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value of A, which is 4.5 cm, is a fraction of the size of the
system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
boundaries.
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FIG. 2. Power density spectrum of the velocity fluctuation,
at 908 mbar, and with a rotation frequency of 20 Hz. The cor-
responding value of Rz is 1900. A power law, with an exponent
of about —1.72, is apparent over two decades of variation of the
wave number.

the box, which are the physica1 units for this system.
Figure 2 shows an energy spectrum E(k} in the spec-

tral domain, for Re= 1.2 X 10 (see below for the
definition), obtained on probe 8; at this high Re, the
range of wave numbers where a power law is observed
covers more than two decades. The dissipative part of
the spectrum is well resolved. The peak at k=1 cm
corresponds to the passage of the six blades; this is the
scale at which energy is injected, and from there starts
the power law behavior (see also Ref. [13]}.
From the spectrum, we can determine several quanti-

ties that characterize the large scale structure of the flow:
these are the integral scale A (defined by
A=E(0}[f0 E(k)dk] ') and the longitudinal fluctua-
tion rate u, /U (here, u, is the root mean square of
the velocity fluctuation —further simply denoted by u').
We plot these two quantities, in Fig. 3, against the Rey-
nolds number Re. There is significant scatter; we have
not precisely identified its origin, but it is reasonable to
relate it to the fact that on large scales, states of slightly
distinct spatial structures are accessible. It nevertheless
appears that, within 225% uncertainty, both quantities
are independent of the Reynolds number. The mean
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Figure 4(a) shows a typical evolution of the inverse of
the longitudinal third-order structure function, defined
by

F3(r)=([u(t)—u(t+r/U)] )

as a function of the separation distance r. In the above
expression, u (t} is the local velocity measured by the hot
wire, the brackets denote time averaging, and we have
applied Taylor's hypothesis to convert time into distance.
Figure 4 defines a domain where the structure function is
approximately linear in r, in agreement with the von-
Karman —Howarth —Kolmogorov relation [15]. A more
accurate inspection of the linear regime can be made by
plotting the ratio F3(r)/r, a—s a function of r, on semi-
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FIG. 3. Evolution with the Reynolds number of the integral
scale 4 and the fluctuation rate u, /U.

0.010 0.10r (cm)

FIG. 4. Third-order structure function —F,(r) for
R&=1900; (a) direct plot on logarithmic scales; (b) plot of the
ratio —F3 /r on semilogarithmic scales.

(Zocchi et. al. 1994)
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value of A, which is 4.5 cm, is a fraction of the size of the
system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
boundaries.
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,

Pðt; kÞ≡ ∂
∂k

Z

jk0j≤k

ddk0

ð2πÞd
j~uðt; k0Þj2; (7)

with ~uðt; kÞ≡ R
ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
horizon area element

ffiffiffi
γ

p ≡ ffiffiffiffiffiγij
p , where γij in the induced

horizon metric. In our coordinate system and in the limit of
large Reynolds number Re—a requirement for turbulent
evolution—the event and apparent horizons approximately
coincide at r ¼ 1 and γij ≈ gijjr¼1 [7]. Also included in
Fig. 1 are plots of

ffiffiffi
γ

p
. At t ¼ 2000

ffiffiffi
γ

p
exhibits structure

over a large hierarchy of scales and is fractal-like in appe-
arance. We comment more on this further below. However,
as time progresses

ffiffiffi
γ

p
becomes smoother and smoother just

as the fluid vorticity ω does due to the inverse cascade.
The velocity power spectrum P also imprints itself in

bulk quantities. One quantity to consider is the extrinsic
curvature ΘMN of the event horizon. ΘMN can be

FIG. 1 (color online). Left: The boundary vorticity ω at 3 times.
Right: the horizon area element

ffiffiffi
γ

p
at the same 3 times.

FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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time t ¼ 1008. Our numerical results are consistent with
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we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,
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ddxuðt; xÞe−ik·x, obeys the scaling
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in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
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p , where γij in the induced
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value of A, which is 4.5 cm, is a fraction of the size of the
system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
boundaries.
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USING THIRD-ORDER STRUCTURE FUNCTIONS

FIG. 2. Power density spectrum of the velocity fluctuation,
at 908 mbar, and with a rotation frequency of 20 Hz. The cor-
responding value of Rz is 1900. A power law, with an exponent
of about —1.72, is apparent over two decades of variation of the
wave number.

the box, which are the physica1 units for this system.
Figure 2 shows an energy spectrum E(k} in the spec-

tral domain, for Re= 1.2 X 10 (see below for the
definition), obtained on probe 8; at this high Re, the
range of wave numbers where a power law is observed
covers more than two decades. The dissipative part of
the spectrum is well resolved. The peak at k=1 cm
corresponds to the passage of the six blades; this is the
scale at which energy is injected, and from there starts
the power law behavior (see also Ref. [13]}.
From the spectrum, we can determine several quanti-

ties that characterize the large scale structure of the flow:
these are the integral scale A (defined by
A=E(0}[f0 E(k)dk] ') and the longitudinal fluctua-
tion rate u, /U (here, u, is the root mean square of
the velocity fluctuation —further simply denoted by u').
We plot these two quantities, in Fig. 3, against the Rey-
nolds number Re. There is significant scatter; we have
not precisely identified its origin, but it is reasonable to
relate it to the fact that on large scales, states of slightly
distinct spatial structures are accessible. It nevertheless
appears that, within 225% uncertainty, both quantities
are independent of the Reynolds number. The mean
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Figure 4(a) shows a typical evolution of the inverse of
the longitudinal third-order structure function, defined
by

F3(r)=([u(t)—u(t+r/U)] )

as a function of the separation distance r. In the above
expression, u (t} is the local velocity measured by the hot
wire, the brackets denote time averaging, and we have
applied Taylor's hypothesis to convert time into distance.
Figure 4 defines a domain where the structure function is
approximately linear in r, in agreement with the von-
Karman —Howarth —Kolmogorov relation [15]. A more
accurate inspection of the linear regime can be made by
plotting the ratio F3(r)/r, a—s a function of r, on semi-
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FIG. 3. Evolution with the Reynolds number of the integral
scale 4 and the fluctuation rate u, /U.
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FIG. 4. Third-order structure function —F,(r) for
R&=1900; (a) direct plot on logarithmic scales; (b) plot of the
ratio —F3 /r on semilogarithmic scales.
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4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity
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with Q ¼ 20π=Δx. The small fluctuations δui are present
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random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
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large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,
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with ~uðt; kÞ≡ R
ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
horizon area element

ffiffiffi
γ

p ≡ ffiffiffiffiffiγij
p , where γij in the induced

horizon metric. In our coordinate system and in the limit of
large Reynolds number Re—a requirement for turbulent
evolution—the event and apparent horizons approximately
coincide at r ¼ 1 and γij ≈ gijjr¼1 [7]. Also included in
Fig. 1 are plots of

ffiffiffi
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. At t ¼ 2000

ffiffiffi
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exhibits structure

over a large hierarchy of scales and is fractal-like in appe-
arance. We comment more on this further below. However,
as time progresses
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becomes smoother and smoother just

as the fluid vorticity ω does due to the inverse cascade.
The velocity power spectrum P also imprints itself in

bulk quantities. One quantity to consider is the extrinsic
curvature ΘMN of the event horizon. ΘMN can be

FIG. 1 (color online). Left: The boundary vorticity ω at 3 times.
Right: the horizon area element
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FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
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at 908 mbar, and with a rotation frequency of 20 Hz. The cor-
responding value of Rz is 1900. A power law, with an exponent
of about —1.72, is apparent over two decades of variation of the
wave number.

