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Motivation: ongoing experimental programs and theoretical
advances of the last two decades

Experiments:

Experiments on heavy ion collisions at RHIC (2000-current), LHC (2010-current)
and future (FAIR, NICA) colliders
(relativistic, “many-body”, strongly interacting, non-equilibrium “hot” system)

Romatschke and Romatschke, *"Relativistic Fluid Dynamics Out of Equilibrium : Ten Years of Progress in Theory and Numerical Simulations
of Nuclear Collisions," arXiv:1712.05815 [nucl-th] - NOW A MAJOR MOHOSNPIEFIRE BOOK FROM Cambridge U.Press!
Busza, Rajagopal and van der Schee, "Heavy lon Collisions: The Big Picture, and the Big Questions,” arXiv:1802.04801 [hep-ph].

Experimental realization (1995-1999) of new classes of quantum “many-body” systems
(e.g. ultra-cold atomic Bose and Fermi gases),
current extensive study of their collective behavior
(non-relativistic, “many-body”, strongly interacting, non-equilibrium “cold” system)

Theory:

Gauge-string duality: A “new” (1997) non-perturbative tool to study strongly interacting

guantum systems
(zero or finite temperature/density, relativistic and non-relativistic, equilibrium and
non-equilibrium — but for limited class of theories/parameters)



Hydrodynamics is an effective theory valid at long times & large distances

Small fluctuations of an equilibrium state (here: homogeneous, isotropic, neutral, relativistic)
are the hydrodynamic (gapless) modes with dispersion relations (in Fourier space ~ ¢—iwttiaz ):

Shear mode: = m(q) - _Z-__7l_ C|2 M
e+ P
4

e
Sound mode: m:mi(q):jﬂ)sq_z 3 CI2+"‘

e+ P
o= gl = it : 1, ¢ — shear & bulk viscosities; vs — speed of sound; €, P — energy density & pressure

2T 2T

1) Do the series above converge? If so, what determines their radii of convergence?
Does the effective theory “know” its limits? Why hydro is so effective at strong coupling?

2 4 6

w:p__p__|_ & _|_...:\/p2—|—m2—m, =
2m  8m3  16m°

2) How do transport coefficients change when the coupling in an underlying microscopic theory
changes? Can we interpolate between weak and strong coupling?

Thanks to holographic duality, these questions can be investigated for some QFTs.



Motivational Slide - |

Interpolation between weak and strong coupling:
exact results are rare (even at T=0)...

Example (old & beautiful): expectation value of a circular Wilson loop in

N =4 SU(N,) SYM in d = 4 in the limit N, — 00, A = g%, Nc

(We) = % I (2v3)
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Erickson, Semenoff and Zarembo (2000)




The “unreasonable effectiveness of hydrodynamics “...

A paraphrase (one of many) of Wigner’s "The Unreasonable Effectiveness of Mathematics in the Natural Sciences” (1960)

Approach to equilibrium —expect:  (T*”) — diag (¢, P, P, P)

c=—1 c=+1

Full non-linear evolution after “quench”
P.Chesler and L.G.Yaffe (2009)
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Hydrodynamics seems to work remarkably well even when the gradients are not small...



Relevant issues not discussed in this talk

Causality problems in relativistic hydrodynamics and their resolution

Kovtun, 1907.08191 [hep-th]

Hoult and Kovtun, 2004.04102 [hep-th]

Bemfica, Disconzi, Noronha, 1907.12695 [gr-qc]; 2009.11388 [gr-qc]

Convergence/divergence/resurgence/insurgence in the position space

Heller, Serantes, Spalinski, Svensson, Withers, 2007.05524 [hep-th]

Berges, Heller, Mazeliauskas, Venugopalan, 2005.12299 [hep-th]

Relation to the singularity theorems in GR and stability analysis

Dafermos, Holzegel, Rodnianski, 1601.06467 [gr-qc]



https://arxiv.org/abs/1907.08191
https://arxiv.org/abs/2004.04102
https://arxiv.org/abs/1907.12695
https://arxiv.org/abs/2009.11388
https://arxiv.org/abs/2007.05524
https://arxiv.org/abs/2005.12299
https://arxiv.org/abs/1601.06467

