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Hydrodynamics is ubiquitous

Perturbative expansion in derivatives


Each               given by a sum over allowed symmetric structures


Transport coefficients encode microscopic data


Captures non-equilibrium processes of QFTs, black holes, etc.
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Question 2: can the microscopic theory be recovered by suitable (re)summation?

Question 1: does this series converge? 

rµ hTµ⌫i = 0

hTµ⌫i = Tµ⌫
ideal +⇧µ⌫

⇧µ⌫ =
1X

n=1

⇧µ⌫
(n)�

n



“To converge or not to converge, that is the question.”
- Holotube organisers



Conformal hydrodynamics

⇧µ⌫ = �⌘ �µ⌫ + ⌧⇡⌘D�µ⌫ � 1

2
✓1 D↵D↵�µ⌫ � ✓2 DhµD⌫iD↵U

↵ + . . . ,
(some terms suppressed)

Transport coefficients                                        fixed by microscopic details


e.g. famously in any QFT with an Einstein dual


⌘, ⌧⇡, ✓1, ✓2, . . .

⌘ =
1

4⇡
s

e.o.s.

shear tensor, one derivative of U

Tµ⌫
ideal = (✏+ P )UµU⌫ + Pgµ⌫

To answer our questions we want to compute as many coefficients as we can
• holography to the rescue



Outline of the talk 

1. Bjorken flow (2013) 

2. Dispersion relations (2018) 

3. New real space results (2020)

Spoiler / take-home message:   
There is no intrinsic microscopic answer

It is conditional on the momentum-space support of a solution

The condition itself is intrinsic to the microscopic theory

(I will use     and     interchangeably for spatial momentum… sorry)q k



1. Bjorken flow 

[Heller, Janik, Witaszczyk (2013)] 
(& subsequently many other works)



Boost-invariant flow, 

of interest in heavy-ion collisions


Depends only on
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Found to be a divergent series

�✏ ⇠ ⌧↵ exp

�
�i 32!1(0)⌧2/3

�
Resummation via Borel-Padé finds non-perturbative contributions

expected since QNMs are non-perturbative in 1/⌧

✏n ⇠ n!
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✏ = 1
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     are transport coefficients, and in holography were generated to order 240✏n

Large      expansion ~ hydrodynamic gradient expansion



2. Dispersion relations 

[BW 1803.08058] 



rµ hTµ⌫i = 0Hydrodynamic equations of motion

admit plane wave solutions

In the shear channel,

For a black hole, this is a long-lived quasinormal mode

part of a the hydro series

�U ⇠ eiqx�i!(q)t

!(q) = �iDq2 +O(q4)

!(q) =
1X

n=1

!nq
2n
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Model choice inspired by [Brattan & Gentle 2010] - movies depicting 
intricate trajectories of shear-mode poles



!12

4 8 12 16 20 24 28 32 36 40

n

10�1

100
1

+
!

n
q2 ⇤

!
n

�
1

Fit of c0/n

where we have fixed an arbitrary coe�cient to unity. We subsequently expand this expres-

sion in q to generate horizon boundary conditions for each of the  
n

. At level 0 we can

easily solve the equation, to obtain  0(z) = z. Next order will determine  1(z) and !1,

and so on. We turn to numerics to evaluate the remaining  
n

and associated frequency

coe�cients !
n

for n � 1. To obtain !
n

one must solve n ODEs. We do this using a shooting

method, integrating out from the horizon with a guess for !
n

and iteratively improving

this guess until we satisfy the boundary conditions at z = 0. The values we obtain are

summarised in table 1.

3 Radius of convergence

Using the specific microscopic model detailed in the last section, we have determined the

Taylor expansion of !(q) (up to some finite order N = 40, i.e. hydrodynamic order 79),

!(q) =
NX

n=1

!
n

q2n. (3.1)

Rendering the !
n

dimensionless using the scale q⇤, we present the coe�cients obtained

in table 1. Next we can determine the radius of convergence by looking at the ratios of

successive terms. Specifically we form the new dimensionless sequence,

r
n

⌘ !
n

q2⇤
!
n�1

. (3.2)

The large-n behaviour of this sequence is 1 + r
n

= c0/n as illustrated in figure 1, so r
n

converges to �1 confirming that as expected, the radius of convergence of the hydrodynamic

expansion is governed by q2 = �q2⇤, i.e. the branch points at q = ±iq⇤.

As a further diagnostic, we compute the diagonal Padé approximant of the series. i.e.

defining a ratio of two polynomials,

P
q

(q) =

P
N

i=0 a
i

qi

1 +
P

N

j=1 b
j

qj
(3.3)

calculate the coe�cients a
i

, b
i

from the coe�cients !
n

by matching order-by-order in the

Taylor series around q = 0. We plot the poles and the zeros of P
q

(q) in figure 2 for the

upper-half plane, showing an alternating sequence of poles and zeros along a radial ray.

The closest pole to q = 0 is given by q ' 0.753i, a good indicator of the branch point at

iq⇤ ' 0.750i (the same structure exists in the lower-half plane).
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•      converges to         at a rate 

• radius of convergence is       set by a singularity at
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Branch-point singularity in the complex-q plane
Suggests we should view              as a multi-sheeted Riemann surface!(q)



there are infinitely many sheets, all seem to be connected for RN-AdS4
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Figure 5: Im!(q) for two sheets constructed from a summation of the hydrodynamic series

for the dispersion relation of the shear-di↵usion mode in holography. The upper red dot

corresponds to the hydrodynamic point, q = 0 where !(0) = 0 on that sheet. The lower

red dot corresponds to a non-hydrodynamic mode at q = 0, where !(0) on that sheet

corresponds to the frequency of a non-hydrodynamic mode, given in table 2. The solid

blue and black lines correspond to branch cuts. A comparison with the exact result on the

Imq axis is given in figure 3.
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Hydrodynamics:

neighbourhood of 

origin on sheet 1

closest singularity to q=0

on hydrodynamic sheet of w(q)

radius of convergence set by

(another b.p.

connecting to 

more sheets)

transient/

nonhydro

QNM

!(q) =
1X

n=1

!nq
2n
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Figure 3: Extending the hydrodynamic derivative expansion to a second sheet. The black

points in all panels show the exact values, obtained numerically via a standard shooting

calculation, and without invoking a derivative expansion. The coloured curves are as fol-

lows: Panel a) shows the hydrodynamic Taylor expansion, which converges only up to

the branch point shown. Panel b) shows the hydrodynamic expansion summed as a Padé

approximant P
z

of a complex variable z as defined in 4.2, producing two sheets (shown

in lime and magenta respectively) which show excellent agreement up to a second branch

point. Panels c) & d) show the Padé approximant P
u

of a complex variable u as defined

in 4.3, extending past another branch point and allowing the summed hydrodynamic ex-

pansion to describe the real line. The error in the empirically inferred second branch point

of panel c) is damped as the real line is approached.
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Imq/µ

Branch point singularities = well-known mode-collision phenomenon


But here at non-real q


Was not appreciated before that they set the radius of convergence

±iq⇤
hydro sheet

transient sheet

A demonstrative slice:

hydro. approx

via. partial sum



q⇤ ⌘ ✏+p
2µ

p
⌘

A note of caution:

Analytically determined because this branch point appears in the e.o.m.

