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History of Fluid/Gravity Duality

Membrane Paradigm

Began with prescient thesis of Damour in 1978
Consider fluctuations of a black hole horizon; these act like a
viscous fluid
Fluid viscosity is computed to be η = 1/16πG

Dividing by the entropy density s = 1/4G gives η/s = 1/4π

Always considers fluctuations at the black hole horizon r = rh
itself; produces Damour-Navier Stokes equation



History of Fluid/Gravity Duality
AdS/CFT Method

Policastro, Son, Starinets hep-th/0205052 considered the
hydrodynamics of N = 4SU(N) SYM via AdS/CFT
Again find η/s = 1/4π

Performed at AdS spatial infinity r =∞
Result requires string theory, SUSY gauge theory, and
AdS/CFT
η/s = 1/4π conjectured to be a bound on the viscosity to
entropy ratio/ however can break via higher derivative
corrections (e.g. Kats, Petrov, Buchel, Myers, Sinha, Cremonini, Vrigante, Liu, Liu,

Shenker, Yaidi, Cai, Nie, Ohta, Sun, Banerjee, Dutta, Paulos, Escobedo, Smolkin,

Dasgupta, Mia, Gale, Jeon . . .)

Bound may still be satisfied by theories that have good causality
(Camanho, Edelstein, Maldacena, Zhiboedov 1407.5597) but hyperbolicity may
limit the causal restrictions (Papallo, Reall 1508.05303, Andrade, Caceres,

CAK 1610.06078)



A ‘Wilsonian’ Approach
Fluid-gravity duality in the cutoff
approach relates solutions of the
incompressible Navier-Stokes equation

∂ivi = 0, ∂τvi− η̄∂2vi+∂iP+vj∂jvi = 0

to solutions of the Einstein equation:

Gµν = 0

Fixing cutoff surface r = rc, then perturbing:

induced metric at r = rc is Ricci flat
waves are infalling at r = rh

extrinsic curvature at r = rc becomes fluid stress tensor . . .
in a hydrodynamic limit

Bredberg, CAK, Lysov, Strominger, 1006.1902 and 1103.2355
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The Hydrodynamic Limit
Consider a solution of incompressible Navier-Stokes (vi, P ).
Now, rescale:

vεi (x
i, τ) = εvi(εx

i, ε2τ)

P εi (xi, τ) = ε2P (εxi, ε2, τ)

These new quantities solve

∂τv
ε
i − η̄∂2vεi + ∂iP

ε + vεj∂jv
ε
i = 0

which is again just Navier-Stokes.

To produce the hydrodynamic limit, we take ε→ 0. This procedure
will remove any corrections to N-S, as well as inducing
incompressibility.



Satisfying the Einstein Constraints

The Nonlinear Metric in the Hydrodynamic Limit

ds2 =− rdτ2 + 2dτdr + dxidx
i

− 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr

+

(
1− r

rc

)[(
v2 + 2P

)
dτ2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

−
(
r2 − r2

c

)
rc

∂2vidx
idτ + . . .O(ε3)

with vi ∼ O(ε), P ∼ O(ε2), ∂i ∼ O(ε), ∂τ ∼ O(ε2).

Induced metric at r = rc cutoff is flat
constraint eqns at O(ε2) are ∂ivi = 0

constraint eqns at O(ε3) are ∂τvi − rc∂2vi + ∂iP + vj∂jvi = 0,
Navier-Stokes with viscosity η̄ = rc

Gra, Gab, Grr = O(ε4)
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Cutoff Approach

Highlights

Does not require AdS, but is connectible to the AdS approach
(Brattan, Camps, Loganayagam, Rangamani 1106.2577)

Extendible to higher orders
(Compere, McFadden, Skenderis, Taylor, 1103.3022; Pinzani-Fokeeva, Taylor

1401.5975)

Hydrodynamic limit can be recast as near horizon limit
Spacetime is algebraically special!