Fluid dynamics is an effective theory valid in the long-wavelength, long-time limit

Fundamental degrees of freedom = densities of conserved charges

Equations of motion = conservation laws + constitutive relations”*

Example |
o=
| o Al X P
J = PN 0 o
Example
8aTab ==} Navier-Stokes eqs

Burnett eqgs

T = euu’ + P(e) (¢*° + u®u®) + O* + - -

* Modulo assumptions e.g. analyticity

** E.o.m. universal, transport coefficients depend on underlying microscopic theory



Consider relativistic neutral conformal fluid in a d-dimensional (curved) space-time
Pan ey Al P (gab + uaub) SaHer

Including only terms with first and second derivatives of fluid velocity:

Hab: _nO_ab
1
vk

S {R<ab> — (d — 2)ucRC<ab>dud}

+ T [<Daab> 4 TRV u)]

i )\10’<a60'b>c i )\20_(0,69@0 oS )\BQ(ach>c

Transport coefficients (in conformal case): 1), 711, K, A1 : Ao : A3

Non-conformal case: 2 first order coefficients, 15 (10) second order coefficients
(see S.Bhattacharyya, 1201.4654 [hep-th])



Beyond second order hydrodynamics

Tensors structures appearing in the derivative expansion have been analyzed using
computer algebra in 1507.02461 [hep-th] by Grozdanov & Kaplis.

At third order, there are 20 relevant structures in the conformal case
and 68 in the non-conformal one.

This still needs an entropy current analysis similar to the one in
S.Bhattacharyya, 1201.4654 [hep-th]

Example: dispersion relations in conformal case

e A 27- 61
w=—ilpk® —i [(2+PH)2 p 2(5+P)} Kooty
i ‘17,2 3 . Ramili s Ry eas 0. +6 A
R e Y o R B :F2CS(F—QCSTH)]€ _Z[%gl——PH)?_s(leHg)}k HibE

Here 0821/\@ I'=n/(e+ P)



Precursors

Misha Lublinsky Ben Withers

Bu and Lublinsky;,
Linearized Fluid/Gravity Correspondence: From Shear Viscosity To All Order Hydrodynamics,

1409.3095 [hep-th] and subsequent papers

Withers,
Short-lived modes from hydrodynamic dispersion relations, 1803.08058 [hep-th]



Relativistic hydrodynamics to all orders
CEETS =R Y e o R e T e d A (e i PR )

Fundamental d.o.f. — densities of conserved charges: TOO, 72

All other components should be expressed through them (and their derivatives)
via constitutive relations. To linear order in fluctuations, in Fourier space:

0T% = —iA (q'6T% + ¢/6T%)+0T* (Bg'q’ + C67)+igud T (Dq'q’ + ES)

Here A,B,C,D,E are functions of w, q2 Expanding them around (0,0) to order Kk,
we get the usual derivative expansion in k-th order hydrodynamics, e.g. for k=1:

5T = §ig2 §T0 HLP [n (qZ(STOJ S e qk5T0k> 4 (Y qdeOkJ

Combining this with conservation equation 0, T"" = 0 , we get a 4x4 matrix (M) equation
for fluctuations §799 §7%



Hydrodynamic spectral curve

Non-trivial solution for fluctuations §7°° 67 : detM = P(¢* w) =0
For relativistic homogeneous & isotropic neutral fluid in d+1 dimensions
P(g?w) = (w+ i®7(w,62))* (W2 + iwg®vs(w, %) — PH(w,q?)) = 0
Here the functions 7y, Vs, H are simply related to A,B,C,D,E in the constitutive relations
0T = —iA (¢"6TY + ¢ 6T%)+6T°° (Bq'q’ + C6Y)+iqpdT*" (Dq'q’ + E5Y)
So we have 2 hydrodynamic spectral curves:

Fohear = W + iqZ’yn(w, q2> o]

Foound = w? + iqu%(w, q2> & q2H(w, q2> =0

We treat them as complex curves F'(x,y) = 0 in the space of (z = ¢°,y = w) € C?