We have                       as   µ ! 0q⇤ ! 1

However, several subsequent papers incorrectly made this step!

Nevertheless, at the value of Q studied, this branch point does 
set the radius. Full picture?

±iq⇤

6=) radius ! 1However,

As we have seen, there can be many other branch points = 
obstructions to convergence.




Figure 1. Radius of convergence as a function of the charge in the system for the hydrodynamic

modes in our system, namely shear, sound and charge di↵usion in d = 3 and d = 4. Each line on these

plots corresponds to a di↵erent branch of pole collisions, with the solid (dashed) lines indicating where

each branch is dominant (subdominant). As Q̃ = Q/Qmax is varied, di↵erent branches are responsible

for setting the radius of convergence. Transition points are indicated with dashed vertical lines. The

circles correspond to the results for the radius of convergence obtained using a perturbative expansion

of the corresponding dispersion relations in small momenta up to a very high order, as discussed in

section 4. We see that the two methods are in good quantitative agreement.

This type of collision was first discussed in [17] and the value of the critical point can

actually be determined analytically by setting �
1

= 0:

zshearc = �
⇣
d� 2 + dQ̃2

⌘
2

2d(d� 1)Q̃2(1� Q̃)2
< 0 . (3.1)

– 10 –

[A. Jansen, C. Pantelidou 2020]

the branch point at

T=0

±iq⇤

additional branch points

(only closest to origin relevant)

Computed radius for RN-AdS4 for all Q

Curiously, analytic expression for radius in some interval, interval known numerically
see also [N. Abbasi, S. Tahery 2020]



radius =       of closest singularity to origin 

on hydrodynamic sheet

radius of convergenceQuestion 1:

Collisions observed for several other examples, e.g.


• Already-known dispersion relations of square-root-type (e.g. in MIS/BRSSS)

• Schwarzschild AdS5 [S. Grozdanov, P. Kovtun, A. Starinets, P. Tadić (2019)] 
• RN AdS4 & RN AdS5 all Q [A. Jansen, C. Pantelidou (2020)] 

Reasonable to propose that branch-points/mode-collisions are the generic case 

(but no proof)

a mathematically distinct proposal:

radius set by ‘critical point of spectral curve’

A. Starinets on Holotube, 06 Oct. 2020 

q 2 C
|q|

!(q)

We saw mode collisions (i.e. a branch point singularity) for RN AdS4 at fixed Q

treat            at                describing Riemann surface 
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for the dispersion relation of the shear-di↵usion mode in holography. The upper red dot

corresponds to the hydrodynamic point, q = 0 where !(0) = 0 on that sheet. The lower

red dot corresponds to a non-hydrodynamic mode at q = 0, where !(0) on that sheet

corresponds to the frequency of a non-hydrodynamic mode, given in table 2. The solid

blue and black lines correspond to branch cuts. A comparison with the exact result on the

Imq axis is given in figure 3.
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Analytically continue the hydrodynamic data itself:

in figure 5 we present plots of the two sheets of !(q) we have obtained in the complex

q plane from hydrodynamic data. This of course displays the dispersion relations of the

non-hydrodynamic mode on the real-q axis too, which we can e↵ortlessly read o↵ from the

summed series.

hydro. order !(0)/µ (2nd sheet) !(0)/µ (3rd sheet)

3 0.0276 + 0.2475i �0.0276 + 0.2475i

5 �0.0312 + 0.0846i 0.0312 + 0.0846i

7 �1.3495 + 0.4494i 1.3495 + 0.4494i

9 �0.1133 � 0.3505i 0.1133 � 0.3505i

11 �0.8291 � 0.3872i 0.8291 � 0.3872i

13 �0.7264 � 0.4930i 0.7264 � 0.4930i
...

...
...

77 �0.7494 � 0.5182i 0.7494 � 0.5182i

79 �0.7493 � 0.5182i 0.7493 � 0.5182i

exact (numerics) �0.7493 � 0.5182i 0.7493 � 0.5182i

Table 2: The longest-lived non-hydrodynamic mode pair extracted from the coe�cients

of the truncated hydrodynamic expansion of !(q), compared to the exact value. The

method is described in section 4, for which we begin to obtain a reasonable estimate from

hydrodynamic order 11.

9

Recover a pair of transient 
black hole QNMs

Question 2: can the microscopic theory be recovered by (re)summation?

[BW 1803.08058] 



3. New real space results

[M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW (2007.05524)] 



Alex Serantes



What does real space divergence (e.g. Bjorken flows) have to do with w(k)?

Consider conformal hydrodynamics, linearised.

Key step: a novel reorganisation of ⇧µ⌫

Use eom to replace each         by a series in         (it’s a redundancy) @t @
x

In Landau frame, all tensor structures:

2

In hydrodynamics, ⇧µ⌫ is represented in terms of deriva-
tives of the hydrodynamic fields which we take as the
energy density E and flow velocity U

µ with U · U = �1.
The pressure P is related to E via an equation of state [?
? ].

We consider flat d-dimensional spacetime and use the
Landau frame where U

µ

⇧µ⌫ = 0. We focus on confor-
mal and parity-invariant theories. Conformal symmetry
forces ⇧µ

µ

= 0 and P = E/ (d� 1). Under these con-
ditions, the most general hydrodynamic ⇧µ⌫ takes the
form [? ? ]

⇧µ⌫ = �⌘ �

µ⌫ + ⌧

⇡

⌘D�

µ⌫�

� 1

2
✓1 D↵

D↵

�

µ⌫ � ✓2 DhµD⌫iD
↵

U

↵ + . . . , (2)

where the ellipsis denotes terms higher than third order in
derivatives and we display only terms which contribute at
the linearized level. The angle-brackets in Eq. (2) denote
the tensors made symmetric, transverse and traceless,
D = U

µ

@

µ

and Dµ = (gµ⌫ + U

µ

U

⌫) @
⌫

are respectively a
comoving and a transverse derivative, �µ⌫ = 2Dhµ

U

⌫i de-
notes the shear tensor and ⌘ is the shear viscosity, ⌧

⇡

the
Israel-Stewart relaxation time and ✓1, ✓2 are third order
transport coe�cients.

