

WHAT ATTRACTS TO ATTRACTORS?

FROM FAR-FROM-EQUILIBRIUM TO HYDRODYNAMICS

Based on work with Aleksi Kurkela, Urs Wiedemann and Bin Wu Reference: 1907.08101 (PRL 2020)

Wilke van der Schee HoloTube Geneva, 26 January 2021

HYDRO AND QGP

Exploring the limits of hydrodynamics

BIG QUESTIONS

- 1. How does QGP form and hydrodynamize within 1 fm/c? What are the qualitative differences, if any, between the description of hydrodynamization in a heavy ion collision obtained by assuming a weakly coupled initial stage versus a strongly coupled holographic calculation? Note that perturbative calculations typically treat $\alpha_s = 0.3$ as small while holographic calculations treat the corresponding 't Hooft coupling $\lambda \approx 11$ as large. What can we learn about the timescales and dynamics of hydrodynamization, and hence QGP formation, by analyzing the wakes that jets leave behind as they traverse a droplet of QGP?
- 2. What are the limits of the applicability of hydrodynamics? Can it be applied even to systems of size a fermi or less? What is the smallest droplet of QGP that behaves hydrodynamically, and how does the answer to this question change at very high temperatures where $\eta/s > 1$ and QGP is no longer a strongly coupled liquid?

THE BIG QUESTIONS

When is hydrodynamics applicable?

- And what kind of hydrodynamics? (1st, 2nd or infinite order?)
- Also: dependent on position

What is the initial fluid profile at this time?

- Presumably depending (strongly) on initial stage model
 - Strong versus weak? Constituent `quarks'?
- Often argued: memory loss due to attractor
 - But is this really so?
 - → dynamics is not necessarily on the attractor
 - → even on attractor: lot of 3+1D freedom left

ATTRACTORS AND QGP

Energy density vs time, boost-invariant: 0+1D

- Late time: $e \propto \tau^{-4/3}$
- Attractor = approach to hydro
- Depends (crucially) on η/s
- Depends (slightly) on theory (C₆

Attractor determines pressure

- Determines work done
- Can be used to estimate entropy:

$$(s\tau)_{\rm hydro} = \frac{4}{3} C_{\infty}^{3/4} \left(4\pi \frac{\eta}{s} \right)^{1/3} \left(\frac{\pi^2}{30} \nu_{\rm eff} \right)^{1/3} (e\tau)_0^{2/3}$$
$$\frac{dN_{\rm ch}}{d\eta} \approx \frac{1}{J} A_{\perp} (s\tau)_{\rm hydro} \frac{N_{\rm ch}}{S}$$

Wilke van der Schee, CERN

ATTRACTORS AND QGP

A practical application

Wilke van der Schee, CERN

6/18

HYDRODYNAMICS AND ATTRACTORS

Solve Muller-Israel-Stewart or Boltzmann equation

2 -

T

Hydro:

$$\partial_{\tau}\varepsilon = -\frac{1}{\tau} [\varepsilon + p_L]$$

$$\partial_{\tau}\phi + \frac{4}{3}\frac{\phi}{\tau} = -\frac{1}{\tau_{\rm R}} \left[\phi - \frac{4}{3}\frac{\eta}{\tau}\right], \quad \phi \equiv \frac{1}{3}\varepsilon - p_L$$

RTA:
$$\partial_{\tau} f + \vec{v}_{\perp} \cdot \partial_{\vec{x}_{\perp}} f - \frac{p_z}{\tau} \partial_{p_z} f = -\frac{(-v_{\mu}u^{\mu})}{\tau_{\mathrm{R}}} [f - f_{\mathrm{eq}}]$$

Michal P. Heller and Michal Spalinski, Hydrodynamics beyond the Gradient Expansion: Resurgence and Resummation (2015) Paul Romatschke, Fluid Dynamics Far From Local Equilibrium (2017)

EARLY TIME DYNAMICS IN RTA

Depends crucially on initialization time:

- Decays to attractor solution in a time of order τ_0
 - Expansion `selects' particles with zero longitudinal momentum
- Curves get steeper once $\tau_0 > \tau_R$ (on log scale)