the box, which are the physica1 units for this system.
Figure 2 shows an energy spectrum E(k} in the spec-

tral domain, for Re= 1.2 X 10 (see below for the
definition), obtained on probe 8; at this high Re, the
range of wave numbers where a power law is observed
covers more than two decades. The dissipative part of
the spectrum is well resolved. The peak at k=1 cm
corresponds to the passage of the six blades; this is the
scale at which energy is injected, and from there starts
the power law behavior (see also Ref. [13]}.
From the spectrum, we can determine several quanti-

ties that characterize the large scale structure of the flow:
these are the integral scale A (defined by
A=E(0}[f0 E(k)dk] ') and the longitudinal fluctua-
tion rate u, /U (here, u, is the root mean square of
the velocity fluctuation —further simply denoted by u').
We plot these two quantities, in Fig. 3, against the Rey-
nolds number Re. There is significant scatter; we have
not precisely identified its origin, but it is reasonable to
relate it to the fact that on large scales, states of slightly
distinct spatial structures are accessible. It nevertheless
appears that, within 225% uncertainty, both quantities
are independent of the Reynolds number. The mean
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as a function of the separation distance r. In the above
expression, u (t} is the local velocity measured by the hot
wire, the brackets denote time averaging, and we have
applied Taylor's hypothesis to convert time into distance.
Figure 4 defines a domain where the structure function is
approximately linear in r, in agreement with the von-
Karman —Howarth —Kolmogorov relation [15]. A more
accurate inspection of the linear regime can be made by
plotting the ratio F3(r)/r, a—s a function of r, on semi-
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FIG. 3. Evolution with the Reynolds number of the integral
scale 4 and the fluctuation rate u, /U.
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FIG. 4. Third-order structure function —F,(r) for
R&=1900; (a) direct plot on logarithmic scales; (b) plot of the
ratio —F3 /r on semilogarithmic scales.
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,

Pðt; kÞ≡ ∂
∂k

Z

jk0j≤k

ddk0

ð2πÞd
j~uðt; k0Þj2; (7)

with ~uðt; kÞ≡ R
ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
horizon area element

ffiffiffi
γ

p ≡ ffiffiffiffiffiγij
p , where γij in the induced

horizon metric. In our coordinate system and in the limit of
large Reynolds number Re—a requirement for turbulent
evolution—the event and apparent horizons approximately
coincide at r ¼ 1 and γij ≈ gijjr¼1 [7]. Also included in
Fig. 1 are plots of

ffiffiffi
γ

p
. At t ¼ 2000

ffiffiffi
γ

p
exhibits structure

over a large hierarchy of scales and is fractal-like in appe-
arance. We comment more on this further below. However,
as time progresses

ffiffiffi
γ

p
becomes smoother and smoother just

as the fluid vorticity ω does due to the inverse cascade.
The velocity power spectrum P also imprints itself in

bulk quantities. One quantity to consider is the extrinsic
curvature ΘMN of the event horizon. ΘMN can be

FIG. 1 (color online). Left: The boundary vorticity ω at 3 times.
Right: the horizon area element

ffiffiffi
γ

p
at the same 3 times.

FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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value of A, which is 4.5 cm, is a fraction of the size of the
system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
boundaries.
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FIG. 2. Power density spectrum of the velocity fluctuation,
at 908 mbar, and with a rotation frequency of 20 Hz. The cor-
responding value of Rz is 1900. A power law, with an exponent
of about —1.72, is apparent over two decades of variation of the
wave number.

the box, which are the physica1 units for this system.
Figure 2 shows an energy spectrum E(k} in the spec-

tral domain, for Re= 1.2 X 10 (see below for the
definition), obtained on probe 8; at this high Re, the
range of wave numbers where a power law is observed
covers more than two decades. The dissipative part of
the spectrum is well resolved. The peak at k=1 cm
corresponds to the passage of the six blades; this is the
scale at which energy is injected, and from there starts
the power law behavior (see also Ref. [13]}.
From the spectrum, we can determine several quanti-

ties that characterize the large scale structure of the flow:
these are the integral scale A (defined by
A=E(0}[f0 E(k)dk] ') and the longitudinal fluctua-
tion rate u, /U (here, u, is the root mean square of
the velocity fluctuation —further simply denoted by u').
We plot these two quantities, in Fig. 3, against the Rey-
nolds number Re. There is significant scatter; we have
not precisely identified its origin, but it is reasonable to
relate it to the fact that on large scales, states of slightly
distinct spatial structures are accessible. It nevertheless
appears that, within 225% uncertainty, both quantities
are independent of the Reynolds number. The mean
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Figure 4(a) shows a typical evolution of the inverse of
the longitudinal third-order structure function, defined
by

