: Classify the set of consistent theories

Access to theoretical and experimental laboratories is limited: 

Computing scattering amplitudes is hard.

At high energies we lack experimental data.

Challenge: Quest for physics beyond the SM and GR 



Scattering Amplitudes: Bootstrap Approach

Challenge: Carve out space the of consistent theories

Collect theoretical data points by imposing basic physical criteria:

Lorentz invariance

Locality

Unitarity



time

=Quantum Gravity 
in anti-de Sitter space

Conformal Field Theory 
on the boundary at infinity

QG in AdS 

Maldacena 1997

CFT on the
boundary

The AdS-CFT Correspondence



The AdS-CFT Correspondence

Observables in Correlation functions in the
Quantum Gravity 

in anti-de Sitter space
Conformal Field Theory 

on the boundary at infinity=

Maldacena 1997

time

Scattering in AdS



The AdS-CFT Correspondence

Observables in Correlation functions in the

Scattering in AdS

Quantum Gravity 
in anti-de Sitter space

Conformal Field Theory 
on the boundary at infinity=

Maldacena 1997

time

Conformal symmetry

Unitarity

Consistent Operator 
Product Expansion

Defined non-perturbatively by:

?!
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Scattering in anti-de Sitter
…in AdS we have a pretty good understanding.

Can we adapt extend this understanding and techniques 
beyond the relative security of AdS space?

Conformal 
boundary
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Scattering in de Sitter

n+1 n+2 n+3 n+4 m

Conformal boundary 
at future infinity

Conformal boundary 
at past infinity



Scattering in de Sitter

1 2 3 4 n

tim
e

Conformal boundary 
at future infinity



Cosmological Collider Physics

End of Inflation
(re-heating)

380,000 years 

10 billion years 

time

?

Correlations
in Galaxies

Correlations
in the CMB

Correlations on the 
Boundary of (quasi-)dS

?
Task: Classify the imprints of new degrees of freedom

Many groups, e.g.: Chen and Wang 2009, Baumann and Green 2011, Noumi, Yamaguchi and Yokoyama 2013,
Arkani-Hamed and Maldacena 2015; Arkani-Hamed, Baumann, Lee and Pimentel 2018, …

The Cosmological Bootstrap:
Hamed, Maldacena 2015; Arkani-Hamed, Benincasa, Mcleod, Parisi, Postnikov, Vergu 2017-; Arkani-Hamed, Baumann, Duaso-Pueyo, Joyce Lee and Pimentel 2018

Green and Pajer 2020; Pajer, David Stefanyszyn, Jakub Supeł 2020; Goodhew, Jazayeri, Pajer 2020; Céspedes, Davis, Melville 2020 …



Scattering in de Sitter

1 2 3 4 n
tim

e
Conformal boundary 

at future infinity

the bulk time integral 
follows the in-in contour

Computed within the in-in (Schwinger-Keldysh) formalism: — branch of contour

Conformal boundary 
at future infinity

+ branch of contour
(time-ordered)(anti time-ordered) 



Outline

Part I: Can we place boundary correlators in (A)dS on a similar footing?

Part II: Applications.

Mellin-Barnes representation in momentum space

cf. Mellin-Barnes representation  
of the Gauss Hypergeometric function

Contact diagrams

Exchanges

Constraints on interactions of massless spinning particles



The AdS-CFT Dictionary

Quantum Gravity 
in anti-de Sitter space

Maldacena 1997

AdS - CFT
Gubser,
Klebanov, 
Polyakov, 
Witten

Conformal Field Theory 

Local operator

sourceboundary value

spin J, scaling dimension  
Elementary field

spin J, mass 



Local operator

Quantum Gravity 
in anti-de Sitter space

sourceboundary value

spin J, scaling dimension  

n-point scattering 
of particles  

n-point correlator  
of operators  

Maldacena 1997

AdS - CFT
Gubser,
Klebanov, 
Polyakov, 
Witten

Elementary field

Conformal Field Theory 

The AdS-CFT Dictionary

Scattering
process!

