Holographic and Localization Calculations of Boundary F in $\mathcal{N} = 4$ SYM

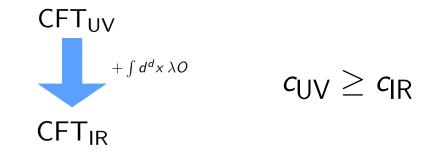
Chris Waddell, w/ Mark Van Raamsdonk

October 30, 2020

Based on arXiv:2010.14520

Chris Waddell, w/ Mark Van Raamsdonk (UEHolographic and Localization Calculations of

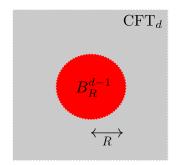
CFTs and C-Theorems



C-theorems known in

- d = 2: "c-theorem" [Zamolodchikov]
- d=3: "F-theorem" [Jafferis, Klebanov, Pufu, Safdi; Casini, Huerta; Klebanov, Pufu, Safdi]
- d = 4: "a-theorem" [Cardy; Komargodski, Schwimmer]

Generalized F-Theorem



Candidate C-function: universal term in vacuum entanglement entropy of ball-shaped region ("generalized F")

Generalizes results from d = 2, 3, 4

$$S[B_{R}^{d-1}] = \begin{bmatrix} a_{d-2} (R/\epsilon)^{d-2} + a_{d-4} (R/\epsilon)^{d-4} + \dots + \begin{bmatrix} 4(-1)^{\frac{d-2}{2}} A \ln (R/\epsilon) & 2 \mid d \\ (-1)^{\frac{d-1}{2}} F & 2 \nmid d \end{bmatrix}$$

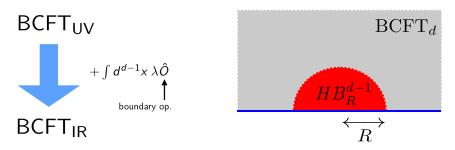
scheme-dependent universal
$$F_{UV} \ge F_{IR} \quad A_{UV} \ge A_{IR} \qquad \ln Z[S_{R}^{d}]_{univ.} = S[B_{R}^{d-1}]_{univ.} \quad (CHM)$$

Now take CFT_d and...

- Add a boundary
- Impose boundary conditions which preserve conformal symmetry of CFT_{d-1}
- (Possibly) couple in extra DOF at boundary

 \implies boundary conformal field theory (BCFT)!

Boundary \tilde{F} -Theorem



Now have UV divergences of both d-dimensional and (d - 1)-dimensional origin

$$S[HB_{R}^{d-1}] = \tilde{a}_{d-2} \left(R/\epsilon \right)^{d-2} + \tilde{a}_{d-3} \left(R/\epsilon \right)^{d-3} + \ldots + \begin{cases} 4(-1)^{\frac{d-2}{2}} A \ln \left(R/\epsilon \right) + (-1)^{\frac{d-2}{2}} \tilde{F} & 2 \mid d \\ 4(-1)^{\frac{d-3}{2}} \tilde{A} \ln \left(R/\epsilon \right) + (-1)^{\frac{d-1}{2}} F & 2 \nmid d \end{cases}$$

Want to extract universal contribution

Boundary \tilde{F} -Theorem

Ĩш

$$S[HB_{R}^{d-1}] = \tilde{a}_{d-2} (R/\epsilon)^{d-2} + \tilde{a}_{d-3} (R/\epsilon)^{d-3} + \ldots + \begin{cases} 4(-1)^{\frac{d-2}{2}} A \ln (R/\epsilon) + (-1)^{\frac{d-2}{2}} \tilde{F} & 2 \mid d \\ 4(-1)^{\frac{d-3}{2}} \tilde{A} \ln (R/\epsilon) + (-1)^{\frac{d-1}{2}} F & 2 \nmid d \end{cases}$$