F3(r)=([u(t)—u(t+r/U)] )

as a function of the separation distance r. In the above
expression, u (t} is the local velocity measured by the hot
wire, the brackets denote time averaging, and we have
applied Taylor's hypothesis to convert time into distance.
Figure 4 defines a domain where the structure function is
approximately linear in r, in agreement with the von-
Karman —Howarth —Kolmogorov relation [15]. A more
accurate inspection of the linear regime can be made by
plotting the ratio F3(r)/r, a—s a function of r, on semi-
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R&=1900; (a) direct plot on logarithmic scales; (b) plot of the
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,

Pðt; kÞ≡ ∂
∂k

Z

jk0j≤k

ddk0

ð2πÞd
j~uðt; k0Þj2; (7)

with ~uðt; kÞ≡ R
ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
horizon area element

ffiffiffi
γ

p ≡ ffiffiffiffiffiγij
p , where γij in the induced

horizon metric. In our coordinate system and in the limit of
large Reynolds number Re—a requirement for turbulent
evolution—the event and apparent horizons approximately
coincide at r ¼ 1 and γij ≈ gijjr¼1 [7]. Also included in
Fig. 1 are plots of

ffiffiffi
γ

p
. At t ¼ 2000

ffiffiffi
γ

p
exhibits structure

over a large hierarchy of scales and is fractal-like in appe-
arance. We comment more on this further below. However,
as time progresses

ffiffiffi
γ

p
becomes smoother and smoother just

as the fluid vorticity ω does due to the inverse cascade.
The velocity power spectrum P also imprints itself in

bulk quantities. One quantity to consider is the extrinsic
curvature ΘMN of the event horizon. ΘMN can be

FIG. 1 (color online). Left: The boundary vorticity ω at 3 times.
Right: the horizon area element

ffiffiffi
γ

p
at the same 3 times.

FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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value of A, which is 4.5 cm, is a fraction of the size of the
system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
boundaries.
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FIG. 2. Power density spectrum of the velocity fluctuation,
at 908 mbar, and with a rotation frequency of 20 Hz. The cor-
responding value of Rz is 1900. A power law, with an exponent
of about —1.72, is apparent over two decades of variation of the
wave number.

the box, which are the physica1 units for this system.
Figure 2 shows an energy spectrum E(k} in the spec-

tral domain, for Re= 1.2 X 10 (see below for the
definition), obtained on probe 8; at this high Re, the
range of wave numbers where a power law is observed
covers more than two decades. The dissipative part of
the spectrum is well resolved. The peak at k=1 cm
corresponds to the passage of the six blades; this is the
scale at which energy is injected, and from there starts
the power law behavior (see also Ref. [13]}.
From the spectrum, we can determine several quanti-

ties that characterize the large scale structure of the flow:
these are the integral scale A (defined by
A=E(0}[f0 E(k)dk] ') and the longitudinal fluctua-
tion rate u, /U (here, u, is the root mean square of
the velocity fluctuation —further simply denoted by u').
We plot these two quantities, in Fig. 3, against the Rey-
nolds number Re. There is significant scatter; we have
not precisely identified its origin, but it is reasonable to
relate it to the fact that on large scales, states of slightly
distinct spatial structures are accessible. It nevertheless
appears that, within 225% uncertainty, both quantities
are independent of the Reynolds number. The mean
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Figure 4(a) shows a typical evolution of the inverse of
the longitudinal third-order structure function, defined
by