We focus on small perturbations away from thermal
equilibrium, i.e., we consider

U

µ = (1,u)µ and E = E0 + ✏ (3)

with |✏/E0|, |ul

u

l| ⌧ 1. We denote spatial indices with
Latin letters and spatial vectors with bold font. It is
useful to work in Fourier space with a plane-wave Ansatz

u

i(t,x) = û

i(k) e�i! t+ik·x
, ✏(t,x) = ✏̂(k) e�i! t+ik·x

. (4)

The perturbations can be decomposed into shear and
sound channel components [? ], labelled here by ? and k
subscripts. They are given by

ûk =
k · û
k

2 k, û? = û� ûk. (5)

with ✏̂ = 0 vanishing in the shear channel. With no loss
of generality, due to rotational invariance, we take

k = (0, . . . , 0, k). (6)

Conservation of the energy-momentum tensor together
with the hydrodynamic constitutive relation (2) deter-
mines the frequencies ! appearing in Eq. (4) as functions
of k. The dispersion relations take the form [? ? ]

!̃

?

= �i

⌘

s T

k

2 � i

✓
⌘
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⌧

⇡

s

2
T

2
� ✓1

2 s T

◆
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4 + . . . ,

!̃

±
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= ±c

s

k � i�k2 ⌥ �

2 c
s

�
�� 2 c2

s

⌧

⇡

�
k

3�

i

✓
2�2

⌧

⇡

� (d� 2) (✓1 + ✓2)

2 (d� 1) s T

◆
k

4 + . . . , (7)

where the tilde means that these are frequencies in the
hydrodynamic theory rather than in a microscopic the-
ory. In the above equation, T and s are the temperature
and entropy density associated with E0, cs = 1/

p
(d� 1)

is the speed of sound, and � = (d� 2)/(d� 1)⌘/(sT ). As
is clear from these expressions, hydrodynamic excitations
of arbitrarily small momentum are arbitrarily long-lived.
Calculations in holography [? ? ? ] reveal that the se-

ries (7) have a finite and non-zero radius of convergence,
with evidence that goes to back to the studies of causal
second order hydrodynamics in Ref. [? ]. In physically
interesting cases, linear response theory shows that apart
from the hydrodynamic modes, there are additional exci-
tations that are short-lived, i.e. whose complex frequency
!(k) has a non-vanishing imaginary part even as k ! 0 [?
? ? ? ]. Explicit calculations in several representative
cases show that the radius of convergence of hydrody-
namic dispersion relations is set by the magnitude k

⇤

of
a (possibly complex) momentum for which the frequency
of a hydrodynamic mode coincides with that of a nonhy-
drodynamic one at a branch point of !(k) [? ? ? ].

Constitutive relations– Our goal is to understand the
properties of the gradient expansion (2) in linearized hy-
drodynamics in real space that would facilitate compari-
son with earlier studies of nonlinear evolution in expand-
ing plasma systems. To this end, we propose a novel way
of parametrizing ⇧µ⌫ , involving only spatial derivatives.
We find that the most general form of ⇧µ⌫ in this set-
ting can be constructed from three elementary tensorial
structures that are first, second and third order in gradi-
ents and linear in the hydrodynamic fluctuations. These
are respectively
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The last of these appears already in Refs. [? ? ].[? ] With
no loss of generality we write the constitutive relations
in the form

⇧
jl

= �A(@2)�
jl

�B(@2)⇡u

jl

� C(@2)⇡✏

jl

, (11)

where A,B and C are infinite series in spatial Laplacians,

A =
1X

n=0

a

n

�
�@

2
�
n

, (12)

and the a

n

are transport coe�cients, with similar ex-
pressions for B and C involving transport coe�cients b

n

and c

n

. The remaining components are ⇧
tt

= ⇧
ti

= 0 by
the Landau frame condition. In principle, A, B and C
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? ].

We consider flat d-dimensional spacetime and use the
Landau frame where U

µ

⇧µ⌫ = 0. We focus on confor-
mal and parity-invariant theories. Conformal symmetry
forces ⇧µ

µ

= 0 and P = E/ (d� 1). Under these con-
ditions, the most general hydrodynamic ⇧µ⌫ takes the
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where the ellipsis denotes terms higher than third order in
derivatives and we display only terms which contribute at
the linearized level. The angle-brackets in Eq. (2) denote
the tensors made symmetric, transverse and traceless,
D = U
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and Dµ = (gµ⌫ + U
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are respectively a
comoving and a transverse derivative, �µ⌫ = 2Dhµ
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⌫i de-
notes the shear tensor and ⌘ is the shear viscosity, ⌧
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the
Israel-Stewart relaxation time and ✓1, ✓2 are third order
transport coe�cients.

We focus on small perturbations away from thermal
equilibrium, i.e., we consider

U

µ = (1,u)µ and E = E0 + ✏ (3)

with |✏/E0|, |ul
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l| ⌧ 1. We denote spatial indices with
Latin letters and spatial vectors with bold font. It is
useful to work in Fourier space with a plane-wave Ansatz
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. (4)

The perturbations can be decomposed into shear and
sound channel components [? ], labelled here by ? and k
subscripts. They are given by

ûk =
k · û
k

2 k, û? = û� ûk. (5)

with ✏̂ = 0 vanishing in the shear channel. With no loss
of generality, due to rotational invariance, we take

k = (0, . . . , 0, k). (6)

Conservation of the energy-momentum tensor together
with the hydrodynamic constitutive relation (2) deter-
mines the frequencies ! appearing in Eq. (4) as functions
of k. The dispersion relations take the form [? ? ]
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where the tilde means that these are frequencies in the
hydrodynamic theory rather than in a microscopic the-
ory. In the above equation, T and s are the temperature
and entropy density associated with E0, cs = 1/

p
(d� 1)

is the speed of sound, and � = (d� 2)/(d� 1)⌘/(sT ). As
is clear from these expressions, hydrodynamic excitations
of arbitrarily small momentum are arbitrarily long-lived.
Calculations in holography [? ? ? ] reveal that the se-

ries (7) have a finite and non-zero radius of convergence,
with evidence that goes to back to the studies of causal
second order hydrodynamics in Ref. [? ]. In physically
interesting cases, linear response theory shows that apart
from the hydrodynamic modes, there are additional exci-
tations that are short-lived, i.e. whose complex frequency
!(k) has a non-vanishing imaginary part even as k ! 0 [?
? ? ? ]. Explicit calculations in several representative
cases show that the radius of convergence of hydrody-
namic dispersion relations is set by the magnitude k

⇤

of
a (possibly complex) momentum for which the frequency
of a hydrodynamic mode coincides with that of a nonhy-
drodynamic one at a branch point of !(k) [? ? ? ].

