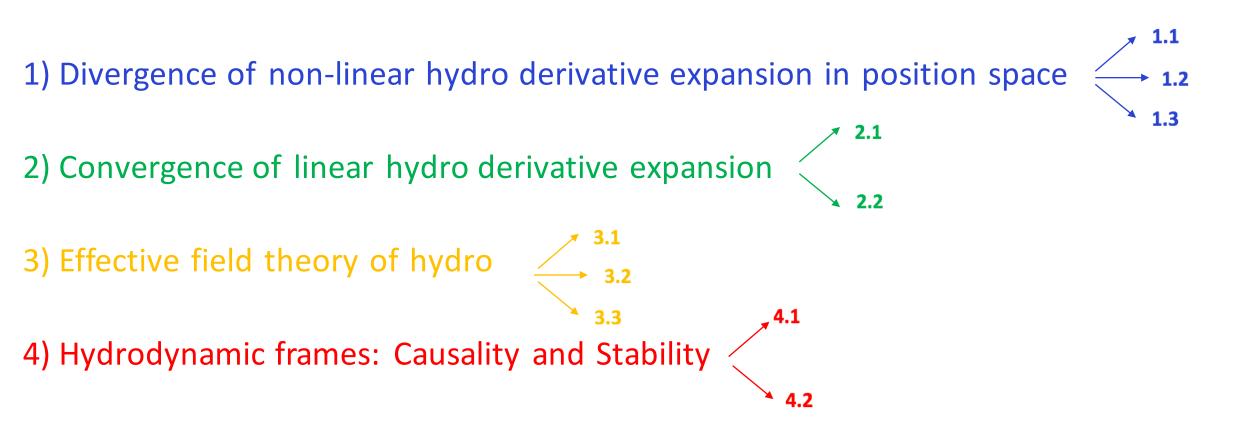
Hydrodynamics panel discussion

01/12/2020

Navid Abbasi, Matthias Kaminski

Outline:



- Each slide includes "A very short review" + "A number of questions" → 2min
- We do not intend to introduce any paper, just refer to (1-2) well-known ones

1.1 Divergence of the derivative expansion in real space

 $\frac{\dot{T}}{T^2} \sim \frac{1}{\tau^{2/3}}$

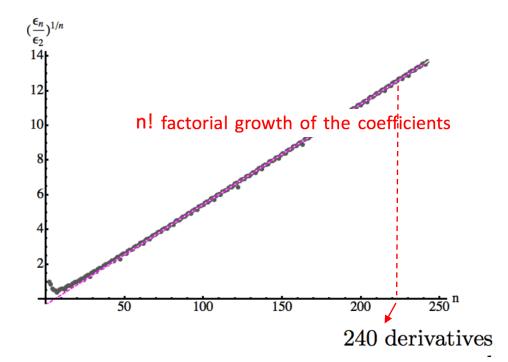
Search for **1-dim boost invariant flow from holography**

$$ds^{2} = 2d\tau dr - Ad\tau^{2} + \Sigma^{2}e^{-2B}dy^{2} + \Sigma^{2}e^{B}(dx_{1}^{2} + dx_{2}^{2})$$

- Hydro in Large τ limit:
- The energy density (sensitive to nonlinearities given in a Derivative expansion:

$$\epsilon = \frac{3}{8} N_c^2 \pi^2 \frac{1}{\tau^{4/3}} \left(\epsilon_2 + \epsilon_3 \frac{1}{\tau^{2/3}} + \epsilon_4 \frac{1}{\tau^{4/3}} + \dots \right)$$

~ T^4 ~ $\frac{\dot{T}}{\tau^{2/3}}$



- 1. Is it sufficient to say that the derivative expansion is divergent?
- 2. Is this factorial growth specific to the particular choice of a highly symmetric flow (Bjorken)?
- 3. The origin of such N! growth?
- 4. Any analogue in QFT?
- 5. Any resolution? Resummation?!!!! (→ Next slide)

[Heller, Janik, Witaszczyk, 1302.0697]

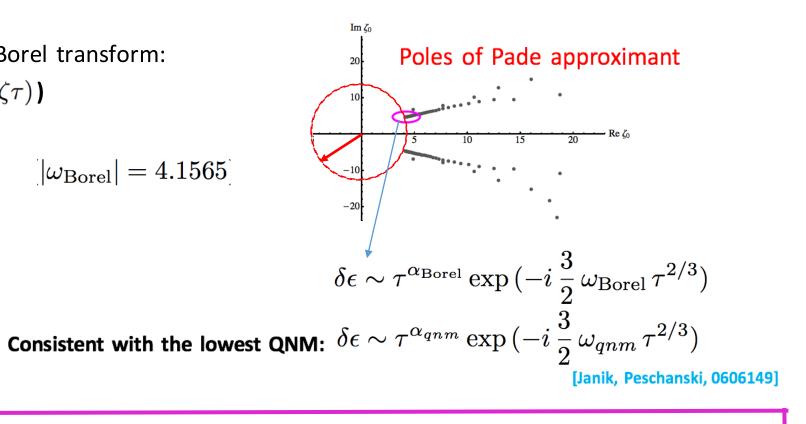
1.2 Resumming the derivative expansion.