Want to extract universal contribution: define "boundary entropy" (à la g-function in 2D BCFT [Affleck, Ludwig])

$$S_{\partial}(R) \equiv S^{(\mathsf{BCFT})}[HB_{R}^{d-1}] - \frac{1}{2}S^{(\mathsf{CFT})}[B_{R}^{d-1}]$$

$$= \begin{bmatrix} \tilde{s}_{d-3} (R/\epsilon)^{d-3} + \tilde{s}_{d-5} (R/\epsilon)^{d-5} + \dots \end{bmatrix} + \begin{bmatrix} (-1)^{\frac{d-2}{2}} \tilde{F} & 2 \mid d \\ 4(-1)^{\frac{d-3}{2}} \tilde{A} \ln (R/\epsilon) & 2 \mid d \\ 4(-1)^{\frac{d-3}{2}} \tilde{A} \ln (R/\epsilon) & 2 \mid d \end{bmatrix}$$
scheme-dependent universal
$$\underbrace{V \stackrel{?}{\geq} \tilde{F}_{\mathsf{IR}} \qquad \tilde{A}_{\mathsf{UV}} \stackrel{?}{\geq} \tilde{A}_{\mathsf{IR}}} \qquad \left(\mathsf{In} \ Z[HS_{R}^{d}] - \frac{1}{2} \mathsf{In} \ Z[S_{R}^{d}] \right)_{\mathsf{univ.}} = S_{\partial}(R)_{\mathsf{univ.}}$$

October 30, 2020 6 / 30

Known:

- d=2: "g-theorem" [Affleck, Ludwig; Friedan, Konechny; Casini, Landea, Torroba]
- d = 3: "b-theorem" [Jensen, O'Bannon; Casini, Landea, Torroba]

Conjectured:

• d = 4: "boundary *F*-theorem" [Estes, Jensen, O'Bannon, Tsatis, Wrase; Gaiotto] Questions:

• Is boundary \tilde{F} decreasing under boundary RG flow in arbitrary dimension? [Nozaki, Takayanagi, Ugajin; Estes, Jensen, O'Bannon, Tsatis, Wrase; Kobayashi, Nishioka, Sato, Watanabe; Giombi, Khanchandani]

Investigate in the most tractable theories we can think of...

Half-Supersymmetric B.C.s for $\mathcal{N} = 4$ SYM

- Detailed classification of OSp(2, 2|4)-preserving boundary conditions of $\mathcal{N} = 4$ SYM [Gaiotto, Witten]
- Holographic duals for vacuum states known explicitly in type IIB [D'Hoker, Estes, Gutperle; Aharony, Berdichevsky, Berkooz, Shamir]
- Partition function amenable to supersymmetric localization, can draw on previous results:
 - 4D $\mathcal{N}=2$ SUSY on sphere $_{\text{[Pestun]}}$ and hemisphere

[Gava, Narain, Muteeb, Giraldo-Rivera; Wang; Komatsu, Wang]

• 3D $\mathcal{N} = 2$ SUSY on S^3

[Kapustin, Willet, Yaakov; Benvenuti, Pasquetti; Nishioka, Tachikawa, Yamazaki]

Compute boundary F in $\mathcal{N} = 4$ SYM theory with half-SUSY BCs

We are able to find:

- General BCs: F_{∂} from holographic calculation in classical SUGRA
- Dirichlet-type and Neumann-type: Exact F_{∂} from localization

Boundary F behaves like a measure of local boundary degrees of freedom:

- Mainly negative for Dirichlet-type and small 't Hooft
- Mainly positive for Neumann-type and small 't Hooft
- Boundary *F* is unbounded from above

1 Classification of OSp(2,2|4)-Symmetric B.C.s

f 2 SUGRA Duals and Holographic Calculation of F_∂

3 SUSY Localization Calculation of F_{∂}

4 Conclusions and Prospects

Chris Waddell, w/ Mark Van Raamsdonk (UEHolographic and Localization Calculations of

Half-SUSY Boundary Conditions of $\mathcal{N}=4$ SYM

Fields of 4D $\mathcal{N} = 4$ multiplet:

- Gauge field A^{μ}
- Fermion Ψ
- Scalars Φ^i (in fundamental of $SO(6)_R$)

$$PSU(2,2|4) \xrightarrow{SUSY \text{ boundary at } x_3 = 0} OSp(2,2|4)$$

$$4D \mathcal{N} = 4 \xrightarrow{SUSY \text{ boundary at } x_3 = 0} 3D \mathcal{N} = 4$$