Constitutive relations– Our goal is to understand the
properties of the gradient expansion (2) in linearized hy-
drodynamics in real space that would facilitate compari-
son with earlier studies of nonlinear evolution in expand-
ing plasma systems. To this end, we propose a novel way
of parametrizing ⇧µ⌫ , involving only spatial derivatives.
We find that the most general form of ⇧µ⌫ in this set-
ting can be constructed from three elementary tensorial
structures that are first, second and third order in gradi-
ents and linear in the hydrodynamic fluctuations. These
are respectively

�

jl

=

✓
@

j

u

l

+ @

l

u

j

� 2

d� 1
�

jl

@

r

u

r

◆
, (8)

⇡

✏

jl

=

✓
@

j

@

l

� 1

d� 1
�

jl

@

2

◆
✏, (9)

⇡

u

jl

=

✓
@

j

@

l

� 1

d� 1
�

jl

@

2

◆
@

r

u

r

. (10)

The last of these appears already in Refs. [? ? ].[? ] With
no loss of generality we write the constitutive relations
in the form

⇧
jl

= �A(@2)�
jl

�B(@2)⇡u

jl

� C(@2)⇡✏

jl

, (11)

where A,B and C are infinite series in spatial Laplacians,

A =
1X

n=0

a

n

�
�@

2
�
n

, (12)

and the a

n

are transport coe�cients, with similar ex-
pressions for B and C involving transport coe�cients b

n

and c

n

. The remaining components are ⇧
tt

= ⇧
ti

= 0 by
the Landau frame condition. In principle, A, B and C

2

In hydrodynamics, ⇧µ⌫ is represented in terms of deriva-
tives of the hydrodynamic fields which we take as the
energy density E and flow velocity U

µ with U · U = �1.
The pressure P is related to E via an equation of state [?
? ].

We consider flat d-dimensional spacetime and use the
Landau frame where U

µ

⇧µ⌫ = 0. We focus on confor-
mal and parity-invariant theories. Conformal symmetry
forces ⇧µ

µ

= 0 and P = E/ (d� 1). Under these con-
ditions, the most general hydrodynamic ⇧µ⌫ takes the
form [? ? ]

⇧µ⌫ = �⌘ �

µ⌫ + ⌧

⇡

⌘D�

µ⌫�

� 1

2
✓1 D↵

D↵

�

µ⌫ � ✓2 DhµD⌫iD
↵

U

↵ + . . . , (2)
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The perturbations can be decomposed into shear and
sound channel components [? ], labelled here by ? and k
subscripts. They are given by

ûk =
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2 k, û? = û� ûk. (5)

with ✏̂ = 0 vanishing in the shear channel. With no loss
of generality, due to rotational invariance, we take
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Conservation of the energy-momentum tensor together
with the hydrodynamic constitutive relation (2) deter-
mines the frequencies ! appearing in Eq. (4) as functions
of k. The dispersion relations take the form [? ? ]

!̃

?

= �i

⌘

s T

k

2 � i

✓
⌘

2
⌧

⇡

s

2
T

2
� ✓1

2 s T

◆
k

4 + . . . ,

!̃

±

k

= ±c

s

k � i�k2 ⌥ �

2 c
s

�
�� 2 c2

s

⌧

⇡

�
k

3�

i

✓
2�2

⌧

⇡

� (d� 2) (✓1 + ✓2)

2 (d� 1) s T

◆
k

4 + . . . , (7)

where the tilde means that these are frequencies in the
hydrodynamic theory rather than in a microscopic the-
ory. In the above equation, T and s are the temperature
and entropy density associated with E0, cs = 1/
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is the speed of sound, and � = (d� 2)/(d� 1)⌘/(sT ). As
is clear from these expressions, hydrodynamic excitations
of arbitrarily small momentum are arbitrarily long-lived.
Calculations in holography [? ? ? ] reveal that the se-

ries (7) have a finite and non-zero radius of convergence,
with evidence that goes to back to the studies of causal
second order hydrodynamics in Ref. [? ]. In physically
interesting cases, linear response theory shows that apart
from the hydrodynamic modes, there are additional exci-
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? ? ? ]. Explicit calculations in several representative
cases show that the radius of convergence of hydrody-
namic dispersion relations is set by the magnitude k
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a (possibly complex) momentum for which the frequency
of a hydrodynamic mode coincides with that of a nonhy-
drodynamic one at a branch point of !(k) [? ? ? ].

Constitutive relations– Our goal is to understand the
properties of the gradient expansion (2) in linearized hy-
drodynamics in real space that would facilitate compari-
son with earlier studies of nonlinear evolution in expand-
ing plasma systems. To this end, we propose a novel way
of parametrizing ⇧µ⌫ , involving only spatial derivatives.
We find that the most general form of ⇧µ⌫ in this set-
ting can be constructed from three elementary tensorial
structures that are first, second and third order in gradi-
ents and linear in the hydrodynamic fluctuations. These
are respectively

�

jl

=

✓
@

j

u

l

+ @

l

u

j

� 2

d� 1
�

jl

@

r

u

r

◆
, (8)

⇡

✏

jl

=

✓
@

j

@

l

� 1

d� 1
�

jl

@

2

◆
✏, (9)

⇡

u

jl

=

✓
@

j

@

l

� 1

d� 1
�

jl

@

2

◆
@

r

u

r

. (10)

The last of these appears already in Refs. [? ? ].[? ] With
no loss of generality we write the constitutive relations
in the form

⇧
jl

= �A(@2)�
jl

�B(@2)⇡u

jl

� C(@2)⇡✏

jl

, (11)

where A,B and C are infinite series in spatial Laplacians,

A =
1X

n=0

a

n

�
�@

2
�
n

, (12)

and the a

n

are transport coe�cients, with similar ex-
pressions for B and C involving transport coe�cients b

n

and c

n

. The remaining components are ⇧
tt

= ⇧
ti

= 0 by
the Landau frame condition. In principle, A, B and C

Then

with



first order: 1 
each subsequent odd order: 2


each even order: 1

This matches the counting of coefficients in 

2

In hydrodynamics, ⇧µ⌫ is represented in terms of deriva-
tives of the hydrodynamic fields which we take as the
energy density E and flow velocity U

µ with U · U = �1.
The pressure P is related to E via an equation of state [?
? ].