Note: at any finite order of the gradient expansion, F(x,y) is a polynomial



Complex curves F(x,y)=0 are interesting objects. Here, we are interested in
solutions y=y(x) and their properties (we assume the curve is analytic or algebraic).

Example:

f(z,y) 295—4’y4+4y3+2x2y2—:Uy2—|—2x2y+2xy—l—x4—|—x3 =0

Regular points:  F'(%4,ys) =0, Fy (24, ys) #0 Yy = Z n (T — T4)"

n>ng

Critical points:  F'(zy,ys) =0, Fy (24, y) =0, ...Fy(p) (T, ys) # 0

Puiseux series: Yy = Z an(ﬂf—ﬂf*) 7,m; = L,..p



Example: Kepler’s equation at complex eccentricity

3/2

Kepler’s Third Law contains non-analyticity: /' o< a This is not an accident.

: . s G : r=a(l —ecosy)
Motion of a planet with eccentricity e in parametric form:

ki o (¢ — esiny)

Solving for w(t) (eccentric anomaly) determines the position of the planet

Kepler’s equation: F=1—1vY+esiny =0

o0 n
e
Solution (Lagrange, 1771): P(r,e) =7+ Zl n (7) il
n—

The series converges for |¢| < ey ~ 0.662743....  (Laplace, 1823)



Example: Kepler’s equation at complex eccentricity (continued)

“'This equation plays an important role in the history of mathematics.

From the time of Newton, the solution has been sought in the form of a series in
powers of the eccentricity e. The series converges when [e[< 0.662743....

The investigation of the origin of this mysterious constant led Cauchy to the
creation of complex analysis. Such fundamental mathematical concepts and
results as Bessel functions, Fourier series, the topological index of a vector field,
and the ‘principle of the argument" of the theory of functions of a complex
variable also first appeared in the investigation of Kepler's equation”.

Critical points of the Kepler’s curve:

el ST e st gt =)
OF

Ime

6

4

V.I.Arnold

— =ecos—1=0

Y

The series converges for |e| < ey ~ 0.662743....

The critical points closest to the origin are located at

e = +0.6627433

» Ree



Applying these theorems to hydrodynamic spectral curves

Fohear = W + iq2%7(w, R
Fsound = w? + iwq2%(w, 92) £ q2H(w, 92) =0

we conclude that solutions are given by Taylor or Puiseux series
converging in the vicinity of q=0

(© @)

Shear mode: Wt = —1 Z Cn(QQ)n

=1

o

Sound mode: (O =g Z anei”T" (QQ)%

n=1

Obstruction to the convergence of these series is the next critical point of the spectral curve

Spectral curves can be easily found in theories with dual gravity description



Ludwig Wittgenstein’s view of duality (1892; 1953)

1158V 4

W

DUCK

(The analogy stolen from Shamit Kachru’s talk at Simons Foundation, New York, Feb 27, 2019)



Spectral curves from holography

Dual black hole fluctuations reduce (in gauge-invariant variables) to ODEs such as

G

e o

=

P(2) = Ap1(z) + Bpa(2)

e doea i R e I Reanh s g e

|. Computing the retarded correlator: inc. wave b.c. at the horizon, normalized to 1 at the boundary

G® ~ = 1 contact terms

A

Il. Computing quasinormal spectrum: inc.wave b.c. at the horizon, Dirichlet at the boundary

A (w, q2) ==4() This is the full spectral curve.