Petrov Type
Categorizes the multiplicities of principal null directions kµ of the
Weyl tensor W :

kµk
µ = 0, k[σWµ]νρ[σkλ]k

νkρ = 0

Spacetimes are algebraically special, or of higher Petrov type,
when principal null vectors coincide. E.g. for Petrov type II,
there exists a real null vector kµ which satisfies

Wµνρ[σkλ]k
νkρ = 0

Generic 4d fluid-dual spacetimes are Petrov type II through
O(ε14) (Bredberg, Keeler, Lysov, Strominger 1101.2451

More restricted fluids are more special!
Petrov conditions can replace some boundary conditions in the
cutoff approach (Lysov, Strominger 1104.5502)
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From Einstein to Maxwell: The Classical Double Copy
Yang-Mills amplitudes AYM (properly gauged) ‘square’ to gravity
amplitudesMgrav:

AYM ∼
∑
k

nkck
props

−→ Mgrav ∼
∑
k

nknk
props

Also scalar theory with amplitudes As ∼
∑

k ck c̃k/props
For review see Bern, Carrasco, Chiodaroli, Johansson, Roiban 1909.01358

Kerr-Schild Map (Monteiro, O’Connell, White 1410.0239)

Pick metric in Kerr-Schild coordinates (with k2 = 0):

gµν = ηµν + φkµkν −→ Gµν = 0

Aµ = φkµ −→ ∇νFµν = 0

φ −→ ∇2φ = 0
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From Einstein to Maxwell: The Weyl Classical Double
Copy

Luna, Monteiro, Nicholson, O’Connell 1810.08183

For Type D/N spacetimes with principal null vectors aligning in
pairs/all four align

Rewrite Weyl tensor in spinor notation:
CABCD = 1

4Wµνλγσ
µν
ABσ

λγ
CD

Decompose in principle spinors CABCD = α(AβBγCδD)

CDABCD ∼ α(AαBβCβD), CNABCD ∼ α(AαBαCαD)

For these special spacetimes, can ‘square root’ the Weyl tensor:

CABCD =
1

S
f(ABfCD)

with ∇2
0S = 0 and fAB → Fµν satisfying ∇µ0Fµν = 0.
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Algebraic Speciality in Fluids
Can prove algebraic speciality by writing

CABCD =Ψ0ιAιBιCιD − 4Ψ1o(AιBιCιD) + 6Ψ2o(AoBιCιD)

− 4Ψ3o(AoBoCιD) + Ψ4oAoBoCoD

If only Ψ2 is nonzero, then the spacetime is type D.
If only Ψ4 is nonzero, then the spacetime is type N.

For general fluid-dual spacetimes, Ψ0,Ψ1,Ψ3 = 0 +O(ε3),

Ψ2 = −iε2 (∂xvy − ∂yvx) /4rc +O(ε3)

Ψ4 = −ε2 (∂xvx − ∂yvy + i(∂xvy + ∂yvx)) /2r +O(ε3).

Type D fluid-dual spacetimes

Ψ4 = 0 −→ vx = −ωy, vy = ωx, P = ω2(x2 + y2)/2

if we choose τ independence. This fluid has constant vorticity ω.

Type N fluid-dual spacetimes

Ψ2 = 0 −→ ∂xvy − ∂yvx = 0 so vorticity vanishes.

Also incompressible so ‘potential flow’:

vi = ∂iφ, ∂iP = −∂i∂τφ− ∂jφ∂i∂jφ.

Algebraically special fluid-dual spacetimes

Type D fluids have constant vorticity
Type N fluids are potential flows
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Type D fluids: Constant Vorticity

Only nonzero ΨI is

Ψ2 = −iε2ω/2rc +O(ε3)

with natural background

ds2
(0) = −rdτ2 + 2drdτ + dx2 + dy2

Single and Zeroth Copies

S = iωrce
2iθ, fAB = eiθω

(
1 0
0 −1

)
→

{
F τr = −ω cos θ

F xy = −ω sin θ

all other Fµν components are zero
S is constant so trivially solves ∇2

(0)S = 0

∇(0)
ν Fµν = 0, ∇(0)