We consider flat d-dimensional spacetime and use the
Landau frame where U

µ

⇧µ⌫ = 0. We focus on confor-
mal and parity-invariant theories. Conformal symmetry
forces ⇧µ
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= 0 and P = E/ (d� 1). Under these con-
ditions, the most general hydrodynamic ⇧µ⌫ takes the
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where the ellipsis denotes terms higher than third order in
derivatives and we display only terms which contribute at
the linearized level. The angle-brackets in Eq. (2) denote
the tensors made symmetric, transverse and traceless,
D = U
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µ

U

⌫) @
⌫

are respectively a
comoving and a transverse derivative, �µ⌫ = 2Dhµ
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notes the shear tensor and ⌘ is the shear viscosity, ⌧
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the
Israel-Stewart relaxation time and ✓1, ✓2 are third order
transport coe�cients.

We focus on small perturbations away from thermal
equilibrium, i.e., we consider
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µ = (1,u)µ and E = E0 + ✏ (3)

with |✏/E0|, |ul
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l| ⌧ 1. We denote spatial indices with
Latin letters and spatial vectors with bold font. It is
useful to work in Fourier space with a plane-wave Ansatz
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i(t,x) = û

i(k) e�i! t+ik·x
, ✏(t,x) = ✏̂(k) e�i! t+ik·x

. (4)

The perturbations can be decomposed into shear and
sound channel components [? ], labelled here by ? and k
subscripts. They are given by

ûk =
k · û
k

2 k, û? = û� ûk. (5)

with ✏̂ = 0 vanishing in the shear channel. With no loss
of generality, due to rotational invariance, we take

k = (0, . . . , 0, k). (6)

Conservation of the energy-momentum tensor together
with the hydrodynamic constitutive relation (2) deter-
mines the frequencies ! appearing in Eq. (4) as functions
of k. The dispersion relations take the form [? ? ]
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where the tilde means that these are frequencies in the
hydrodynamic theory rather than in a microscopic the-
ory. In the above equation, T and s are the temperature
and entropy density associated with E0, cs = 1/
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is the speed of sound, and � = (d� 2)/(d� 1)⌘/(sT ). As
is clear from these expressions, hydrodynamic excitations
of arbitrarily small momentum are arbitrarily long-lived.
Calculations in holography [? ? ? ] reveal that the se-

ries (7) have a finite and non-zero radius of convergence,
with evidence that goes to back to the studies of causal
second order hydrodynamics in Ref. [? ]. In physically
interesting cases, linear response theory shows that apart
from the hydrodynamic modes, there are additional exci-
tations that are short-lived, i.e. whose complex frequency
!(k) has a non-vanishing imaginary part even as k ! 0 [?
? ? ? ]. Explicit calculations in several representative
cases show that the radius of convergence of hydrody-
namic dispersion relations is set by the magnitude k
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of
a (possibly complex) momentum for which the frequency
of a hydrodynamic mode coincides with that of a nonhy-
drodynamic one at a branch point of !(k) [? ? ? ].

Constitutive relations– Our goal is to understand the
properties of the gradient expansion (2) in linearized hy-
drodynamics in real space that would facilitate compari-
son with earlier studies of nonlinear evolution in expand-
ing plasma systems. To this end, we propose a novel way
of parametrizing ⇧µ⌫ , involving only spatial derivatives.
We find that the most general form of ⇧µ⌫ in this set-
ting can be constructed from three elementary tensorial
structures that are first, second and third order in gradi-
ents and linear in the hydrodynamic fluctuations. These
are respectively
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In hydrodynamics, ⇧µ⌫ is represented in terms of deriva-
tives of the hydrodynamic fields which we take as the
energy density E and flow velocity U
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The pressure P is related to E via an equation of state [?
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where the ellipsis denotes terms higher than third order in
derivatives and we display only terms which contribute at
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the
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We focus on small perturbations away from thermal
equilibrium, i.e., we consider
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i(k) e�i! t+ik·x
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. (4)

The perturbations can be decomposed into shear and
sound channel components [? ], labelled here by ? and k
subscripts. They are given by

ûk =
k · û
k

2 k, û? = û� ûk. (5)

with ✏̂ = 0 vanishing in the shear channel. With no loss
of generality, due to rotational invariance, we take

k = (0, . . . , 0, k). (6)

Conservation of the energy-momentum tensor together
with the hydrodynamic constitutive relation (2) deter-
mines the frequencies ! appearing in Eq. (4) as functions
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where the tilde means that these are frequencies in the
hydrodynamic theory rather than in a microscopic the-
ory. In the above equation, T and s are the temperature
and entropy density associated with E0, cs = 1/
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is the speed of sound, and � = (d� 2)/(d� 1)⌘/(sT ). As
is clear from these expressions, hydrodynamic excitations
of arbitrarily small momentum are arbitrarily long-lived.
Calculations in holography [? ? ? ] reveal that the se-

ries (7) have a finite and non-zero radius of convergence,
with evidence that goes to back to the studies of causal
second order hydrodynamics in Ref. [? ]. In physically
interesting cases, linear response theory shows that apart
from the hydrodynamic modes, there are additional exci-
tations that are short-lived, i.e. whose complex frequency
!(k) has a non-vanishing imaginary part even as k ! 0 [?
? ? ? ]. Explicit calculations in several representative
cases show that the radius of convergence of hydrody-
namic dispersion relations is set by the magnitude k
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of
a (possibly complex) momentum for which the frequency
of a hydrodynamic mode coincides with that of a nonhy-
drodynamic one at a branch point of !(k) [? ? ? ].