Singularities of a (retarded) Green’s function in the complex frequency plane

Imro

Reto

Shear channel 3 :

Strong (infinite) coupling

Real spatial momentum g2



Recall the condition for a critical point of a curve

F(2e,ys) = 0, Fy (@0, ) = 0, B9 (2, 4.) £ 0

This is actually a “level-crossing” condition
F(r,y) = (y — y«(2))P(y —31(z)) - - (y —y(z)) =0

Thus for the quasinormal spectrum curve A(w,q) = 0 we expect w1(q:) = wa(qx)

Imto
Reto
; ? £ Critical point
Shear channel : . conditions:
A 2 : :

me D i Aw,g?) =0

" 2 0A (w,q2)

=54
ow

This “quasinormal level crossing” can happen at complex g«



Dispersion relations of the quasinormal modes for real g
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Imto

Poles of the retarded energy-momentum tensor correlator in complex 10 -plane
at complex g% = |q°[e’? , 6 € [0, 27]
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Poles of the retarded energy-momentum tensor correlator in complex 10 -plane
at complex g% = |q°[e’? , 6 € [0, 27]
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Quasinormal modes level-crossing at complex g
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Singularities in the complex g?-plane

Branch cuts of the function mshear(qQ) Branch cuts of the function tgouna(q)
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Note: at finite density, the branch point singularity on the negative real axis may be dominant
Withers, 1803.08058 [hep-th]

Abbasi and Tahery, 2007.10024 [hep-th]

Jansen and Pantelidou, 2007.14418 [hep-th]



https://arxiv.org/abs/1803.08058
https://arxiv.org/abs/2007.10024
https://arxiv.org/abs/2007.14418

Radii of convergence of hydrodynamic modes in N=4 SYM
(at infinite ‘t Hooft coupling, from dual gravity)

sl 2
Sh de: o = 1o S « =~ 1.49131 x (27T
ear mode (9) s kg g (27T)
ey
Sound mode: et e L e S 3 0>+ -+ g = V2 x (27T)
e+ P
S G R e : sl : :
= o’ q= o T : 1, ( — shear & bulk viscosities; v — speed of sound; €, P — energy density & pressure

What about finite ‘t Hooft coupling?
Crude estimate: eirali— V3 (1 = 15((3))\_3/2 e )

Thus it appears that the radius of convergence is smaller at weaker coupling —
hydrodynamics in strongly interacting systems is more “robust”?
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Motivation and three examples:
weak-strong coupling interpolation for
1) Zero-temperature observables

2) Thermodynamic observables

3) Transport



N = 4 supersymmetric YM theory

Gliozzi,Scherk,Olive’77
Brink,Schwarz,Scherk’77

 Field content:

A, ®; ¥4 allin the adjoint of SU(N)

e Action:
1 A 1 2 2 1 2
S = g%M/dCEtr {§F;u/+(D/L(I)I) —5[(1)1,(1),]]

+4WI* D, — VI [®;, \IJ]}

e Large N: effective coupling = ‘t Hooft coupling ) = g%, N

(super)conformal field theory = coupling doesn’t run



Interpolation between weak and strong coupling:
exact results are rare (even at T=0)...

Example (old & beautiful): expectation value of a circular Wilson loop in

N =4 SU(N,) SYM in d = 4 in the limit N, — 00, A = g%, Nc

(We) = % Iy (2\/X)

)\2

A
W e s ey
(We) +4+48+ <

\/5 o
laV) — e o o A 1

Erickson, Semenoff and Zarembo (2000)




Energy density vs temperature for various gauge theories
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E/€,

|deal gas
of hadrons
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( \ and gluons
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N=4SYM - == -
/T,
2 3 4

Figure: artist’s impression based on LQCD, from Myers and Vazquez, 0804.2423 [hep-th]



Pressure in perturbative QCD
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Entropy density of A/ = 4 SYM in the planar limit (N — oo)

S/So N = 4 super-Yang-Mills
]_7 ; : : : :
weak-coupling to order \3/2
$hade — strong-coupling to order \~3/2
0.9
0.85¢
guglistalelE el N,y ST 4
QLT Si Ui e AN i e e e e S e
0.70L ‘ ' ‘
0 2 4 6 8 L 14

A= g°N
Fig from Blaizot, lancu, Kraemmer and Rebhan, hep-ph/0611393

2
i e | 8/80 =1- 232 A+ \/_ : 3)\3/2 + ... Fotopoulos and Taylor, hep-th/9811224
T T
3 45 _3/2 |
A>S> 1 8/80 = Z His 3—2 C(g) A + ... Gubser, Klebanov and Tseytlin, hep-th/9805156
2 272

