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GENERAL MOTIVATION

precise analytic understanding of transport

hydrodynamics works quantum chaotic mess
unreasonably well drives collective transport

can we find exact and rigorous bounds
on transport, given some precise set of
analyticity conditions?

are hydrodynamic observables,
such as diffusion and the speed of
sound, bounded?

they need not be universal




HYDRODYNAMICS

low-energy limit of QFTs — a Schwinger-Keldysh effective field theory
[Grozdanov, Polonyi (2013); Crossley, Glorioso, Liu (2015); Haehl, Loganayagam, Rangamani (2015); ...]

conservation laws (equations of motion) of

higher-form currents in MHD
HY [V By 9
V,LLT — O V,LLJ - O T VMJ =0 [Grozdanov, Hofman, Igbal,
PRD (2017)]
(symmetries, gradient expansions) and (QFT)
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OUTLINE

complex spectral curves and convergence

bounds from univalence

summary and future directions



COMPLEX SPECTRAL CURVES
AND CONVERGENCE

[Grozdanov, Kovtun, Starinets, Tadi¢, PRL(2019); ...]



HYDRODYNAMICS AS COMPLEX SPECTRAL CURVES

hydrodynamic modes as complex spectral curves
[Grozdanov, Kovtun, Starinets, Tadi¢, PRL (2019) and JHEP (2019)]

hydro: det £(q?,w) = 0

OIN\VE a(q®,w) =0 P(q",w) =0 | = | w;i(q) o » G cC

e.g., first-order hydrodynamics: Pi(q”,w) = (w + z’DqQ)2 (w* +ifwq® —viq®) =0

: there exists a convergent series around a critical point of any order
P(qZ,ws) =0, 0,P(q,ws) =0, ..., OPP(q,ws) #0

guaranteed up to the nearest (non-trivial) critical point ( )
cf., the Newton polygon or the Darboux theorem [Grozdanov, Starinets, Tadi¢, to appear]

f(t) ~r(t) (1 — i)y, t — to v = lim (to(n+ 1)an+1 — n)

tO n— 00 an

next critical point



HYDRODYNAMICS AS COMPLEX SPECTRAL CURVES

hydrodynamic series are (shear , sound )
. - AL c 2 . = im 2 n/2 7/ 2
Wshear = — n :_@ " o o Wsound = — n 2 :Zlis ——6
h znz::lc (q ) 13 d an::la e (q ) Vs( 5 q- +

radius of convergence in N = 4 SYM [Grozdanov, Starinets, Tadi¢, to appear]

Rshear(A) = 2.22 (1 + 674.15 )\_3/2 + .. )

Rsound(A) = 2 (1 +481.68 A %/% + .. ) perturbative
to non- |
perturbative
transition




ANALYTIC STRUCTURE

analytic structure of dispersion relations for A/ = 4 supersymmetric Yang-Mills theory

dispersion relations are connecting physical modes
(analytic continuation)




UNREASONABLE EFFECTIVENESS

: hydro works for large derivatives;

it has exceptional analytic properties at strong coupling

radius of Q/T N 0(10)

convergence in
N=4 SYM at strong

coupling

finite coupling:

microscopic input
from holography

orders of magnitude larger radius of convergence than naive ¢/T < 1 —
this is a precise incarnation of the



[Grozdanov, Schalm, Scopelliti, PRL(2017); ...]
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C o AN O S \ Lyapunov exponent N butterfly velocity
\

IAZ(t,x)| ~ |AZ(t;,%x;)| et xl/ve)
classical chaos means extreme

sensitivity to initial conditions Lo
=1

"what is quantum chaos?”
a measure: “out-of-time-ordered” correlation functions [Larkin, Ovchinnikov: Kitaev]

C(tv X) — <[W(t7 X)v V(Ov O)]T [W(tv X)v V(Ov O)]>T ~ e e L ltlxl/ve)

R

the Maldacena-Shenker-Stanford bound on

OTOC of

O(t, z) C(t,z) ~ eerrli=e/vn) A < 2T /h

in finite-N systems, quantum chaos spreads polynomially with a bounded rate of growth —
[Kukuljan, Grozdanov, Prosen, PRB (2017)]