Constitutive relations– Our goal is to understand the
properties of the gradient expansion (2) in linearized hy-
drodynamics in real space that would facilitate compari-
son with earlier studies of nonlinear evolution in expand-
ing plasma systems. To this end, we propose a novel way
of parametrizing ⇧µ⌫ , involving only spatial derivatives.
We find that the most general form of ⇧µ⌫ in this set-
ting can be constructed from three elementary tensorial
structures that are first, second and third order in gradi-
ents and linear in the hydrodynamic fluctuations. These
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�✏ = 0, �u = (u1(t, x), 0, . . . , 0)
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The only tensor structure contributing to Eq. (11) is the
shear tensor and the only nontrivial independent compo-
nent of the constitutive relations is
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form, since the shear hydrodynamic mode is known ex-
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where D ⌘ ⌘/(s T ) = (d � 1)/(d � 2)� is the di↵usion
constant. MIS contains also a single nonhydrodynamic
shear mode which di↵ers from Eq. (28) by the sign of the
square root. The final result for the a
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coe�cients is
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where C
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which is also the location of the branch points of
Eq. (28), where the hydrodynamic and the nonhydro-
dynamic mode collide.

The initial state of the system is fully specified
by u1(0, x) and @
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u1(0, x). We take u1(0, x) = 0 and
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where ⇥ is the Heaviside step function. As seen in
Fig. 1, the real space gradient expansion is conver-
gent for k

2
max

< 1/(4D ⌧

⇡

), geometrically divergent for
1/(4D ⌧

⇡

)  k

2
max

< 1, and factorially divergent for
k

max

! 1. This is exactly what is expected on the
basis of our general analysis.

Discussion and outlook– We have shown that the ra-
dius of convergence of the real space hydrodynamic gra-
dient expansion evaluated on a solution of the evolution
equations is determined by the momentum space support
of the initial data. This represents a major step forward
beyond earlier studies of expanding systems: hydrody-
namics itself is neither convergent nor divergent, instead
such statements are conditional on the particular solution
under consideration.

Our detailed calculations reveal that the physics gov-
erning the convergence of real-space constitutive relations
and the convergence of momentum-space dispersion re-
lations are one and the same. In this way we provide a
unified perspective on two seemingly disparate lines of
research represented by Refs. [? ? ? ? ? ? ? ? ? ? ? ]
and Refs. [? ? ? ].
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pansion (27), where �
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denotes the n-th contribution. We
use � = 0.1 and consider t = 1, x = 0.5 with s = T =

⌘ = ⌧

⇡

= 1 (|k(A)
⇤ | = 0.5). From top to bottom, k

max

=
0.55, 0.51, 0.49, 0.45. The gradient expansion is convergent for

k

max

< |k(A)
⇤ | and geometrically divergent otherwise. Inset:

root test applied to �
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when k

max

! 1. The geometric di-
vergence of the gradient expansion is enhanced to a factorial
one.

The issue of the convergence of the hydrodynamic gra-
dient expansion is often conflated with the issue of ap-
plicability of hydrodynamics for modelling microscopic
theories. We have shown that the former is determined
by support of solutions in momentum space, however one
can imagine a situation where nonhydrodynamic modes
make a significant contribution in a microscopic theory
even for initial data with support only at low momen-
tum. Such a significant contribution would render hydro-
dynamics inapplicable even if convergent. On the other
hand, even if a series diverges it can provide a good de-
scription when optimally truncated. These observations
suggest that there is no connection between the two is-
sues.
It is very important that complete information about

the nonhydrodynamic sector is encoded in the gradient
series itself. In the case of an expanding plasma this is
very beautifully expressed by the phenomenon of resur-
gence [? ], which makes it possible to extract the form
of the full solution from the asymptotic series [? ? ?
]. The integration constants necessary to describe any
complete solution enter that procedure as transseries pa-
rameters. An analogous encoding of nonhydrodynamic
data in the hydrodynamic sector is seen in the analytic
continuation of dispersion relations [? ]. Generalizations
of these ideas based on developments reported in this
Letter are the subject of ongoing research [? ].
We would like to thank G. Dunne, as well as partici-

pants of the workshop Foundational Aspects of Relativis-
tic Hydrodynamics at Ban↵ International Research Sta-
tion where this work was presented for the first time
for helpful discussions. We also have the pleasure to
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The only tensor structure contributing to Eq. (11) is the
shear tensor and the only nontrivial independent compo-
nent of the constitutive relations is
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where D ⌘ ⌘/(s T ) = (d � 1)/(d � 2)� is the di↵usion
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shear mode which di↵ers from Eq. (28) by the sign of the
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which is also the location of the branch points of
Eq. (28), where the hydrodynamic and the nonhydro-
dynamic mode collide.
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where ⇥ is the Heaviside step function. As seen in
Fig. 1, the real space gradient expansion is conver-
gent for k
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< 1/(4D ⌧
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), geometrically divergent for
1/(4D ⌧
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)  k

2
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< 1, and factorially divergent for
k

max

! 1. This is exactly what is expected on the
basis of our general analysis.

Discussion and outlook– We have shown that the ra-
dius of convergence of the real space hydrodynamic gra-
dient expansion evaluated on a solution of the evolution
equations is determined by the momentum space support
of the initial data. This represents a major step forward
beyond earlier studies of expanding systems: hydrody-
namics itself is neither convergent nor divergent, instead
such statements are conditional on the particular solution
under consideration.

Our detailed calculations reveal that the physics gov-
erning the convergence of real-space constitutive relations
and the convergence of momentum-space dispersion re-
lations are one and the same. In this way we provide a
unified perspective on two seemingly disparate lines of
research represented by Refs. [? ? ? ? ? ? ? ? ? ? ? ]
and Refs. [? ? ? ].
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The issue of the convergence of the hydrodynamic gra-
dient expansion is often conflated with the issue of ap-
plicability of hydrodynamics for modelling microscopic
theories. We have shown that the former is determined
by support of solutions in momentum space, however one
can imagine a situation where nonhydrodynamic modes
make a significant contribution in a microscopic theory
even for initial data with support only at low momen-
tum. Such a significant contribution would render hydro-
dynamics inapplicable even if convergent. On the other
hand, even if a series diverges it can provide a good de-
scription when optimally truncated. These observations
suggest that there is no connection between the two is-
sues.
It is very important that complete information about

the nonhydrodynamic sector is encoded in the gradient
series itself. In the case of an expanding plasma this is
very beautifully expressed by the phenomenon of resur-
gence [? ], which makes it possible to extract the form
of the full solution from the asymptotic series [? ? ?
]. The integration constants necessary to describe any
complete solution enter that procedure as transseries pa-
rameters. An analogous encoding of nonhydrodynamic
data in the hydrodynamic sector is seen in the analytic
continuation of dispersion relations [? ]. Generalizations
of these ideas based on developments reported in this
Letter are the subject of ongoing research [? ].
We would like to thank G. Dunne, as well as partici-

pants of the workshop Foundational Aspects of Relativis-
tic Hydrodynamics at Ban↵ International Research Sta-
tion where this work was presented for the first time
for helpful discussions. We also have the pleasure to
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An example in Muller-Israel-Stewart theory