F3(r)=([u(t)—u(t+r/U)] )

as a function of the separation distance r. In the above
expression, u (t} is the local velocity measured by the hot
wire, the brackets denote time averaging, and we have
applied Taylor's hypothesis to convert time into distance.
Figure 4 defines a domain where the structure function is
approximately linear in r, in agreement with the von-
Karman —Howarth —Kolmogorov relation [15]. A more
accurate inspection of the linear regime can be made by
plotting the ratio F3(r)/r, a—s a function of r, on semi-
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scale 4 and the fluctuation rate u, /U.
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FIG. 4. Third-order structure function —F,(r) for
R&=1900; (a) direct plot on logarithmic scales; (b) plot of the
ratio —F3 /r on semilogarithmic scales.

k−1.7

(Zocchi et. al. 1994)

Holographic turbulence

| ⃗v |
c

≪ 1 ⃗f = 0

· ⃗v + ⃗v ⋅ ⃗∇ ⃗v = − ⃗∇ p + ν∇2 ⃗v + ⃗f



k−1.7

Recall:50 MEASUREMENT OF THE SCALING OF THE DISSIPATION AT. . . 3695

104 ~

10 =

0.01-

value of A, which is 4.5 cm, is a fraction of the size of the
system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
boundaries.
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FIG. 2. Power density spectrum of the velocity fluctuation,
at 908 mbar, and with a rotation frequency of 20 Hz. The cor-
responding value of Rz is 1900. A power law, with an exponent
of about —1.72, is apparent over two decades of variation of the
wave number.

the box, which are the physica1 units for this system.
Figure 2 shows an energy spectrum E(k} in the spec-

tral domain, for Re= 1.2 X 10 (see below for the
definition), obtained on probe 8; at this high Re, the
range of wave numbers where a power law is observed
covers more than two decades. The dissipative part of
the spectrum is well resolved. The peak at k=1 cm
corresponds to the passage of the six blades; this is the
scale at which energy is injected, and from there starts
the power law behavior (see also Ref. [13]}.
From the spectrum, we can determine several quanti-

ties that characterize the large scale structure of the flow:
these are the integral scale A (defined by
A=E(0}[f0 E(k)dk] ') and the longitudinal fluctua-
tion rate u, /U (here, u, is the root mean square of
the velocity fluctuation —further simply denoted by u').
We plot these two quantities, in Fig. 3, against the Rey-
nolds number Re. There is significant scatter; we have
not precisely identified its origin, but it is reasonable to
relate it to the fact that on large scales, states of slightly
distinct spatial structures are accessible. It nevertheless
appears that, within 225% uncertainty, both quantities
are independent of the Reynolds number. The mean
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Figure 4(a) shows a typical evolution of the inverse of
the longitudinal third-order structure function, defined
by

F3(r)=([u(t)—u(t+r/U)] )

as a function of the separation distance r. In the above
expression, u (t} is the local velocity measured by the hot
wire, the brackets denote time averaging, and we have
applied Taylor's hypothesis to convert time into distance.
Figure 4 defines a domain where the structure function is
approximately linear in r, in agreement with the von-
Karman —Howarth —Kolmogorov relation [15]. A more
accurate inspection of the linear regime can be made by
plotting the ratio F3(r)/r, a—s a function of r, on semi-
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FIG. 4. Third-order structure function —F,(r) for
R&=1900; (a) direct plot on logarithmic scales; (b) plot of the
ratio —F3 /r on semilogarithmic scales.
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,