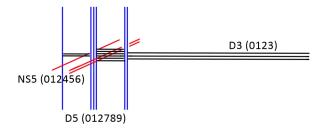
$$SO(6)_R \xrightarrow{SUSY \text{ boundary at } x_3 = 0} SO(3) \times SO(3)_R$$

$$A^{\mu}, \Psi, \Phi^{1,...,6}) \xrightarrow{SUSY \text{ boundary at } x_3 = 0} 3D \mathcal{N} = 4 \text{ vector } (A^{0,1,2}, \Psi_+, Y^{1,2,3})$$

$$3D \mathcal{N} = 4 \text{ hyper } (A_3, \Psi_-, X^{1,2,3})$$

$$(X^1, X^2, X^3) = (\Phi^4, \Phi^5, \Phi^6) \quad (Y^1, Y^2, Y^3) = (\Phi^7, \Phi^8, \Phi^9) \quad \Psi_{\pm} = (1 \pm \Gamma_{3456})\Psi$$

Half-BPS Boundary Conditions of $\mathcal{N} = 4$ SYM

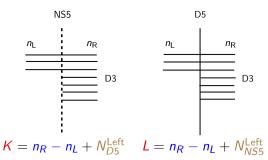


- Theories are low energy description of half-BPS configuration involving D3s ending on D5s/NS5s
- D3-branes semi-infinite in x_3 direction
- D5s/NS5s separated in x₃ direction, span different transverse directions

Half-BPS Boundary Conditions of $\mathcal{N} = 4$ SYM

• To completely specify boundary condition, need:

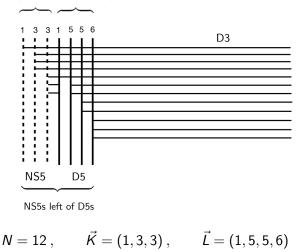
- D5-brane "linking numbers" $\vec{L} = (L_1, \dots, L_{N_{D5}})$
- NS5-brane "linking numbers" $\vec{K} = (K_1, \dots, K_{N_{NS5}})$



Linking number: Net number of D3-branes ending on given 5-brane from the right, plus number of 5-branes of the opposite type to the left (i.e. smaller x_3).

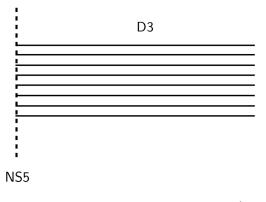
Example: General Boundary Condition

Linking numbers non-decreasing



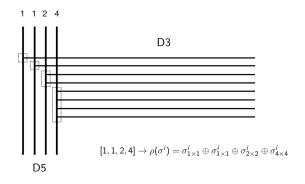
< A > <

Example: Neumann Boundary Condition



Neumann for 3D vector $\longrightarrow F_{3\mu}| = D_3 Y^i| = 0$ Dirichlet for 3D hyper $\longrightarrow X^i| = \Psi_-| = 0$

Example: Generalized Dirichlet Boundary Condition



Dirichlet for 3D vector $\longrightarrow Y^{i}| = \Psi_{+}| = 0$ Nahm pole for 3D hyper $\longrightarrow F_{\mu\nu}| = \left[D_{3}X^{i} - \frac{i}{2}\epsilon_{ijk}[X^{j}, X^{k}]\right]| = 0$

- Nahm's equation satisfied by "Nahm pole" $X^i \sim \frac{t^i}{x_3}$, where t^i obey $\mathfrak{su}(2)$
- Irrep dimensions determined by linking numbers

Classification of OSp(2,2|4)-Symmetric B.C.s

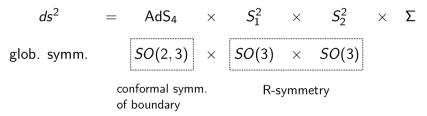
2 SUGRA Duals and Holographic Calculation of F_{∂}

3 SUSY Localization Calculation of F_{∂}

4 Conclusions and Prospects

Supergravity Duals

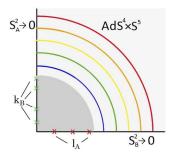
- Vacuum of OSp(2, 2|4)-invariant U(N) N = 4 BCFT should be dual to OSp(2, 2|4)-invariant solution of type IIB supergravity
- Remarkably, found by D'Hoker/Estes/Gutperle by explicitly solving BPS equations with ansatz



- Σ Riemann surface over which metric fibred
- Solutions given in terms of two harmonic functions $h_1, h_2: \Sigma o \mathbb{R}$