B N2T? - Stefan-Boltzmann (free gas)



Viscosity-entropy ratio in Unitary Fermi gas

1 i———————————————r——————————————r
PIMC, N,.=8 —=— kinetic theory
PIMC, N,=10 —e— phonons
0.8 I Enssetal KSS bound ------ d
| . .
0.6 g ;
@ h o I
= | ml ® { +
0.4 r - =
0.2 |
O 1 1 1 | U I S

G.Vlazlowski, P.Magierski, J.E.Drut, arXiv:1204.0270 [cond-mat.quant-gas]

h
47’(‘/63

(17/8)min ~ 1.38 in units of



Shear viscosity in A/ = 4 SYM

N 1 perturbative thermal gauge theory
n A2 |og % S.Huot,S.Jeon,G.Moore, hep-ph/0608062
S

% 1 15¢(3) 1
- + =
e, 47 4 X3/
.......... —
0
0 A= 2N

Correctionto 1 /47 Buchel, Liu, A.O.S., hep-th/0406264

Buchel, 0805.2683 [hep-th]; Myers, Paulos, Sinha, 0806.2156 [hep-th]



Plan

Transport properties and analytic structure of correlation functions
in weakly interacting many-body quantum system (particles or quasiparticles)

Transport properties and analytic structure of correlation functions
in strongly interacting many-body quantum systems (from holography - dual gravity)

Real systems are at intermediate coupling (e.g. QGP)

The problem of interpolation between weak and strong coupling is non-trivial

We compute (inverse) coupling corrections using two dual higher-derivative
actions - 2 (Gauss-Bonnet) and 24 (dual to N=4 SYM)
and argue that results are consistent with expectations from (interpolated)
weak coupling calculations



Weak coupling




Hydrodynamic regime in kinetic theory

Hierarchy of times (e.g. in Bogolyubov picture of kinetic theory)

Tm ft Lt KL Teazz’stence

0 Tinter Tmft Trelax t
Mechanical Kinetic Hydrodynamic Equilibrium
description theory approximation thermodynamics

Hierarchy of scales

(L is @ macroscopic size of a system)



The hydrodynamic regime (continued)

Degrees of freedom

| | | | i

0 Tinter Tm ft Trelax t
Mechanical Kinetic Hydrodynamic Equilibrium
description theory approximation thermodynamics
Coordinates, Coordinate- Local densities Globally conserved
momenta of and time- of conserved charges charges

individual dependent

2 E
particles distribution functions e(:r, t)

Hydro regime: Tmicro < 7 K iglobal| |!micro <! < Lgjobal




Relaxation time in kinetic theory

OF . p; OF 9U(r) 9F

Kinetic equation s — e i Bt C|F]
Linearized by F(t,r,p) = Fo(r,p) [1 + ¢(t,r, p)]
dp  pi 0p  OU(r) 0y
SR : ; L
Leads to o el T 3 O, + Loly]
For spatially homogeneous distributions: 90(?5, p) T €_Vth(p)
Eigenvalue problem: —vh = Log|h]

Solution: p(t,p) = Z eT o ()



Spectrum of linearized kinetic operator
(at zero spatial momentum, i.e. all hydro modes are at 0)

Wang Chang & Uhlenbeck (1952), Grad (1963)

a) | b) <) d)

Ymin

Ymin
Ymin

a) Discrete spectrum, U = a/r?
b) Continuous spectrum with a gap, U = a/r", n >4
c) Continuous gapless spectrum, U = «a/r", n <4

d) Hod spectrum



Relaxation time in kinetic theory (continued)

o(t:p) = Y Cpe” "' hu(p)

—vh = LO [h]

The hierarchy of relaxation times is determined by the spectrum
of the linearized kinetic operator

TR 1/szn

For weakly inhomogeneous systems:

G ool Dbl EE Ok iy

ot i m Or® ort - Op; TR

Krook-Gross-Bhatnagar (KGB) equation (1959) a.k.a. “RTA”

Transport is then essentially determined by the relaxation time, e.g. shear viscosity is

A o



Of course, the situation is significantly more complicated
for generic weakly interacting quantum systems (relativistic or not)
at finite temperature and/or density

Resummations typically lead to effective kinetic theory (AGD, Popoy,
AMY++). Transport is determined by the spectrum of kinetic operator.
Partial results exist, yet e.g. the analytic structure of correlators of
gauge-invariant operators is generically unknown (but see recent work
by Guy D. Moore, 1803.0073).

