Does the hydrodynamic series converge?

Benjamin Withers Southampton

Based on: 1803.08058 - BW 2007.05524 - M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW 2011.nnnnn - M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW

THE ROYAL SOCIETY

HoloTube 17 November 2020

Hydrodynamics is ubiquitous

$$\nabla_{\mu} \langle T^{\mu\nu} \rangle = 0$$
$$\langle T^{\mu\nu} \rangle = T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu}$$
$$\Pi^{\mu\nu} = \sum_{n=1}^{\infty} \Pi^{\mu\nu}_{(n)} \lambda^{n}$$

Perturbative expansion in derivatives

Each $\prod_{(n)}^{\mu
u}$ given by a sum over allowed symmetric structures

Transport coefficients encode microscopic data

Captures non-equilibrium processes of QFTs, black holes, etc.

$$\nabla_{\mu} \langle T^{\mu\nu} \rangle = 0$$
$$\langle T^{\mu\nu} \rangle = T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu}$$
$$\Pi^{\mu\nu} = \sum_{n=1}^{\infty} \Pi^{\mu\nu}_{(n)} \lambda^{n}$$

Question 1: does this series converge?

Question 2: can the microscopic theory be recovered by suitable (re)summation?

"To converge or not to converge, that is the question."

- Holotube organisers

Transport coefficients $\ \eta, au_{\pi}, heta_1, heta_2, \dots$ fixed by microscopic details

e.g. famously in any QFT with an Einstein dual $\eta = rac{1}{4\pi}s$

To answer our questions we want to compute as many coefficients as we can

holography to the rescue

Outline of the talk

1. Bjorken flow (2013)

2. Dispersion relations (2018)

3. New real space results (2020)

Spoiler / take-home message:

There is no intrinsic microscopic answer It is *conditional* on the momentum-space support of a solution The condition itself is intrinsic to the microscopic theory

(I will use q and k interchangeably for spatial momentum... sorry)

1. Bjorken flow

[Heller, Janik, Witaszczyk (2013)] (& subsequently many other works)

Large τ expansion ~ hydrodynamic gradient expansion

$$\epsilon = \frac{1}{\tau^{4/3}} \left(\epsilon_2 + \frac{\epsilon_3}{\tau^{2/3}} + \frac{\epsilon_4}{\tau^{4/3}} + \ldots \right)$$

 ϵ_n are transport coefficients, and in holography were generated to order 240

Found to be a divergent series $\epsilon_n \sim n!$

Resummation via Borel-Padé finds non-perturbative contributions

$$\delta\epsilon \sim \tau^{\alpha} \exp\left(-i\frac{3}{2}\omega_1(0)\tau^{2/3}\right)$$

expected since QNMs are non-perturbative in $\,1/ au$

$$e^{-\gamma T(\tau)\tau}$$
 $T(\tau) \sim \tau^{-1/3}$

2. Dispersion relations

[BW 1803.08058]

Hydrodynamic equations of motion

admit plane wave solutions

In the shear channel,

part of a the hydro series

 $\nabla_{\mu} \langle T^{\mu\nu} \rangle = 0$ $\delta U \sim e^{iqx - i\omega(q)t}$ $\omega(q) = -iDq^2 + O(q^4)$ $\omega(q) = \sum_{n=1}^{\infty} \omega_n q^{2n}$

For a black hole, this is a long-lived quasinormal mode

Quasinormal modes of RN-AdS4

Model choice inspired by [Brattan & Gentle 2010] - movies depicting intricate trajectories of shear-mode poles

Computed ω_n to hydrodynamic order ~80

Radius of convergence

• r_n converges to $-1\,$ at a rate $1/n\,$

• radius of convergence is q_* set by a singularity at $\ q=\pm i q_*$

Padé approximant reveals its nature,

Branch-point singularity in the complex-q plane Suggests we should view $\,\omega(q)$ as a multi-sheeted Riemann surface

there are infinitely many sheets, all seem to be connected for RN-AdS4

A demonstrative slice:

Branch point singularities = well-known mode-collision phenomenon

But here at non-real q

Was not appreciated before that they set the radius of convergence

A note of caution:

$$\pm iq_* \qquad q_* \equiv \frac{\epsilon + p}{2\mu\sqrt{\eta}}$$

Analytically determined because this branch point appears in the e.o.m.

We have
$$q_* o \infty$$
 as $\mu o 0$

However, \implies radius $\rightarrow \infty$

As we have seen, there can be many other branch points = obstructions to convergence.

However, several subsequent papers incorrectly made this step!

Nevertheless, at the value of Q studied, this branch point *does* set the radius. Full picture?

Curiously, analytic expression for radius in some interval, interval known numerically see also [N. Abbasi, S. Tahery 2020]

Question 1: radius of convergence

treat $\omega(q)$ at $\, q \in \mathbb{C} \,$ describing Riemann surface

radius = |q| of closest singularity to origin on hydrodynamic sheet

We saw mode collisions (*i.e. a branch point singularity*) for RN AdS4 at fixed Q

Collisions observed for several other examples, e.g.

- Already-known dispersion relations of square-root-type (e.g. in MIS/BRSSS)
- Schwarzschild AdS5 [S. Grozdanov, P. Kovtun, A. Starinets, P. Tadić (2019)]
- RN AdS4 & RN AdS5 all Q [A. Jansen, C. Pantelidou (2020)]

Reasonable to propose that branch-points/mode-collisions are the generic case (but no proof)

a mathematically distinct proposal: radius set by 'critical point of spectral curve' **A. Starinets on Holotube, 06 Oct. 2020**

Question 2: can the microscopic theory be recovered by (re)summation?