spin J, mass 



Mellin-Barnes Representation

external legs internal legs

Mellin-Barnes representation

internal
legs

External leg, momentum external Mellin variable,

-1-2-3-4

Poles in Poles from the Mellin-Barnes representation
of the propagators for the external legs

z

boundary, z=0 

Euclidean AdS in Poincaré co-ordinates

Modified Bessel function 
of the second kind

e.g. scalar field propagator:



Mellin-Barnes Representation

external legs internal legs

Mellin-Barnes representation

internal
legs

External leg, momentum external Mellin variable,

Translation invariance: Dilatation Ward identities:

-1-2-3-4

Poles in Poles from the Mellin-Barnes representation
of the propagators for the external legs

z

boundary, z=0 

Euclidean AdS in Poincaré co-ordinates

Modified Bessel function 
of the second kind

e.g. scalar field propagator:



E.g. 3pt contact diagram, spins J1-J2-J3:

Mellin-Barnes Representation

external legs internal legs

Mellin-Barnes representation

internal
legs

External leg, momentum external Mellin variable,

Translation invariance: Dilatation Ward identities:



E.g. 4pt spin J exchange:

Two internal Mellin variables,Internal leg, momentum  

Mellin-Barnes Representation

external legs internal legs

Mellin-Barnes representation

internal
legs

External leg, momentum external Mellin variable,

Translation invariance: Dilatation Ward identities:



external legs internal legs

internal
legs

internal
legs

external legs internal legs

Bridging the Gap between EAdS and dS



Bridging the Gap between EAdS and dS
Propagators in EAdS and dS take a universal form, constructed from 3 building blocks.
In EAdS we have:

Recall the general solution to the wave equation near the boundary of EAdS, :

selected by selected by

Harmonic function,

boundary conditions

Dirichlet Neumann

contact terms

project onto Dirichlet/Neumann boundary conditions:  

Dirichlet boundary condition, Neumann boundary condition,



Bridging the Gap between EAdS and dS
In EAdS we have:

On shell, the factor gets cancelled:

is generated by the source term in the propagator equation.i.e.

Harmonic function,

boundary conditions

Dirichlet Neumann

contact terms

project onto Dirichlet/Neumann boundary conditions:  

Propagators in EAdS and dS take a universal form, constructed from 3 building blocks.



Bridging the Gap between EAdS and dS
In dS, for the         branch of the in-in contour, we have:

Harmonic function,

boundary conditionscontact terms

Propagators in EAdS and dS take a universal form, constructed from 3 building blocks.

Recall the general solution to the wave equation near the boundary of dS,

Selected by Selected by

For the Bunch Davies (Euclidean) vacuum we have:



Bridging the Gap between EAdS and dS

dS and EAdS Harmonic functions differ by a simple phase:

In dS, for the         branch of the in-in contour, we have:

Also the bulk-boundary propagators:

Harmonic function,

boundary conditionscontact terms

Propagators in EAdS and dS take a universal form, constructed from 3 building blocks.
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3pt Contact 



Above we simply used that:

Contact amplitudes in dS can be obtained directly from their EAdS counterparts:

Overall phase is constant, as required by
the Dilatation Ward identity, since:

3pt Contact 



The full de Sitter 3pt function is the sum from each branch of the in-in contour:

3pt Contact 



The full de Sitter 3pt function is the sum from each branch of the in-in contour:

3pt Contact 
n

n

n

https://arxiv.org/abs/1906.12302


The full de Sitter 3pt function is the sum from each branch of the in-in contour:

3pt Contact 
n

n

n

de Sitter contact diagrams can vanish when the sine factor has a zero!

https://arxiv.org/abs/1906.12302


The full de Sitter 3pt function is the sum from each branch of the in-in contour:

3pt Contact 
n

n

n

Shown to follow from unitarity by Goodhew, Jazayeri & Pajer - [Cosmological Optical Theorem, 2020]

selected by unitarity

de Sitter contact diagrams can vanish when the sine factor has a zero!