Supergravity Duals

Non-singular geometry \rightarrow poles of h_1, h_2 on boundary of Σ



SUGRA Data:

Poles of h_1 : I_A multiplicity: c_A Poles of h_2 : k_B multiplicity: d_B

Field Theory Data:

Linking numbers: L_A, K_B Multiplicities: $N_{D5}^{(A)}, N_{N55}^{(A)}$

$$L_{A} = \sqrt{g} I_{A} + \frac{2}{\pi} \sum_{B=1}^{n} N_{NS5}^{(B)} \arctan\left(\frac{k_{B}}{I_{A}}\right) \qquad N_{D5}^{(A)} = \frac{1}{\sqrt{g}} c_{A}$$
$$K_{B} = \frac{1}{\sqrt{g}} k_{B} + \frac{2}{\pi} \sum_{A=1}^{n} N_{D5}^{(A)} \arctan\left(\frac{k_{B}}{I_{A}}\right) \qquad N_{NS5}^{(B)} = \sqrt{g} d_{B}$$

Holographic Computation of Boundary F

• Use RT formula $S[HB_R^3] = \frac{Area(RT surface)}{4G_N}$

• Extract boundary F using

$$F_{\partial} = \lim_{\epsilon \to 0} \left(R \frac{d}{dR} - 1 \right) S_{\partial}(R)$$

• Find general expression of the form

$$F_{\partial}(c_{A}, d_{A}, k_{A}, l_{A}) = \underbrace{\sum_{A} c_{A}\mathcal{I}^{c}(l_{A}) + \sum_{A} d_{A}\mathcal{I}^{d}(k_{A})}_{A, B} \text{ linear}$$

$$+ \underbrace{\sum_{A, B} c_{A}c_{B}\mathcal{I}^{cc}(l_{A}, l_{B}) + \sum_{A, B} d_{A}d_{B}\mathcal{I}^{dd}(k_{A}, k_{B}) + \sum_{A, B} c_{A}d_{B}\mathcal{I}^{cd}(l_{A}, k_{B})}_{A, B, C} \text{ quadratic}$$

$$+ \underbrace{\sum_{A, B, C} c_{A}c_{B}d_{C}\mathcal{I}^{ccd}(l_{A}, l_{B}, k_{C}) + \sum_{A, B, C} d_{A}d_{B}c_{C}\mathcal{I}^{ddc}(k_{A}, k_{B}, l_{C})}_{A, B, C, D} \text{ cubic}$$

$$+ \underbrace{\sum_{A, B, C} c_{A}c_{B}d_{C}\mathcal{I}^{ccdd}(l_{A}, l_{B}, k_{C}, k_{D})}_{A, B, C, D} \text{ quartic}$$

• **Take-away:** we can write general F_{∂} in terms of SUGRA parameters c_A, d_A, k_A, l_A

Interesting Features: D5-Like and NS5-Like

For BCs with D5-branes only or NS5-branes only:

$$F_{\partial}^{D5} = \frac{N^2}{4} \left(\frac{3}{2} + \ln\left(\frac{\lambda}{4\pi^2}\right)\right) - \frac{\pi^2 N}{3\lambda} \sum_A L_A^3$$
$$- \frac{1}{16} \sum_{A,B} \left\{ (L_A + L_B)^2 \ln\left((L_A + L_B)^2\right) - (L_A - L_B)^2 \ln\left((L_A - L_B)^2\right) \right\}$$
$$F_{\partial}^{NS5} = \frac{N^2}{4} \left(\frac{3}{2} + \ln\left(\frac{4N^2}{\lambda}\right)\right) - \frac{\lambda}{48N} \sum_A K_A^3$$
$$- \frac{1}{16} \sum_{A,B} \left\{ (K_A + K_B)^2 \ln\left((K_A + K_B)^2\right) - (K_A - K_B)^2 \ln\left((K_A - K_B)^2\right) \right\}$$

• Simple λ -dependence

• Related by S-duality $\{K_A\} \leftrightarrow \{L_A\}, \frac{\lambda}{4\pi N} \leftrightarrow \frac{4\pi N}{\lambda}$

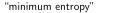
Interesting Features: D5-Like and NS5-Like

For both D5-brane only and NS5-brane only BCs, one can show that

$$F_{\partial}^{-} \leq F_{\partial} \leq F_{\partial}^{+}$$

with

$$F_{\partial}^{-} = F_{\partial}$$
 of "minimum entropy" config.
 $F_{\partial}^{+} = F_{\partial}$ of "maximum entropy" config.