OTOC of

[ o0, c(t) < At ~—O—O—O——O— 00—
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POLE-SKIPPING

[Grozdanov, Schalm, Scopelliti, PRL (2017); Blake, Lee, Liu, JHEP (2018); Blake, Davison,
Grozdanov, Liu, JHEP (2018); Grozdanov, JHEP (2019)]

resumed all-order hydrodynamic series (e.g. sound)
passes through a “chaos point” at

w(q =1Ap/vg) =1tAp = 27T
where the associated 2-pt function is

Res G% (w =iAp,q =tAp/vp) =0

infinite constraints on correlators at multiples of Matsubara

frequencies [Grozdanov, Kovtun, Starinets, Tadi¢, JHEP (2019);
Blake, Davison, Vegh, JHEP (2019)]




CU%/)\L 5 D

- diffusion vs. chaos ¥ &
h/(47TkB) < 77/5 [Hartnoll; Blake, ...] Ly ¥
Ch/(kBT) SJ R shear viscosity Vg S C/\/§
[Kovtun, Son,
relaxation time Starinets; ...] sound
[Sachdev; ...] [Hohler, Stephanov; Cherman,

Cohen, Nellore; ...]

BOUNDS FROM UNIVALENCE

[Grozdanov, PRL (2021)]

can we find exact and rigorous bounds

on transport, given some precise set of
Ar <2nT/h analyticity conditions?

exponential Lyapunov chaos they need not be universal

- ... closer in the spirit of exactness and non-
C(t) < At3 universality, but not really, to [Grozdanov,
Lucas, Sachdev Schalm, PRL (2015)]

polynomial weak chaos




UNIVALENT FUNCTIONS

univalent function f(z), z € C is a complex, holomorphic and injective function

injectivity: f(z1) # f(z2) for all z; # 29

for f(z) univalent in some region U, by the Riemann mapping theorem:

holomorphic functions are “stift”, univalent function even more so...

C:
z=¢ () , , ,
is univalent in )

C o

D ={¢[I¢] <1}

the growth theorem: €|
(1+1¢))°

€]
(1-1¢])?

< |f(Q)] <

the famous Bieberbach conjecture (1916), now de Branges’s theorem (1985):

b,| < n, foralln>2




EXTREME UNIVALENCE: THE KOEBE FUNCTION

the Koebe function defined on D = {{||¢| < 1}:

S

- =(+2C0+3C+... =) n"
n=1

it saturates all univalence inequalities

it is a conformal map to the complex plane without a semi-infinite line:

fK D — C\ (—OO,—1/4]

the Koebe 1/4 theorem (proven by Bieberbach):

any univalent function f(¢) mapping I — C
contains a disk of radius |f(¢)| = 1/4
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WHEN IS A FUNCTION UNIVALENT?

whenis f(z) univalent and whatis [/ ?

local univalence

f'(z) #0 | everywhere is insufficient

global univalence is tricky!

16

sufficient vs. necessary conditions; e.g., in terms of {f(2),2} = ' (2)/f'(2) — (3/2) (f"(2)/f'(2))"

we will choose

if, moreover, Re f'({) > 0, ¢ € D, then we get even stronger bounds (MacGregor):

, |zl <1

Re f'(z) > 0 in any convex z € U C C

—[¢l+2In (1 +[¢]) < [f(O)] < —[¢] = 2In (1 — [¢])

b,| < 2/n, foralln > 2
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BOUNDS ON HYDRODYNAMICS

©.@) @)
series: |waig(z = q°) = —i Z cn2", c1=D;| wi 4(z=vaq?) =—i Z ane* 2 2"
=1l n=1
dispersion relations have a finite region of univalence U
def: fai(2) = waig(z) — |[fair(C) = iaitr (0~ =(+ Z pditt ¢
l)8<¢

need to know the
(= 90 value of the dispersion
relation at one point
@—— (20)
Wwop = WL
map 0 to 0 L ( O)

exact and rigorous bounds on all coefficients immediately follow (similarly for sound):

lwol (1 = |ol)”
ol 10co™1(0)] = 7 ol |0cp~1(0)]