Pðt; kÞ≡ ∂
∂k

Z

jk0j≤k

ddk0

ð2πÞd
j~uðt; k0Þj2; (7)

with ~uðt; kÞ≡ R
ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
horizon area element

ffiffiffi
γ

p ≡ ffiffiffiffiffiγij
p , where γij in the induced

horizon metric. In our coordinate system and in the limit of
large Reynolds number Re—a requirement for turbulent
evolution—the event and apparent horizons approximately
coincide at r ¼ 1 and γij ≈ gijjr¼1 [7]. Also included in
Fig. 1 are plots of

ffiffiffi
γ

p
. At t ¼ 2000

ffiffiffi
γ

p
exhibits structure

over a large hierarchy of scales and is fractal-like in appe-
arance. We comment more on this further below. However,
as time progresses

ffiffiffi
γ

p
becomes smoother and smoother just

as the fluid vorticity ω does due to the inverse cascade.
The velocity power spectrum P also imprints itself in

bulk quantities. One quantity to consider is the extrinsic
curvature ΘMN of the event horizon. ΘMN can be

FIG. 1 (color online). Left: The boundary vorticity ω at 3 times.
Right: the horizon area element

ffiffiffi
γ

p
at the same 3 times.

FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,

Pðt; kÞ≡ ∂
∂k

Z

jk0j≤k

ddk0

ð2πÞd
j~uðt; k0Þj2; (7)

with ~uðt; kÞ≡ R
ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
horizon area element

ffiffiffi
γ

p ≡ ffiffiffiffiffiγij
p , where γij in the induced

horizon metric. In our coordinate system and in the limit of
large Reynolds number Re—a requirement for turbulent
evolution—the event and apparent horizons approximately
coincide at r ¼ 1 and γij ≈ gijjr¼1 [7]. Also included in
Fig. 1 are plots of

ffiffiffi
γ

p
. At t ¼ 2000

ffiffiffi
γ

p
exhibits structure

over a large hierarchy of scales and is fractal-like in appe-
arance. We comment more on this further below. However,
as time progresses

ffiffiffi
γ

p
becomes smoother and smoother just

as the fluid vorticity ω does due to the inverse cascade.
The velocity power spectrum P also imprints itself in

bulk quantities. One quantity to consider is the extrinsic
curvature ΘMN of the event horizon. ΘMN can be

FIG. 1 (color online). Left: The boundary vorticity ω at 3 times.
Right: the horizon area element

ffiffiffi
γ

p
at the same 3 times.

FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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We work in a periodic spatial box of size Δx. We choose

the initial boost velocity
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size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
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Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
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with ε the proper energy density.
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rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
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the line x = a, denoted by Ŝx=a,n(τ ), is expressed as
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where the subscript "τ states that the 1D spectrum is averaged over the time interval [τ − "τ, τ ] with "τ
of the order of the initial eddy turnover time. The 1D spectra for the simulations with periodic boundary
conditions are computed in a similar way. An interesting observation is the following: the inertial range of the
1D energy spectrum, measured along a line parallel with one of the boundaries not too far from this boundary,
shows a k−5/3-slope up to the smallest wave numbers used in the simulations (length scales as small as the
enstrophy dissipation scale are well resolved). The presence of the k−5/3-slope for small wave numbers is due
to the production of small-scale vorticity filaments near the no-slip walls [20]. The direct enstrophy cascade is
virtually absent at early times during the decay process. To illustrate this remarkable feature we have plotted
in figure 1 the averaged 1D energy spectrum for runs with freely evolving 2D turbulence, with Re =20,000,
in double periodic domains and for similar runs in domains with no-slip boundaries. The average spectrum
computed for the runs with periodic boundary conditions shows reasonable agreement with the predicted k−3-
slope for large wave numbers. This spectrum is measured after approximately four initial eddy turnover times
(τ = 4). The 1D energy spectrum for the no-slip runs, measured near the boundaries, shows at the same time
a k−5/3-slope instead of a k−3-slope (figure 1(b)). When the spectra are measured at a larger distance from
the boundary, the clear k−5/3-slope slowly disappears but the spectra for runs with periodic and with no-slip
boundary conditions remain different (see for more details [20]). At later times the energy spectrum shows the
build-up of a direct enstrophy cascade with a k−3 inertial range together with the inverse energy cascade for
smaller wave numbers (see figure 1(c)). The energy spectrum shows a kink, which slowly moves to smaller
wave numbers. The position of the kink, which represents the injection scale ki , can clearly be associated with
the growth of an averaged local boundary-layer thickness. The spectra as observed in these simulations differ