G.D.Moore, Stress-stress correlator in phi*4 theory: Poles or a Cut?,” arXiv:1803.00736 [hep-ph].

A.Kurkela and U.A.Wiedemann, "Analytic structure of nonhydrodynamic modes in kinetic theory,"
arXiv:1712.04376 [hep-ph].

P.Romatschke, "'Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset
transitions," [arXiv:1512.02641 [hep-th]].



Strong coupling




How to compute second order transport coefficients?

Fluid-gravity correspondence [Bhattacharyya et al, 2007]
Quasinormal spectrum [Baier et al, 2007]

Kubo formulas & three-point functions
[Moore, Sohrabi, Saremi, 2010, 2011; Arnold, Vaman, Wu, Xiao, 2011]



First and second order transport coefficients of conformal
holographic fluids to leading order in supergravity approximation

RS G
d 1 9
1 P
m= gz (1 e+ (3)])
st
{as o
dn
X
by o]
Rl ea
DBl e ) d 27TT7
A3 =0

Bhattacharyya et al, 2008

Note: 2777'1‘[ Eip 4)\1 £ )\2 £k



Cuts versus poles: a mystery

Singularities of a Green’s function in the complex frequency plane

Imto Imto
=4 q Ret Reto
annmprpnspronererore  — (AT ° °
e — 87T ° .
swoovsaspaossornsns — 127
ananerenaeonyone — i1 G677
Weak (vanishing) coupling Strong (infinite) coupling
Hartnoll, Kumar (2005) AOS (2002)

We should be able to interpolate between the two limits...



Coupling constant corrections to N=4 SYM transport coefficients

ol e <R+ 2+7W> v = X"3/2¢(3)/8
2/4;5 L
(e e
n:§NcT (141357 +...)
SR N e 3 T By
GlE i e e e
N2T?
s et sy
N27T2
N2T2
et e ah ‘136 (2In2 4507+ 54n 2+ ...)
25 N2T72
A3 = 5 Y,

Note: 2?77'1‘[ orz 4)\1 e )\2 =54



Curvature squared corrections to transport coefficients
of a (hypothetical) strongly coupled liquid

1

Spz = 53 | d’x/=g [R 28+ L? (1 B? + a2 Ryy R* + 03 Ry pr B
5
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IR 2—/%(1—8(5(11—|—012))—|—...
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i 42 3 (5a1 + az) T
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r2 26 r2
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7% In2 26 r% (21 +51n 2)
et =kl i
% 212 ( 3 (90 = a2)) 6K2 i
2872
)\3 SRR /4(,2 a3 b
5

Note: 2777'1‘[ = 4)\1 =1 )\2 =0



Gauss-Bonnet corrections to transport coefficients
of a (hypothetical) strongly coupled liquid

12 A
5 /— GB 12 3
2
Ty
=—=(1—-4
1 2/{2 ( )‘GB)
2 2
- r3(2-mn2) 71 (25—-7In2)
AL 42 82 Aap +
2 2
SR aE Ly 1R
i Dk ARS AGn
r2 9r2
e sye sy By
1 4/4:% g % GB
r?In2 7r2 (1 —1In2)
N3l e sl
2 2/{@ A g GB i
1472
A3 = ——5TAgB +
7
Brigante, Myers, H.Liu, Myers, Shenker, Yaida, 2008 Shaverin, Yarom, 2012

Note: 2777'1‘[ =k 4)\1 b )\2 m==:{}



Non-perturbative Gauss-Bonnet corrections to transport coefficients
of a (hypothetical) strongly coupled liquid