Borel-transformed series:

$$\sum_{n=0}^{\infty} \epsilon_{n+2} \left(\frac{1}{\tau^{2/3}} \right)^n \quad \underbrace{\tilde{\epsilon}_n = \epsilon_n / n!}_{n=0} \qquad \sum_{n=0}^{\infty} \tilde{\epsilon}_{n+2} \left(\frac{1}{\tau^{2/3}} \right)^n \qquad \epsilon_{resum}(\tau) = \int_0^\infty \tilde{\epsilon}(\zeta \tau) \, e^{-\zeta} \, d\zeta$$

- Analytic continuation is needed for Borel transform: Pade (rational function instead of $\tilde{\epsilon}(\zeta \tau)$)

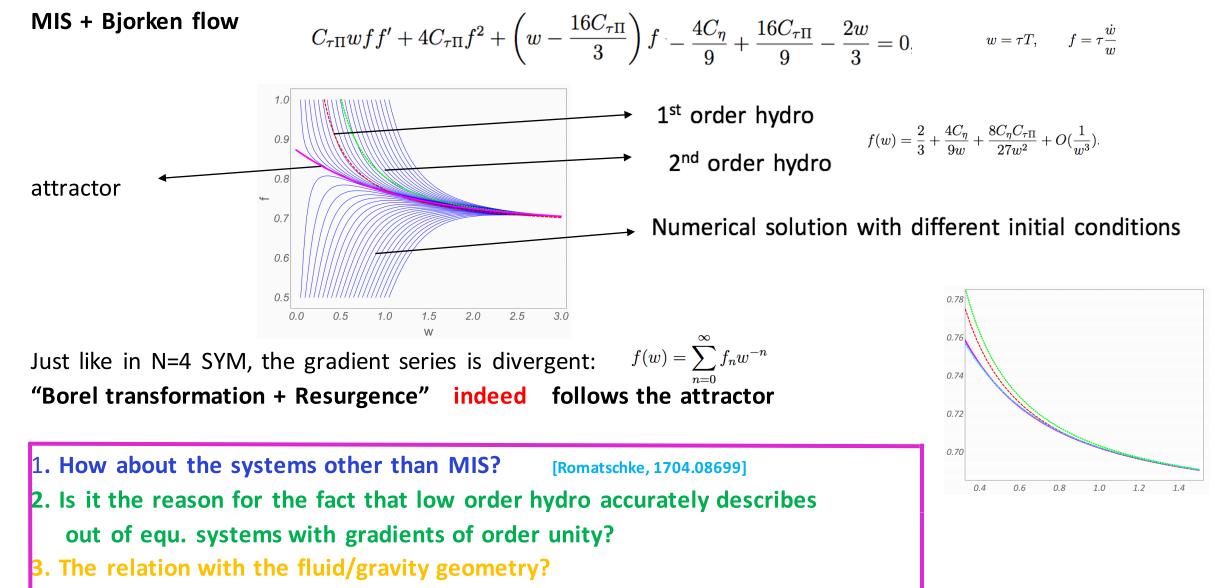
The radius of convergence of Pade
 is set by the location of branch point



- **1.** Ambiguity in resummation?
- 2. Which contour?
- 3. Resumming 240 terms gives the first QNM, is it possible to get more?
- 4. The whole micro from the derivative expansion?

1.3 Beyond the derivative expansion: Attractors.

[Heller, Spalinski, 1503.07514]