EARLY TIME EXPANSION

Expand attractor around early and late times:

- Starts at 0 (free streaming), grows (single hit), converges to isotropy
- Green-dashed: Pade approximant of early time expansion
- Converges for all times

 $\begin{array}{rcl} \mbox{Wilke van der Schee, CERN} \\ ds_{\rm EF}^2 &= & -C {\rm d}t^2 + 2 {\rm d}r {\rm d}t + 2G {\rm d}z {\rm d}t + S^2 \left(e^B {\rm d}{\bf x}_{\perp}^2 + e^{-2B} {\rm d}z^2 \right) \end{array}$

ATTRACTOR IN ADS/CFT REVISITED

Try a wide range of initial profiles

- IR profile: $B_{IR}(\rho, \tau_0) = \rho^4(a + b \rho)$
- UV profile: $B_{UV}(\rho, \tau_0) = \rho^4 e^{-40\rho} (a + b \rho)$

Could in principle follow from a real model, e.g. colliding sheets

ATTRACTOR IN ADS/CFT REVISITED

Start at seven different initial times

- UV + IR profiles, fixing initial isotropy + derivative
- Can distinguish a `profile-dependent' attractor (?)

APPROACH TO HYDRODYNAMICS

Many order hydrodynamics in Bjorken strongly coupled $\mathcal{N}=4$

• Order 7 seems optimal (?)

APPROACH TO HYDRODYNAMICS

Same AdS/CFT evolutions as before

- Quite curious: UV agree with 7^{th} order at ~ t = 0.4
- For general profiles going beyond 2nd order does not improve
- Even more curious: is there an early time attractor with free streaming? But why? (see also 1704.08699)

ADS/CFT ON A LINEAR SCALE

Some dynamics is clearer on a linear scale:

ATTRACTOR SUMMARY

Israel-Stewart and RTA:

- Decay to attractor on time scale τ_0
- RTA: expansion dominated: free streaming ($\sim p_L = 0$)

Strong coupling

- Decay to attractor on time scale 1/T
- Initial dynamics determined by initial condition (IC)
 - `UV' profile converges faster

Attractor itself dominated by interaction/transport (τ_R)

WHY DOES ADS/CFT DECAY `SLOWLY'?

UV and IR profiles contain higher-point correlation functions

- Impossible to put correlations on lengths >> 1/T (because of horizon)
- IR: strong correlation on scale 1/T
- UV: constructed to have only small-scale correlations

Causality: system cannot relax before a time 1/T has passed (IR)

RTA can relax much faster

Somewhat against weak/strong coupling intuition ©

But perhaps it's all about initial conditions.

WEAK COUPLING BEYOND RTA

Relaxation time approximation gives limited dynamics

- All moments decay at same time: quick decay to attractor
- Different in full-fledged kinetic theory (YM): (also showing bottom-up thermalization)

3+1 ADVERTISEMENT

Follow anisotropy across system sizes position in plane

- Relevant parameter: opacity: $\hat{\gamma} = \gamma R^{3/4} \left(\varepsilon_0 \, \tau_0 \right)^{1/4}$
- Depending on coupling strength γ
- Crosses indicate t = 2R, after which system decouples

THE BIG QUESTIONS / ANSWERS (?)

When is hydrodynamics applicable?

- RTA: within $2/\tau_0$, strong coupling: within 1/T
- And what kind of hydrodynamics? (1st, 2nd or infinite order?)
- RTA: attractor (τ_R), strong coupling: 2nd order, or 7th order in rare cases
- Also: dependent on position

What is the initial fluid profile at this time?

- Presumably depending (strongly) on initial stage model
 - Strong coupling: evolution depending on higher-point correlations: may need refined knowledge initial stage (this work: arbitrary IC)
- Often argued: memory loss due to attractor
 - In the end everything goes to hydro (at least in 1+1D CFT)
 - RTA: IC at early enough τ_0 is truly lost (but note assumption of RTA)
 - Strong coupling: IC will influence final distribution of energy
 - Conservation of misery remains true...