Sep = 55 d°z/—g | R+ 2ot L (R AR B By o BT
5
= 2 2= 21 d)ep) i |
it =g GB Brigante et al, 2008
sk 1 el -
T = 55 <4 (1+7) (5 e 7) 5 log { 7 D Banerjee and Dutta, 2011
1 3 —4y+2v3
g bl <( el e )> Grozdanov and AOS, 2014
27T 22
Ay = _% (_i (1+7) (1 4y — %) LE %1Og [2 “;F 7)]) Grozdanov and AOS, 2014
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Poles (blue) and zeros (red) of a typical retarded correlator
at infinite coupling (dual gravity results)
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Singularities of stress-energy tensor Green’s function
at infinite (black dots) and finite (black crosses and diamonds)
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Earlier work: Stricker, 1307.2736 [hep-th]; Waeber, Schafer, Vuorinen and Yaffe, 1509.02983 [hep-th].
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Quasinormal spectrum of Gauss-Bonnet black brane

AdS-Schwarzschild black brane (numerical data)
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Singularities of stress-energy tensor Green’s function
in different regimes of viscosity-entropy ratio (shear channel)
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White squares: poles at infinite coupling
Crosses: poles at finite coupling



On the “unreasonable effectiveness” of kinetic theory at strong coupling
Recall that in kinetic theory n = const sTrT

What happens at large but finite coupling, with 7 = 1/|Im wg| ?
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Breakdown of hydrodynamics at (large) finite coupling
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Kinetic theory (relaxation time approximation)
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Figs from Paul Romatschke, 1512.02641 [hep-th]
See also A.Kurkela and U.Wiedemann, 1712.04376 [hep-ph]
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“Applicability of hydrodynamics” as a function of coupling
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POLES VS CUTS: FROM INFINITE TO ZERO COUPLING
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Transport peak of spectral functions at large finite coupling

_ 4 —ikx _ R
Viscosity is determined by the height of the peak of the spectral function at w=0.
The peak is affected by the singularities of the correlator in the complex w plane.

What kind of singularities? Are they the same at weak and strong coupling?



Transport peak in QCD at finite temperature (sketch)




Transport peak of spectral functions at large finite coupling
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Linear instability of black brane backgrounds in higher-derivative gravity

Coupling constant corrections to the entropy, viscosity, correlators etc are coming from

1

2/-4;10

1
4 - 5!

T T /dloxr (R— -+ (8gb) 'F5 SRAE T 2¢W—|— )

R Gl O O Bl e Cafwvcw TR = ATHACBTIO )8

The corrected 5d metric is

(B

) LQd'UJ2

i
ds® = T

(—e“(“)f(u)dt2 + dx® 4 dy” + sz) Leh

a(u) = —15v (5u® + bu* — 3u®) , b(u) = 157 (5u® + 5u* — 19u°)

Gubser, Klebanov and Tseytlin, hep-th/9805156; Pawelczyk and Theisen, hep-th/9808126

Linear metric fluctuations satisfy e.o.m. of the type
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This can be re-written in Eddington-Finkelstein coordinates as
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The sign of the imaginary part of an eigenfrequency is determined by
(Horowitz and Hubeny, 1999)
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The instability seems to be generic.

Konoplya and Zhidenko, 2017; Grozdanov, Gushterov, AOS, 2018



Critical momentum vs (inverse) coupling in N=4 SYM
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Hydrodynamic modes and quantum chaos
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Conclusions & open questions

Finite coupling corrections seem to show qualitatively similar behavior irrespective of the
precise structure of higher derivative terms in dual gravity (we did R*2 and R*4)

How robust are the results (structure of higher derivative expansion)?

We observe breakdown of hydrodynamics at coupling-dependent value of a wave-vector. The
dependence on coupling suggests that hydrodynamics has a wider applicability range at
stronger coupling

Our results suggest that kinetic theory results may be formally still applicable
in the intermediate and strong coupling regime
where the use of kinetic theory itself cannot be justified. In particular, transport peak
is visible at large finite coupling due to inflow of poles. Compare to pQFT?

We observe qualitatively different analytic structure of correlators depending on whether
n/s>1/4worn/s < 1/4m

We observe linear instability of the dual metric at finite coupling. Need to explain this.