E.g. conformally coupled scalars for d=3 :

for n odd!

https://arxiv.org/abs/1906.12302


Exchanges



Factorisation

contact terms

On-shell exchange

Constrained by:

Conformal Symmetry
Boundary Conditions

Exchanges in EAdS
Exchanges are straightforwardly reconstructed from their on-shell part:

Simply follows from:



Exchanges in EAdS
Factorisation and Conformal Symmetry: 

“Conformal Partial Wave”, 
single valued Eigenfunction of Conformal Casimirs

Mack, Dobrev, Petkova, Petrova,
Todorov, 1974-7



Exchanges in EAdS
Factorisation and Conformal Symmetry: 

“Conformal Partial Wave”, 
single valued Eigenfunction of Conformal Casimirs

Harmonic function,

attach/remove
external legs

e.g. Leonhardt, Manvelyan, 
Rühl 2003;

Costa, Gonçalves,
Penedones 2014

Mack, Dobrev, Petkova, Petrova,
Todorov, 1974-7



Exchanges in EAdS

Harmonic function,

attach/remove
external legs

Factorisation and Conformal Symmetry: 

“Conformal Partial Wave”, 
single valued Eigenfunction of Conformal Casimirs

This duality is made manifest by the “split representation” of

Mack, Dobrev, Petkova, Petrova,
Todorov, 1974-7

e.g. Leonhardt, Manvelyan, 
Rühl 2003;

Costa, Gonçalves,
Penedones 2014



Exchanges in EAdS
Factorisation, Conformal Symmetry and boundary conditions:

boundary conditions

Dirichlet Neumann

Factorisation and Conformal Symmetry

attach/remove
external legs



contact terms

Exchanges in EAdS

The full exchange is reconstructed via: 

boundary conditions

Factorisation, Conformal Symmetry and boundary conditions:

Factorisation and Conformal Symmetry



Exchanges in dS

branch of
in-in contour

contact terms

Constrained by: Factorisation

Conformal Symmetry

Boundary Conditions



Factorisation and Conformal Symmetry:

Exchanges in dS



Factorisation and Conformal Symmetry:

,

Exchanges in dS



Factorisation, Conformal Symmetry and boundary conditions:

For the Bunch Davies (Euclidean) vacuum:

attach/remove
external legs

boundary conditions

Factorisation + Conformal Symmetry

Exchanges in dS



Factorisation, Conformal Symmetry and boundary conditions:

The full exchange is reconstructed via: 

For the Bunch Davies (Euclidean) vacuum:

Exchanges in dS

Factorisation + Conformal Symmetry

contact terms



dS exchange in the Bunch-Davies vacuum is a linear combination of AdS exchanges: 

Exchanges in (A)dS

Change in 3pt function (OPE) coefficient, selected by unitarity

Dirichlet

Neumann



Factorisation, Conformal Symmetry and boundary conditions:

The bridge to the EAdS exchanges is via: 

For the Bunch Davies (Euclidean) vacuum:

Factorisation + Conformal Symmetry

Exchanges in (A)dS



dS exchange in the Bunch-Davies vacuum is a linear combination of AdS exchanges: 

Exchanges in (A)dS

This identity can be used to directly import techniques and results from AdS to dS!
Some small steps in 2007.09993 [hep-th]:

AdS exchanges are basic solutions to the crossing equation (associativity of operator 
algebra)

dS exchanges are also solutions to crossing. Their decomposition into conformal blocks 
(in all channels) is inherited from those of AdS exchanges (which are known)

Mellin amplitudes for dS correlators. For AdS, Mellin amplitudes have been an instrumental tool 
owing to striking parallels with scattering amplitudes — Mack 2009, Penedones 2010

Change in 3pt function (OPE) coefficient, selected by unitarity

Dirichlet

Neumann

https://arxiv.org/abs/2007.09993


Exchanges in dS

The expansion in this limit is generated by residues of poles in  .

non-analytic

The imprints of a particle exchange are particularly sharp in the limit  (OPE limit)

-1-2-3

Poles in :

If all the fields are scalars:

External conformally coupled/massless scalars:
Arkani-Hamed and Maldacena 2015;

Arkani-Hamed, Baumann, Lee and Pimentel 2018 integration contour



-1-2-3

Poles in :

Exchanges in dS

The expansion in this limit is generated by residues of poles in  .