5

The only tensor structure contributing to Eq. (11) is the
shear tensor and the only nontrivial independent compo-
nent of the constitutive relations is

⇧1,d�1(t, x) = �
1X

n=0
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(�1)n@2n+1
x

u1(t, x). (27)

The a
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transport coe�cients can be computed in closed
form, since the shear hydrodynamic mode is known ex-
actly [? ],
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where D ⌘ ⌘/(s T ) = (d � 1)/(d � 2)� is the di↵usion
constant. MIS contains also a single nonhydrodynamic
shear mode which di↵ers from Eq. (28) by the sign of the
square root. The final result for the a

n

coe�cients is
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, (29)

where C
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are the Catalan numbers. Therefore,
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which is also the location of the branch points of
Eq. (28), where the hydrodynamic and the nonhydro-
dynamic mode collide.

The initial state of the system is fully specified
by u1(0, x) and @

t

u1(0, x). We take u1(0, x) = 0 and
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û1(0, k) =
1
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where ⇥ is the Heaviside step function. As seen in
Fig. 1, the real space gradient expansion is conver-
gent for k

2
max

< 1/(4D ⌧

⇡

), geometrically divergent for
1/(4D ⌧

⇡

)  k

2
max

< 1, and factorially divergent for
k

max

! 1. This is exactly what is expected on the
basis of our general analysis.

Discussion and outlook– We have shown that the ra-
dius of convergence of the real space hydrodynamic gra-
dient expansion evaluated on a solution of the evolution
equations is determined by the momentum space support
of the initial data. This represents a major step forward
beyond earlier studies of expanding systems: hydrody-
namics itself is neither convergent nor divergent, instead
such statements are conditional on the particular solution
under consideration.

Our detailed calculations reveal that the physics gov-
erning the convergence of real-space constitutive relations
and the convergence of momentum-space dispersion re-
lations are one and the same. In this way we provide a
unified perspective on two seemingly disparate lines of
research represented by Refs. [? ? ? ? ? ? ? ? ? ? ? ]
and Refs. [? ? ? ].
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FIG. 1. Main plot: Ratio test applied to the gradient ex-
pansion (27), where �

n

denotes the n-th contribution. We
use � = 0.1 and consider t = 1, x = 0.5 with s = T =

⌘ = ⌧

⇡

= 1 (|k(A)
⇤ | = 0.5). From top to bottom, k

max

=
0.55, 0.51, 0.49, 0.45. The gradient expansion is convergent for

k

max

< |k(A)
⇤ | and geometrically divergent otherwise. Inset:

root test applied to �

n

when k

max

! 1. The geometric di-
vergence of the gradient expansion is enhanced to a factorial
one.

The issue of the convergence of the hydrodynamic gra-
dient expansion is often conflated with the issue of ap-
plicability of hydrodynamics for modelling microscopic
theories. We have shown that the former is determined
by support of solutions in momentum space, however one
can imagine a situation where nonhydrodynamic modes
make a significant contribution in a microscopic theory
even for initial data with support only at low momen-
tum. Such a significant contribution would render hydro-
dynamics inapplicable even if convergent. On the other
hand, even if a series diverges it can provide a good de-
scription when optimally truncated. These observations
suggest that there is no connection between the two is-
sues.
It is very important that complete information about

the nonhydrodynamic sector is encoded in the gradient
series itself. In the case of an expanding plasma this is
very beautifully expressed by the phenomenon of resur-
gence [? ], which makes it possible to extract the form
of the full solution from the asymptotic series [? ? ?
]. The integration constants necessary to describe any
complete solution enter that procedure as transseries pa-
rameters. An analogous encoding of nonhydrodynamic
data in the hydrodynamic sector is seen in the analytic
continuation of dispersion relations [? ]. Generalizations
of these ideas based on developments reported in this
Letter are the subject of ongoing research [? ].
We would like to thank G. Dunne, as well as partici-

pants of the workshop Foundational Aspects of Relativis-
tic Hydrodynamics at Ban↵ International Research Sta-
tion where this work was presented for the first time
for helpful discussions. We also have the pleasure to
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where D ⌘ ⌘/(s T ) = (d � 1)/(d � 2)� is the di↵usion
constant. MIS contains also a single nonhydrodynamic
shear mode which di↵ers from Eq. (28) by the sign of the
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which is also the location of the branch points of
Eq. (28), where the hydrodynamic and the nonhydro-
dynamic mode collide.
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where ⇥ is the Heaviside step function. As seen in
Fig. 1, the real space gradient expansion is conver-
gent for k
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< 1/(4D ⌧
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), geometrically divergent for
1/(4D ⌧
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)  k

2
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< 1, and factorially divergent for
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! 1. This is exactly what is expected on the
basis of our general analysis.

Discussion and outlook– We have shown that the ra-
dius of convergence of the real space hydrodynamic gra-
dient expansion evaluated on a solution of the evolution
equations is determined by the momentum space support
of the initial data. This represents a major step forward
beyond earlier studies of expanding systems: hydrody-
namics itself is neither convergent nor divergent, instead
such statements are conditional on the particular solution
under consideration.

Our detailed calculations reveal that the physics gov-
erning the convergence of real-space constitutive relations
and the convergence of momentum-space dispersion re-
lations are one and the same. In this way we provide a
unified perspective on two seemingly disparate lines of
research represented by Refs. [? ? ? ? ? ? ? ? ? ? ? ]
and Refs. [? ? ? ].
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denotes the n-th contribution. We
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⇤ | and geometrically divergent otherwise. Inset:
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when k
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! 1. The geometric di-
vergence of the gradient expansion is enhanced to a factorial
one.