2D
217 10 O)

stronger bounds with logs follow if Re f'(¢) > 0, |¢| < 1



BOUNDS ON HYDRODYNAMICS

are hydrodynamic dispersion relations really univalent?

they are holomorphic and invertible at z = 0 (Puiseux), hence locally univalent;

a finite |U = {2z |z| < min][|z,|, R]}| with group velocity vy = Ow/0q | and

diffusion : Re f'(z) >0 — zg:qgEminq2|Rengmq:Imngeq

sound: Re f'(2) >0 = 2z, =¢, =ming|Rev, =0

sound seems to lose univalence via the local condition (is this generic?):

f(zg)) =0 = ¢, =mingqg|v, =0

with no additional input, we can get

or 1/(2In2 —1) =~ 2.59 / critical g
. . B B setting R
diffusion: 0< D <4 ”Uph(CIZ)/QL |q| = min||q,|, |g«|]
sound : 0 <o, <4 |Uph£67\)|\
phase velocity Uph = w/q
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COMPLICATED DIFFUSION

example: momentum diffusion in N’ =4 SYM theory

pole-
skipping

Mobius transformation I O : U— 1D
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Re f'(¢) > 0
so more stringent
bounds with logs

¢=1¢le, [¢] <1

proof that this is generic?

0.046/T < D = 1/4xT =~ 0.080/T < 0.201/T
2D 2D
< <

better convergence

squeezes the series

input: pole-skipping + radius of convergence R
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SIMPLE DIFFUSION, BUT EXTREME UNIVALENCE

assume a dispersion relation is univalent everywhere except at a single branch cut
e.g.: self-dual axion model

[Davison, Gouteraux (2014)] (= o(z) = 2 — 2z, +24/22 — 22,4
z )
o= =it (1- /1~ o) 2= 1(¢) = —4z. fx(Q) = - <14f*§>2

optimal bounds
(explicit Blake-type proposal D > v%/\p):

2 V5 vy AL
I =——<0: =<D<L =4 —
energy diff: 20 2 < N <SPy + 5
Y 2 A 2
momentum diff: 0 < zp= "% < R: B _ LSDSU—B
Up AL R AL
: D
higher orders: 0<ec < —a 7
infinite radius of convergence (squeeze):
F o :
wdiﬂ:(q2) — —iDq2 — ;B o2 positivity of c; and connection to
AL Wu, Baggioli, Li, arXiv:2102.05810




COMPLICATED SOUND

univalence breakdown is set by the local condition

f(z))=0 = ¢, =mingq|v, =0

example: N =4 SYM theory

Zg = \/q; = —3.7914T
/fzg = /a2 ~ —3ivs /4D = —5.4414T

exact
(numerics)

proof that this is generic?

approximate

(hydro)

construct a sufficient analyticity condition for the conformal bound on the speed of
sound [Cherman, Cohen, Nellore (2009); Hohler, Stephanov (2009)], but stay tuned...

9:071(0)] = 4V3lwo(20)| A 6ol = lp(z0)| 21 = 0<w, < V;




SUMMARY AND
FUTURE DIRECTIONS



SUMMARY AND FUTURE DIRECTIONS

complex analytic structures of transport reveal new physical properties

holographic duality is an invaluable tool for exploring QFTs

hydrodynamics has exceptional analytic ( ) properties
is a precise relation between hydrodynamics and quantum chaos

new methods for rigorous lower and upper bounds on all coefficients of

hydrodynamic dispersion relations

a lot to be done: generic results (stay tuned), applications, ...
uninsightful comment: application of these techniques beyond large-N
application to other problems like scattering amplitudes

[Khuri, Kinoshita, Phys. Rev. (1965);
Haldar, Sinha, Zahed, arXiv:2103.12108]

Quantum field theory
and the Bieberbach conjecture

Parthiv Haldar®* Aninda Sinha®{ and Ahmadullah Zahed®?
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THANK YOU!