The imprints of a particle exchange are particularly sharp in the limit  (OPE limit)

If all the fields are scalars:

non-analytic

External conformally coupled/massless scalars:
Arkani-Hamed and Maldacena 2015;

Arkani-Hamed, Baumann, Lee and Pimentel 2018 integration contour



-1-2-3

Poles in :

Exchanges in dS

The expansion in this limit is generated by residues of poles in  .

The imprints of a particle exchange are particularly sharp in the limit  (OPE limit)

If all the fields are scalars:

non-analytic

External conformally coupled/massless scalars:
Arkani-Hamed and Maldacena 2015;

Arkani-Hamed, Baumann, Lee and Pimentel 2018 integration contour



Exchanges in dS

If the exchanged field has spin J:The expansion in this limit is generated by residues of poles in  .

The imprints of a particle exchange are particularly sharp in the limit  (OPE limit)

angular dependence,
(Gegenbauer polynomial)

non-analytic

External conformally coupled/massless scalars:
Arkani-Hamed and Maldacena 2015;

Arkani-Hamed, Baumann, Lee and Pimentel 2018 

-1-2-3

Poles in :

integration contour



Exchanges in dS

If the exchanged field has spin J:The expansion in this limit is generated by residues of poles in  .

The imprints of a particle exchange are particularly sharp in the limit  (OPE limit)

analytic

-1-2-3

Poles in :

angular dependence,
(Gegenbauer polynomial)

non-analytic

, EFT expansion

External conformally coupled/massless scalars:
Arkani-Hamed and Maldacena 2015;

Arkani-Hamed, Baumann, Lee and Pimentel 2018 

contact terms

integration contour



Constraints on Massless Particles
Toy model: Cubic coupling of a massless spin-J field to scalars.

Decomposition into helicities m = 0, 1, …, J : 

these lower helicity components 
cannot contain bulk contact terms 
(they are at most boundary terms)

gauge 
invariance



Constraints on Massless Particles
Toy model: Cubic coupling of a massless spin-J field to scalars.

This must be here by the Dilatation Ward identities

Recall that bulk contact singularities are encoded in Dirac delta functions in the external Mellin variables.

For the helicity-m component we have:



Gauge invariance requires that for the lower helicity components m < J we must have:

Recall that bulk contact singularities are encoded in Dirac delta functions in the external Mellin variables.

Constraints on Massless Particles
Toy model: Cubic coupling of a massless spin-J field to scalars.

This factor cancels the bulk contact singularity
encoded by the Dirac delta function

Scalars of unequal mass

Scalars of equal mass

(Consistent with Berends, Burgers and van Dam 1986 )

This is a boundary term.



Constraints on Massless Particles
Toy model: Cubic coupling of a massless spin-J field to scalars.

A non-trivial Ward-Takahashi identity is generated by the finite number of poles that satisfy:

Gauge invariance requires that for the lower helicity components m < J we must have:

Recall that bulk contact singularities are encoded in Dirac delta functions in the external Mellin variables.

This factor cancels the bulk contact singularity
encoded by the Dirac delta function

Scalars of equal mass This is a boundary term.

with

which are:



Constraints on Massless Particles
Toy model: Cubic coupling of a massless spin-J field to scalars.

A non-trivial Ward-Takahashi identity is generated by the finite number of poles that satisfy:

Gauge invariance requires that for the lower helicity components m < J we must have:

Recall that bulk contact singularities are encoded in Dirac delta functions in the external Mellin variables.