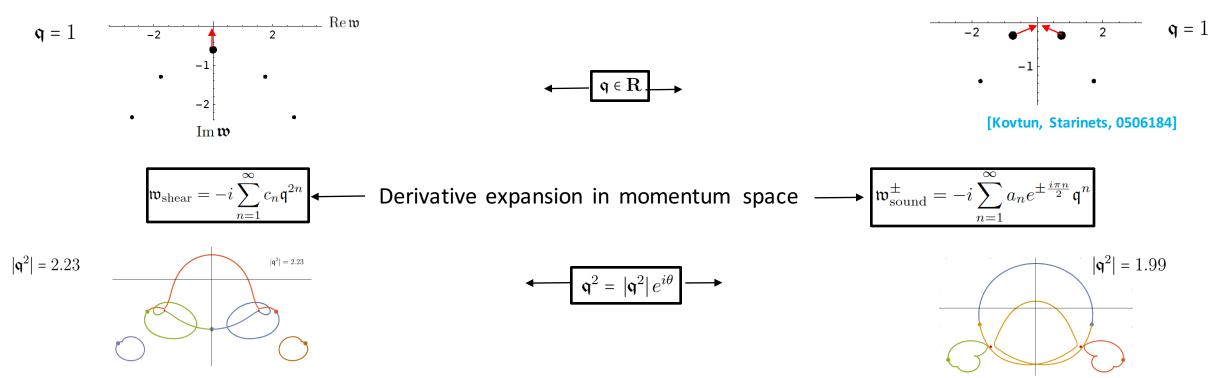


4. What are actually the non-hydro modes?

2.1 Linearized hydro: Derivative expansion in momentum space:

Linearized hydro near equilibrium $P(\mathbf{q}^2, \omega) = F_{\text{shear}}^2 F_{\text{sound}} = 0$

[Withers, 1803.08058] [Grozdanov, Kovtun, Starinets, Tadic, 1904.01018]



Radius of convergence is set by $|q^2|$ of the point at which **level crossing** occurs.

- 1. Why linearized hydro is able to catch the non-hydro modes, too? Non-linearities are unimportant?
- 2. How to interpret a hydro mode being outside its domain of convergence?

For the charge diffusion: $|\mathbf{q}_c| \approx 0.72$ Is it actually a hydro mode?

2.2 Real space vs. momentum space

[Heller, Serantes, Spalinski, Swensson, Withers, 2007.05524] [Withers, Holotube talk]

$$\Pi_{jl} = -A(\partial^2) \,\sigma_{jl} - B(\partial^2) \,\pi^u_{jl} - C(\partial^2) \,\pi^\epsilon_{jl}$$

Derivative expansion in real space: $A = \sum_{n=0}^{\infty} a_n \left(-\partial^2\right)^n$

$$\pi_{jl}^{\epsilon} = \left(\partial_j \partial_l - rac{1}{d-1}\delta_{jl}\partial^2
ight)\epsilon, \ \pi_{jl}^{u} = \left(\partial_j \partial_l - rac{1}{d-1}\delta_{jl}\partial^2
ight)\partial_r u^r.$$

Is convergent if:

$$|\mathbf{q}_{max}|^2 < \min\left\{ |\mathbf{q}_c^{(A)}|^2, |\mathbf{q}_c^{(B)}|^2, |\mathbf{q}_c^{(C)}|^2 \right\}$$

Support of initial data in momentum space

- Does it show that speaking about the convergence of derivative expansion without referring to a specific solution is meaningless?
- How to reconcile it with the divergence of the derivative expansion in the full non-linear hydro?
- Mechanism for the compact support? [Withers, Holotube talk]
- Is it possible to extract the hydrodynamic attractor from linearized hydro?

3.1 Hydrodynamics from Effective action: **Top-Down**

The first question is: "How to construct an action with its Euler-Lagrange's equations being the hydro equations?"

Diffusion model:

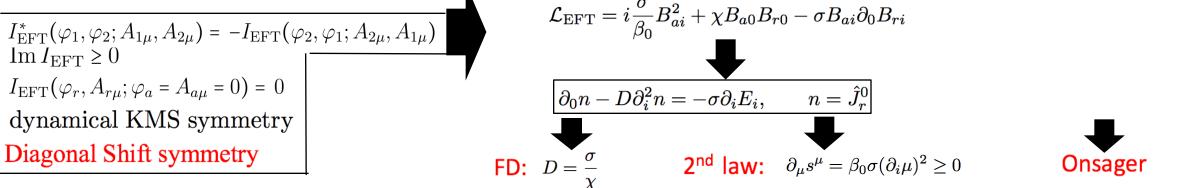
$$e^{W[A_{1\mu},A_{2\mu}]} = \operatorname{Tr}\left(\rho_0 \mathcal{P}e^{i\int d^d x \, A_{1\mu}J_1^{\mu} - i\int d^d x \, A_{2\mu}J_2^{\mu}}\right) \qquad \qquad \rho_0 = \sum_{\mu} \left(\rho_0 \mathcal{P}e^{i\int d^d x \, A_{1\mu}J_1^{\mu} - i\int d^d x \, A_{2\mu}J_2^{\mu}}\right)$$