The issue of the convergence of the hydrodynamic gra-
dient expansion is often conflated with the issue of ap-
plicability of hydrodynamics for modelling microscopic
theories. We have shown that the former is determined
by support of solutions in momentum space, however one
can imagine a situation where nonhydrodynamic modes
make a significant contribution in a microscopic theory
even for initial data with support only at low momen-
tum. Such a significant contribution would render hydro-
dynamics inapplicable even if convergent. On the other
hand, even if a series diverges it can provide a good de-
scription when optimally truncated. These observations
suggest that there is no connection between the two is-
sues.
It is very important that complete information about

the nonhydrodynamic sector is encoded in the gradient
series itself. In the case of an expanding plasma this is
very beautifully expressed by the phenomenon of resur-
gence [? ], which makes it possible to extract the form
of the full solution from the asymptotic series [? ? ?
]. The integration constants necessary to describe any
complete solution enter that procedure as transseries pa-
rameters. An analogous encoding of nonhydrodynamic
data in the hydrodynamic sector is seen in the analytic
continuation of dispersion relations [? ]. Generalizations
of these ideas based on developments reported in this
Letter are the subject of ongoing research [? ].
We would like to thank G. Dunne, as well as partici-
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• Useful to view              as a multi-sheeted Riemann surface


• Radius =        of closest singularity to q=0 on hydro sheet


• Appear to be set by mode collisions 
(branch point singularities of the Riemann surface)

|q|
!(q)

Summary



!

• Explored consequences for real space


• Provided a new formulation of linearised hydrodynamics


• Coefficients mapped to dispersion relations


• Connects real-space convergence with branch points of


• Allows us to definitively answer the main question:


         Convergence requires momentum support not exceed branch point location 

• Convergence       applicability

2

In hydrodynamics, ⇧µ⌫ is represented in terms of deriva-
tives of the hydrodynamic fields which we take as the
energy density E and flow velocity U

µ with U · U = �1.
The pressure P is related to E via an equation of state [?
? ].

We consider flat d-dimensional spacetime and use the
Landau frame where U

µ

⇧µ⌫ = 0. We focus on confor-
mal and parity-invariant theories. Conformal symmetry
forces ⇧µ

µ

= 0 and P = E/ (d� 1). Under these con-
ditions, the most general hydrodynamic ⇧µ⌫ takes the
form [? ? ]

⇧µ⌫ = �⌘ �

µ⌫ + ⌧

⇡

⌘D�

µ⌫�

� 1

2
✓1 D↵

D↵

�

µ⌫ � ✓2 DhµD⌫iD
↵

U

↵ + . . . , (2)

where the ellipsis denotes terms higher than third order in
derivatives and we display only terms which contribute at
the linearized level. The angle-brackets in Eq. (2) denote
the tensors made symmetric, transverse and traceless,
D = U

µ

@

µ

and Dµ = (gµ⌫ + U

µ

U

⌫) @
⌫

are respectively a
comoving and a transverse derivative, �µ⌫ = 2Dhµ

U

⌫i de-
notes the shear tensor and ⌘ is the shear viscosity, ⌧

⇡

the
Israel-Stewart relaxation time and ✓1, ✓2 are third order
transport coe�cients.

We focus on small perturbations away from thermal
equilibrium, i.e., we consider

U

µ = (1,u)µ and E = E0 + ✏ (3)

with |✏/E0|, |ul

u

l| ⌧ 1. We denote spatial indices with
Latin letters and spatial vectors with bold font. It is
useful to work in Fourier space with a plane-wave Ansatz

u

i(t,x) = û

i(k) e�i! t+ik·x
, ✏(t,x) = ✏̂(k) e�i! t+ik·x

. (4)

The perturbations can be decomposed into shear and
sound channel components [? ], labelled here by ? and k
subscripts. They are given by

ûk =
k · û
k

2 k, û? = û� ûk. (5)

with ✏̂ = 0 vanishing in the shear channel. With no loss
of generality, due to rotational invariance, we take

k = (0, . . . , 0, k). (6)

Conservation of the energy-momentum tensor together
with the hydrodynamic constitutive relation (2) deter-
mines the frequencies ! appearing in Eq. (4) as functions
of k. The dispersion relations take the form [? ? ]
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2 (d� 1) s T

◆
k

4 + . . . , (7)

where the tilde means that these are frequencies in the
hydrodynamic theory rather than in a microscopic the-
ory. In the above equation, T and s are the temperature
and entropy density associated with E0, cs = 1/

p
(d� 1)

is the speed of sound, and � = (d� 2)/(d� 1)⌘/(sT ). As
is clear from these expressions, hydrodynamic excitations
of arbitrarily small momentum are arbitrarily long-lived.
Calculations in holography [? ? ? ] reveal that the se-

ries (7) have a finite and non-zero radius of convergence,
with evidence that goes to back to the studies of causal
second order hydrodynamics in Ref. [? ]. In physically
interesting cases, linear response theory shows that apart
from the hydrodynamic modes, there are additional exci-
tations that are short-lived, i.e. whose complex frequency
!(k) has a non-vanishing imaginary part even as k ! 0 [?
? ? ? ]. Explicit calculations in several representative
cases show that the radius of convergence of hydrody-
namic dispersion relations is set by the magnitude k

⇤

of
a (possibly complex) momentum for which the frequency
of a hydrodynamic mode coincides with that of a nonhy-
drodynamic one at a branch point of !(k) [? ? ? ].

Constitutive relations– Our goal is to understand the
properties of the gradient expansion (2) in linearized hy-
drodynamics in real space that would facilitate compari-
son with earlier studies of nonlinear evolution in expand-
ing plasma systems. To this end, we propose a novel way
of parametrizing ⇧µ⌫ , involving only spatial derivatives.
We find that the most general form of ⇧µ⌫ in this set-
ting can be constructed from three elementary tensorial
structures that are first, second and third order in gradi-
ents and linear in the hydrodynamic fluctuations. These
are respectively
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The last of these appears already in Refs. [? ? ].[? ] With
no loss of generality we write the constitutive relations
in the form

⇧
jl

= �A(@2)�
jl

�B(@2)⇡u

jl

� C(@2)⇡✏

jl

, (11)

where A,B and C are infinite series in spatial Laplacians,

A =
1X

n=0

a

n

�
�@

2
�
n

, (12)

and the a

n

are transport coe�cients, with similar ex-
pressions for B and C involving transport coe�cients b

n

and c

n

. The remaining components are ⇧
tt

= ⇧
ti

= 0 by
the Landau frame condition. In principle, A, B and C

!
shear

(k),!±
sound

(k)

Summary
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• Question 2 in real space: new complex non-pt saddles of a Fourier integral


• Interactions! Can there be a mechanism for compact support?

Outlook
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