This factor cancels the bulk contact singularity
encoded by the Dirac delta function

Scalars of equal mass

For example:

This is a boundary term.

where



Constraints on Massless Particles
Toy model: Cubic coupling of a massless spin-J field to scalars.

~    [ Ward-Takahashi identity ]              +                                  Bulk contact singularities] ]
Can they be compensated by:Violates gauge invariance.Comes from the on-shell exchange, inherited from

the gauge invariant 3pt functions  

?



Some singularities in 
cannot be cancelled! 

(by local quartic vertices)

charge conservation

equivalence principle

no consistent coupling (in local theories) 

See also
Baumann et al. 

May 2020

Constraints on Massless Particles
Toy model: Cubic coupling of a massless spin-J field to scalars.

~    [ Ward-Takahashi identity ]              +                                  

?

Bulk contact singularities] ]
Can they be compensated by:Violates gauge invariance.

The helicity-(J-1) component this gives the constraint:

cf. Weinberg soft theorem in flat space!

These singularities must therefore cancel by themselves          constrains   

Comes from the on-shell exchange, inherited from
the gauge invariant 3pt functions  



EFT
boundary conditions

Factorisation + Conformal Symmetry

Summary

Plenty of diverse directions for the future!

Higher points and Loops. Nice parallel with generalised unitarity methods/Cutkosky rules:

Celestial Amplitudes?

Bootstrap of Euclidean CFTs dual to dS physics?



Back up slides



Contact diagrams

The connection to the bulk is manifest!

Bulk-boundary propagator
in Poincaré coordinates:

AdS 3pt contact amplitude of generic scalars

external legsbulk integration

Bulk integration is encoded in a Dirac delta function:

Contact Amplitudes 

Modified Bessel function 
of the second kind

The sum of the Mellin variables is thus conserved:



The Mellin-Barnes representation above captures the full analytic structure of the boundary correlators.

Exchanges in dS

cf. Mellin-Barnes representation  
of the Gauss Hypergeometric function

integration contour

Poles in :

1 2 30

Useful to establish:

residues of the 

Identities and Transformation formulas

Asymptotic Expansions

Resolution of Singularities



cf.

Exchanges in dS

For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.
e.g. massless spin-J exchange between conformally coupled scalars:

Lower helicity,
contact terms

Simple integer coefficients.

helicity-J

(d+1)-dim. null momentum:

The Mellin-Barnes representation above captures the full analytic structure of the boundary correlators.

cf. Mellin-Barnes representation  
of the Gauss Hypergeometric function

cf. corresponding amplitude in (d+1)-dimensional flat space:

(d+1)-dim. Mandelstam variable



cf.

Exchanges in dS

For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.
e.g. massless spin-J exchange between conformally coupled scalars:

The Mellin-Barnes representation above captures the full analytic structure of the boundary correlators.

cf. Mellin-Barnes representation  
of the Gauss Hypergeometric function

(d+1)-dim. null momentum:

Lower helicity,
contact terms

helicity-J

Maldacena, Pimentel
& Raju 2011-2012



cf.

Exchanges in dS

For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.
e.g. massless spin-J exchange between conformally coupled scalars:

(d+1)-dim. null momentum:

The Mellin-Barnes representation above captures the full analytic structure of the boundary correlators.

cf. Mellin-Barnes representation  
of the Gauss Hypergeometric function

Lower helicity,
contact terms

helicity-J

Flat limit



For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.
e.g. 4pt exchange in Yang-Mills theory

Exchanges in dS

contraction of the 3pt tensorial structures

The highest helicity component is simple and given by the 3pt Yang-Mills amplitude in flat space:

Flat limit



For some special representations [e.g. (partially)-massless fields] the Mellin-Barnes integrals can be lifted.
e.g. 4pt exchange in Yang-Mills theory

Exchanges in dS

contraction of the 3pt tensorial structures

e.g. 4pt exchange in Gravity

The double-copy structure of flat scattering amplitudes is encoded in dS correlators:

contraction of the 3pt tensorial structures