• Integrating out UV dof:

$$e^{W[A_{1\mu},A_{2\mu}]} = \int D\varphi_1 D\varphi_2 e^{iI_{\text{EFT}}[\varphi_1,\varphi_2;A_{1\mu},A_{2\mu}]}$$

• Demanding "gauge inv. + (EoM=Conservation equation)": $e^{W[A_{1\mu},A_{2\mu}]} = \int D\varphi_1 D\varphi_2 e^{iI_{\text{EFT}}[B_{1\mu},B_{2\mu}]} = B_{1\mu} \equiv A_{1\mu} + \partial_\mu \varphi_1$

Symmetries:



- . FD, 2nd law and Onsager relations are being obtained from the first principles.
 - Is it to say that there is no anymore constraint on the transport coefficients?

3.2 Applications

1) Long time tail in diffusion

[Chen-Lin, Delacretaz, Hartnoll 1811.12540]

$$\mathcal{L}_{1}^{\text{free}} = -\varphi_{a} \left(\partial_{t} \delta n - D\partial^{2} \delta n\right) + iT_{0} \sigma \partial^{i} \varphi_{a} \partial_{i} \varphi_{a},$$

$$\mathcal{L}_{1}^{3\text{pt}} = \frac{1}{2} \lambda \delta n^{2} \partial^{2} \varphi_{a} + i \chi T_{0} \tilde{\lambda} \delta n \partial^{i} \varphi_{a} \partial_{i} \varphi_{a},$$

$$\mathcal{L}_{1}^{4\text{pt}} = \frac{1}{3} \lambda_{4} \delta n^{3} \partial^{2} \varphi_{a} + i \chi T_{0} \tilde{\lambda}_{4} \delta n^{2} \partial^{i} \varphi_{a} \partial_{i} \varphi_{a}.$$
Long time tail: $\left\langle \frac{1}{2} \{J_{a}^{i}(t), J_{b}^{j}(0)\} \right\rangle = \frac{T}{w} \frac{\delta^{ij}}{12} \left\{ \frac{1}{[(D+\gamma_{\eta})\pi|t|]^{3/2}} \chi \right\}_{ab}^{ab} + (exponential decay)$

2) Non-universality of hydro
$$\mathcal{L}_{2}^{4\text{pt}} = i \frac{\vartheta_{1}}{\chi^{2}} (\partial^{i} n \partial_{i} \varphi_{a})^{2} - i \frac{\vartheta_{1} + \vartheta_{2}}{\chi^{2}} (\partial^{i} n \partial_{i} n) (\partial^{j} \varphi_{a} \partial_{j} \varphi_{a}) + \cdots$$
Stochastic coefficients
$$\mathcal{L}_{2}^{4\text{pt}} = i \frac{\vartheta_{1}}{\chi^{2}} (\partial^{i} n \partial_{i} \varphi_{a})^{2} - i \frac{\vartheta_{1} + \vartheta_{2}}{\chi^{2}} (\partial^{i} n \partial_{i} n) (\partial^{j} \varphi_{a} \partial_{j} \varphi_{a}) + \cdots$$
Fluctuations break
$$\frac{\omega}{k^{2}} \operatorname{Im} G_{ra} = \chi D + \frac{\chi^{2} \lambda^{2} T_{0}}{32 \pi D^{3/2}} \omega^{1/2} k^{2} + \cdots - \frac{\lambda^{2} T_{0} (\frac{2}{3} \vartheta_{1} + \vartheta_{2})}{1024 \pi^{2} D^{4}} \omega^{2} k^{4} + \cdots$$
Not fixed by the constitutive relations
the derivative expansion

Is the above long time tail just a confirmation of "long time tail" computed in [Kovtun, Yaffe 0303010] ?
 Which of the following problems is more problematic for classical hydro?

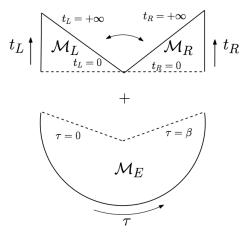
"Breakdown of derivative expansion" or "appearance of stochastic coefficients"

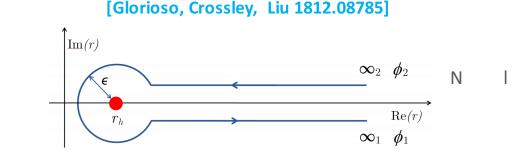
3. How to measure stochastic coefficients in experiment?