Figure 1. Averaged 1D energy spectra for runs with Re= 20,000.
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Ŝx=a,n(τ ) =
∣

∣

∣

∣

∣

N
∑

m=0
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,
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ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
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FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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normalized by the total energy as a function of time. In both
runs, the small-scale energy decreases rapidly, while the large-
scale energy grows. When not normalized by the total energy,
E< still grows and then slowly decays as a result of viscous
forces (with a slower decay in the 40962 run). In the absence
of a transfer of energy towards large scales (i.e., without a
negative energy flux), E< would only decrease in time.

The time evolution of the integral scale for all 20482 runs
is shown in Fig. 3. In spite of the fact that the runs differ
only by their initial phases, there is a large dispersion in the
time evolution of L, more so than for the energy [see the
inset of Fig. 3(a)]. The actual dispersion in the evolution of
L and E in the different runs is also quantified in Fig. 3(b),
by means of the standard deviation σ . For both quantities,
σ first grows exponentially (at very early times) and later
seems to follow an approximate linear growth with time. From
pioneering works on the predictability of two-dimensional
turbulence [30–32] (see also [33,34] for recent studies), we
can expect differences in the initial conditions to grow first
at the initial energy-containing scale (resulting in the early
exponential phase) and later to propagate towards larger scales
if an inverse cascade develops (see [34] for a numerical study).
In that regime, the time it takes for the differences to propagate
is that of the turnover time, which if a Kolmogorov spectrum is
assumed, results in linear growth of the error with time [30,34].
Note that the integral scale L is obtained from the energy
spectrum weighting the most energetic wave numbers and as
such more deviation can be expected than in the case of the total
energy.

Although the standard deviation observed in Fig. 3 can be
expected in an ensemble, numerical simulations often deal
with only one of the realizations. What are the implications
of the dispersion in the integral length (and energy) in the
different simulations at a given time? Figure 4 shows the
energy spectrum at t = 1.5 and 6 for ten randomly picked

FIG. 4. (Color online) Energy spectra for ten 20482 runs at t =
1.5 (no averaging performed here). Slopes are indicated as references.
The vertical dashed line corresponds to the initial energy-containing
wave number k0. The inset shows the same ten spectra at t = 6.
Note that the large-scale spectra look like ∼k, which could be
interpreted as eddy noise in two dimensions (see [35]). However,
unlike three-dimensional turbulence, the amplitude of the peak of the
energy spectrum is larger than its initial value (at t = 0) at the same
wave number.

20482 runs. At t = 1.5, a narrow range seems to emerge at
large scales, with a slope shallower than ∼k−3, between the
energy-containing scale and the enstrophy range. Exploration
of the energy flux (not shown) indicates that its ensemble
average may display a short range with approximate constancy.
Moreover, at later times (see, e.g., the inset in Fig. 4), this
shallower range in the energy spectrum increases in width and
moves to smaller wave numbers.

Based on this result, we show in Fig. 5 the time- and
ensemble-averaged energy spectrum, energy flux, and enstro-
phy flux for the set of simulations with 20482 grid points.

(a)

(b)

(c)

FIG. 5. (a) Time- and ensemble-averaged energy spectrum,
(b) energy flux, and (c) enstrophy flux over the fifty 20482 simulations
and from t = 0.5 to 6. Slopes in (a) are indicated as references. The
vertical dashed lines correspond to the initial energy-containing wave
number k0.
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2&1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij< 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,

hTμ
νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,

Pðt; kÞ≡ ∂
∂k

Z

jk0j≤k

ddk0

ð2πÞd
j~uðt; k0Þj2; (7)

with ~uðt; kÞ≡ R
ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
horizon area element

ffiffiffi
γ

p ≡ ffiffiffiffiffiγij
p , where γij in the induced

horizon metric. In our coordinate system and in the limit of
large Reynolds number Re—a requirement for turbulent
evolution—the event and apparent horizons approximately
coincide at r ¼ 1 and γij ≈ gijjr¼1 [7]. Also included in
Fig. 1 are plots of