[µ F ρσ] = 0



Type D fluid single copy: A giant solenoid

Choosing θ = 3π/2 we have

vx = −ωy, vy = ωx

F τr = 0, F xy = ω

Eµ = 0, Bµ = ωδrµ

Type D Fluid Double Copy Summary

Fluid is solution inside of slowly rotating cylinder with no-slip
conditions at the wall
Magnetic field ~B = ωr̂ is uniform field inside a big solenoid with
current proportional to ω
zeroth copy field S is constant and thus plays a passive role
Fluid only in hydro regime for x, y ∼ ε−1; can fix by going to
near-horizon expansion instead
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Type N fluids: Planar Extensional Flow

The simplest Type N fluid has φ = α
2 (y2 − x2), so

vx = ∂xφ = −αx, vy = ∂yφ = αy

The zeroth and single copy fields become

S =
e2iθ

α
, fAB =

eiθ√
r

(
1 1
1 1

)
Again choosing θ = 3π/2 the nonzero components of F become

F rx = 1, F τx =
2

r
−→ ~E = −x̂, ~B = ŷ.

On the background ds2
(0) = −rdτ2 + 2drdτ + dx2 + dy2 again both

Klein-Gordon and Maxwell’s are solved.
Poynting vector is

~S = −r̂.
Gauge field is single copy necessary to build up any fluid with a
potential component.

What if we consider a different potential φ?
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Type N fluids: Potential flow: The Double Copy Story

We already studied extensional
flow: φ = α

2 (y2 − x2), so

vx = ∂xφ = −αx, vy = ∂yφ = αy

~E = −x̂, ~B = ŷ

But there are many other potential
flow fluids!

Potential φ vx vy
Ext. flow −α

2 (x2 − y2) −αx αy

Source/Sink ln(x2 + y2) 2x/(x2 + y2) 2y/(x2 + y2)

Dipole x/(x2 + y2) (y2 − x2)/(x2 + y2)2 −2xy/(x2 + y2)2

Line Vortex arctan(y/x) −y/(x2 + y2) x/(x2 + y2)

If Fµν is just a ‘support’ single copy, then what distinguishes these
fluids from each other? S!
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2 (x2 − y2) −αx αy

Source/Sink ln(x2 + y2) 2x/(x2 + y2) 2y/(x2 + y2)

Dipole x/(x2 + y2) (y2 − x2)/(x2 + y2)2 −2xy/(x2 + y2)2

Line Vortex arctan(y/x) −y/(x2 + y2) x/(x2 + y2)

If Fµν is just a ‘support’ single copy, then what distinguishes these
fluids from each other? S!
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Type N fluids: Potential flow: The Double Copy Story
The potential φ resides in the zeroth copy scalar S .
We have

vx = ∂xφ, vy = ∂yφ with φ = f(z) + f̄(z̄)

The zeroth and single copy fields become

S = − e2iθ

2∂2
z̄ f̄(z̄)

, fAB =
eiθ√
r

(
1 1
1 1

)

Type N Fluid Double Copy Summary

∇2
(0)S = 0 nontrivially; because φ = f(z) + f̄(z̄)

‘Background’ single copy field is still ~E = −x̂, ~B = ŷ

Poynting vector of single copy is ~S = −r̂.
Gauge field is single copy necessary to build up any fluid with a
potential component.
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Algebraically Special Fluid Double Copy Summary
Type D Fluid Double Copy Summary

Fluid: inside of slowly rotating cylinder with no-slip conditions
Magnetic field ~B = ωr̂ is uniform field inside a big solenoid with
current proportional to ω
zeroth copy field S is constant and thus plays a passive role
Fluid only in hydro regime for x, y ∼ ε−1; can fix by going to
near-horizon expansion instead

Type N Fluid Double Copy Summary

∇2
(0)S = 0 nontrivially; because φ = f(z) + f̄(z̄)

‘background’ single copy field is still ~E = −x̂, ~B = ŷ

Poynting vector of single copy is ~S = −r̂.
Gauge field is single copy necessary to build up any fluid with a
potential component.



Future Directions

Future Questions

higher orders in ε?
generic incompressible fluids? Helmholtz decomposition
vi = ∂iφ+ εij∂jAz

solution generating mechanisms
relate to other fluid-gravity dualities, such as large D or
AdS/CFT