3.3 Holographic Schwinger-Keldysh contour

Limited to the diffusion model

[de Boer, Heller, Pinzani-Fokeeva 1812.06093]





Based on analytic continuation across the horizon

$$I_{\text{EFT}}[B_{1\mu}, B_{2\mu}] = \tilde{S}_{\text{on-sell}}|_{C_0(r_c)=0}$$

No analytic continuation across the horizon [Skenderis, van Rees 0812.2909]

$$i S_{eff} = i S_{\text{onshell}} \Big|_{u_R=0} - i S_{\text{onshell}} \Big|_{u_L=0} - S_{\text{onshell}} \Big|_{u_E=0}$$

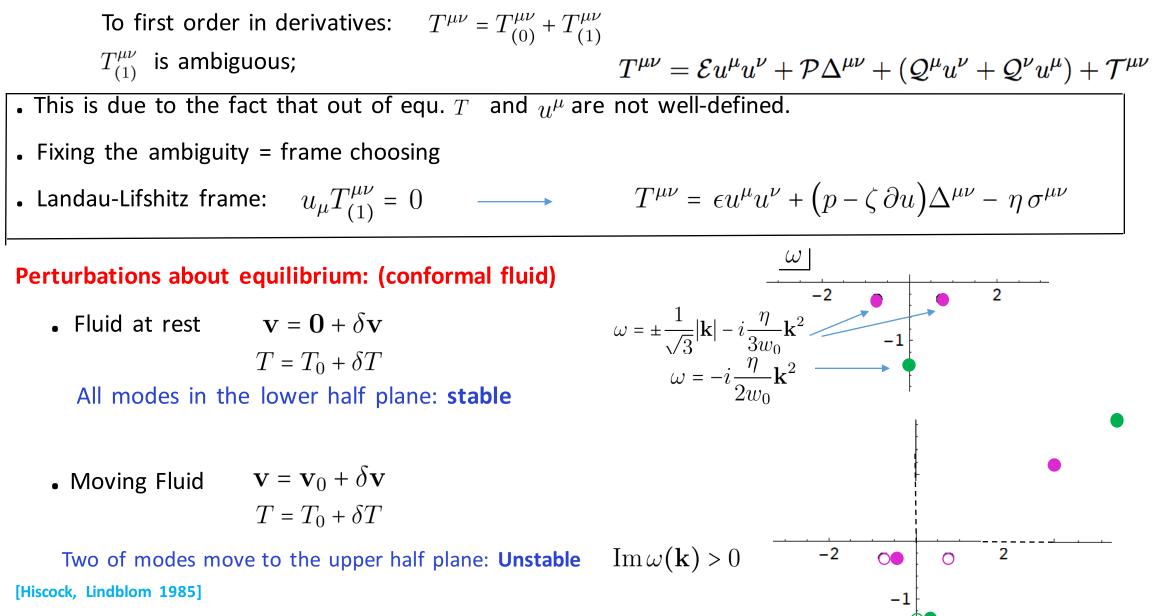
1. Only quadratic action? How far is it from a complete picture in the bulk? What are the obstacles?

2. Do we need one-loop computation in Einstein gravity in the bulk to study the hydro fluctuation on the boundary? Finding stochastic coefficients from gravity? [Caron-Huot, Saremi 0909.4525]

3. Any relation to large order behavior?

4.1 Instability in an uncharged fluid

[Kovtun 1907.08191]



4.2 Stability of an uncharged fluid

In previous case

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + (p - \zeta \partial u)\Delta^{\mu\nu} - \eta \sigma^{\mu\nu}$$

In general frame:

$$F_{\text{shear}} = iw_0 \,\omega - \,\mathbf{k}^2 \,\eta$$
$$F_{\text{sound}} = -w_0 \,\omega^2 - i\mathbf{k}^2 w_0 \,\omega + \mathbf{k}^2 w_0^2 v_s^2$$

0

Thus there exist more general frames in which, the first order hydro is stable.

 $T^{\mu\nu} = \mathcal{E}u^{\mu}u^{\nu} + \mathcal{P}\Delta^{\mu\nu} + (\mathcal{Q}^{\mu}u^{\nu} + \mathcal{Q}^{\nu}u^{\mu}) + \mathcal{T}^{\mu\nu}$

- **1. Why do we trust the modes outside of regime of hydro?**
- **2.** Off-shell or on-shell? For example in a conformal fluid: $\varepsilon_1 = 3\pi_1$, $\varepsilon_2 = 3\pi_2$, $\pi_1 = 3\pi_2$

If on-shell, $\frac{\dot{T}}{\tau} = -v_s^2 \, \partial_\lambda u^\lambda$, then we are left only with η !

- 3. Does it mean that conformal fluid with on-shell constitutive relations is always unstable?
- 4. What about the fluid/gravity?