ffiffiffi
γ

p
. At t ¼ 2000

ffiffiffi
γ

p
exhibits structure

over a large hierarchy of scales and is fractal-like in appe-
arance. We comment more on this further below. However,
as time progresses

ffiffiffi
γ

p
becomes smoother and smoother just

as the fluid vorticity ω does due to the inverse cascade.
The velocity power spectrum P also imprints itself in

bulk quantities. One quantity to consider is the extrinsic
curvature ΘMN of the event horizon. ΘMN can be

FIG. 1 (color online). Left: The boundary vorticity ω at 3 times.
Right: the horizon area element

ffiffiffi
γ

p
at the same 3 times.

FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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value of A, which is 4.5 cm, is a fraction of the size of the
system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
boundaries.
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USING THIRD-ORDER STRUCTURE FUNCTIONS

FIG. 2. Power density spectrum of the velocity fluctuation,
at 908 mbar, and with a rotation frequency of 20 Hz. The cor-
responding value of Rz is 1900. A power law, with an exponent
of about —1.72, is apparent over two decades of variation of the
wave number.

the box, which are the physica1 units for this system.
Figure 2 shows an energy spectrum E(k} in the spec-

tral domain, for Re= 1.2 X 10 (see below for the
definition), obtained on probe 8; at this high Re, the
range of wave numbers where a power law is observed
covers more than two decades. The dissipative part of
the spectrum is well resolved. The peak at k=1 cm
corresponds to the passage of the six blades; this is the
scale at which energy is injected, and from there starts
the power law behavior (see also Ref. [13]}.
From the spectrum, we can determine several quanti-

ties that characterize the large scale structure of the flow:
these are the integral scale A (defined by
A=E(0}[f0 E(k)dk] ') and the longitudinal fluctua-
tion rate u, /U (here, u, is the root mean square of
the velocity fluctuation —further simply denoted by u').
We plot these two quantities, in Fig. 3, against the Rey-
nolds number Re. There is significant scatter; we have
not precisely identified its origin, but it is reasonable to
relate it to the fact that on large scales, states of slightly
distinct spatial structures are accessible. It nevertheless
appears that, within 225% uncertainty, both quantities
are independent of the Reynolds number. The mean
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Figure 4(a) shows a typical evolution of the inverse of
the longitudinal third-order structure function, defined
by

F3(r)=([u(t)—u(t+r/U)] )

as a function of the separation distance r. In the above
expression, u (t} is the local velocity measured by the hot
wire, the brackets denote time averaging, and we have
applied Taylor's hypothesis to convert time into distance.
Figure 4 defines a domain where the structure function is
approximately linear in r, in agreement with the von-
Karman —Howarth —Kolmogorov relation [15]. A more
accurate inspection of the linear regime can be made by
plotting the ratio F3(r)/r, a—s a function of r, on semi-
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FIG. 3. Evolution with the Reynolds number of the integral
scale 4 and the fluctuation rate u, /U.
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FIG. 4. Third-order structure function —F,(r) for
R&=1900; (a) direct plot on logarithmic scales; (b) plot of the
ratio —F3 /r on semilogarithmic scales.
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Solving in the right order allows us to rewrite the Einstein equations as a set of 
ordinary stochastic differential equations. (Chesler, Yaffe, 2013)
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Did this many times, and then computed the average:
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The area element of the apparent 
horizon is given by an expression 
of the form

𝒜(t, ⃗x ) = Σ(t, ⃗x )2

We define the area element power 
spectrum
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Results

•The area power spectrum seems to follow the energy power spectrum in 
the non relativistic limit

•Driven turbulent behavior can be achieved by placing the theory on a 
random metric

Outlook

•Does the power spectrum relate to a fractal horizon?

•Can we increase the inertial range?
•Is there relativistic turbulence?

•If so, is there a way to predict it?