Analytically continue the hydrodynamic data itself:

3. New real space results

[M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW (2007.05524)]

🛗 Speaker View 💠 Exit Full Screen

Michał Spaliński Ŷ **I** • ~ **41**5 , + ۲ 0 Leave Stop Video Participants Share Screen Reactions Mute Chat Record

What does real space divergence (e.g. Bjorken flows) have to do with w(k)?

Consider conformal hydrodynamics, *linearised*.

 $n \equiv 0$

Key step: a novel reorganisation of $\Pi^{\mu\nu}$ Use eom to replace each ∂_t by a series in ∂_x (it's a redundancy) In Landau frame, all tensor structures: $\sigma_{jl} = \left(\partial_j u_l + \partial_l u_j - \frac{2}{d-1}\delta_{jl}\partial_r u^r\right)$, $\pi_{jl}^{\epsilon} = \left(\partial_j \partial_l - \frac{1}{d-1} \delta_{jl} \partial^2\right) \epsilon,$ $\pi_{jl}^{u} = \left(\partial_{j}\partial_{l} - \frac{1}{d-1}\delta_{jl}\partial^{2}\right)\partial_{r}u^{r}.$ Then $\Pi_{jl} = -A(\partial^2) \sigma_{jl} - B(\partial^2) \pi^u_{jl} - C(\partial^2) \pi^\epsilon_{jl}$, with $A = \sum a_n \left(-\partial^2\right)^n$

Counting transport coefficients & matching

first order: 1 each subsequent odd order: 2 each even order: 1

This matches the counting of coefficients in $\omega_{
m shear}(k), \omega_{
m sound}^{\pm}(k)$

They can be mapped to each other,

$$A = \sum_{n=0}^{\infty} a_n \left(-\partial^2\right)^n \quad a_n = [k^{2n+2}] (isT\omega_{\rm shear}) \quad \text{\& similarly for B,C}$$

(this can be regarded as a matching calculation)

Consider a shear mode $\delta \epsilon = 0, \ \delta \mathbf{u} = (u_1(t, x), 0, \dots, 0)$ $x \equiv x^{d-1}$ $\Pi_{1,d-1}(t, x) = -\sum_{n=0}^{\infty} a_n (-1)^n \partial_x^{2n+1} u_1(t, x).$

Convergence via root test $C = \limsup_{n \to \infty} |a_n \partial_x^{2n+1} u_1|^{\frac{1}{n}}$ (C<1 conv., C>1 div.)

Since
$$a_n = [k^{2n+2}](isT\omega_{\text{shear}})$$
 w/ shear branch point k_*
Geometric growth $\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = |k_*|^{-2}$

if $u_1(t, x)$ is compactly supported in momentum space to k_{\max} by Paley-Wiener theorem $\limsup_{n \to \infty} |\partial_x^{2n+1} u_1|^{\frac{1}{n}} = |k_{\max}|^2$ Consider a shear mode $\delta \epsilon = 0, \ \delta \mathbf{u} = (u_1(t, x), 0, \dots, 0) \quad x \equiv x^{d-1}$ $\Pi_{1,d-1}(t, x) = -\sum_{n=0}^{\infty} a_n (-1)^n \partial_x^{2n+1} u_1(t, x).$

Convergence via root test (C<1 conv., C>1 div.)

$$C = \limsup_{n \to \infty} \left| a_n \partial_x^{2n+1} u_1 \right|^{\frac{1}{n}}$$

$$= \frac{|k_{max}|^2}{|k_*|^2}$$

i.e. convergent if
$$|k_{max}|^2 < |k_*|^2$$

k-support is independent of time can be evaluated on any time-slice e.g. initial data

An example in Muller-Israel-Stewart theory

 $a_n = sT\mathcal{C}_n D^{n+1} \tau_\pi^n$ Toy microscopic model (2nd order, one transient) Initial data $\hat{u}_1(0,k) = 0$ $\partial_t \hat{u}_1(0,k) = \frac{1}{2\pi} e^{-\frac{1}{2}\gamma^2 k^2} \Theta(k_{max}^2 - k^2)$ Ratio test $\left|\delta_{n+1}/\delta_n\right|$ $k_{\max} > k_*$ $k_{\max} < k_*$ Geometrically 1.2 divergent 1.0 Convergent 8.0 $10^{-5} |\delta_n|^{\frac{1}{n}} \begin{array}{c} 0.6\\ 0.5 \end{array}$ 0.6 0.4 0.3 **Factorially** 0.4 $k_{\max} \to \infty$ 0.2 divergent 0.1 0.2 n100 150 200 50 50 100 150 200

Summary

- Useful to view $\omega(q)\,$ as a multi-sheeted Riemann surface
- Radius = |q| of closest singularity to q=0 on hydro sheet
- Appear to be set by mode collisions (branch point singularities of the Riemann surface)

Summary

- Explored consequences for real space
- Provided a new formulation of linearised hydrodynamics

$$\Pi_{jl} = -A(\partial^2) \,\sigma_{jl} - B(\partial^2) \,\pi^u_{jl} - C(\partial^2) \,\pi^\epsilon_{jl},$$

- Coefficients mapped to dispersion relations $\omega_{shear}(k), \omega_{sound}^{\pm}(k)$
- Connects real-space convergence with branch points of $\boldsymbol{\omega}$
- Allows us to definitively answer the main question:

Convergence requires momentum support not exceed branch point location

• Convergence \neq applicability

Outlook

- Question 2 in real space: new complex non-pt saddles of a Fourier integral [M. Heller, A. Serantes, M. Spaliński, V. Svensson, BW (upcoming)]
- Interactions! Can there be a mechanism for compact support?

Thank you for your attention!