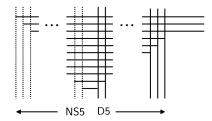


L	
<u> </u>	1111 <u>++</u>
I	11111
I	11111

Interesting Features: Unboundedness of F_{∂}

Consider family of BCs (parametrized by N_{NS5})

$$K = 1$$
 $L = N_{NS5} - 1$



• Corresponds to coupling in increasingly large 3D quiver for $N_{NS5} \rightarrow \infty$

- We find $F_{\partial} = N_{NS5}^2 \ln N_{NS5} + O(N_{NS5}^2)$
- Expected corrections to classical SUGRA approximation $O(N_5^2)$

Classification of OSp(2,2|4)-Symmetric B.C.s

2 SUGRA Duals and Holographic Calculation of F_∂

3 SUSY Localization Calculation of F_{∂}

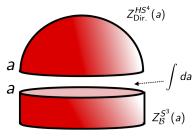
4 Conclusions and Prospects

Localization Calculation of F_{∂}

Apply SUSY "gluing formula" to write partition function for NS5-type boundary condition [Dedushenko]

$$egin{aligned} Z^{ extsf{HS}^4}_{\mathcal{B}} &= \int da \ \mu(a) \langle \mathcal{B} | a
angle \langle a | HS^4
angle \ &= \int da \ \mu(a) Z^{ extsf{S}^3}_{\mathcal{B}}(a) Z^{ extsf{HS}^4}_{ extsf{Dir.}}(a) \end{aligned}$$

- $Z_{\text{Dir.}}^{HS^4}$ for $\mathcal{N} = 2$ SUSY gauge theory from [Gava, Narain, Muteeb, Giraldo-Rivera]
- $Z_{B}^{S^{3}}$ for $\mathcal{N} = 2$ SUSY gauge theory from [Kapustin, Willet, Yaakov; Benvenuti, Pasquetti; Nishioka,



Tachikawa, Yamazaki]

Result

- We are able to compute the resultant integral for a general NS5-like boundary condition L = Ø, K = (K₁,..., K_{NS5})
- In the limit

$$K_A \gg 1$$
 $K_{A+1} - K_A \gg 1$

exact result at leading order is

$$\begin{split} F_{\partial} &= \frac{N^2}{4} \left(\frac{3}{2} + \ln\left(\frac{4N^2}{\lambda}\right) \right) - \frac{\lambda}{48N} \sum_A K_A^3 \\ &- \frac{1}{16} \sum_{A,B} \left\{ (K_A + K_B)^2 \ln\left((K_A + K_B)^2 \right) - (K_A - K_B)^2 \ln\left((K_A - K_B)^2 \right) \right\} \end{split}$$

- Reproduces precisely the result from SUGRA (for any value λ)!
- $\bullet\,$ Can obtain exact result for D5-like BCs using Montonen-Olive duality of $\mathcal{N}=4$ SYM

Distribution of Boundary F

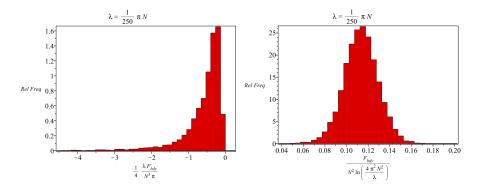


Figure: (Left) Histograms of F_{∂} for D5-like BCs; (Right) Histograms of F_{∂} for NS5-like BCs. In both cases, we have fixed N = 100. We have scaled F_{∂} by a positive quantity for convenience.

 $\lambda > 4\pi N$ D5-type dist. $\stackrel{S-duality}{\longleftrightarrow} \lambda < 4\pi N$ NS5-type dist. (and vice versa)

Classification of OSp(2,2|4)-Symmetric B.C.s

f 2 SUGRA Duals and Holographic Calculation of F_∂

3 SUSY Localization Calculation of F_{∂}

We have

- Computed F∂ holographically in type IIB supergravity for all OSp(2,2|4) boundary conditions of U(N) N = 4 SYM
- Computed F_{∂} via supersymmetric localization for the "D5-like" and "NS5-like" boundary conditions of $U(N) \mathcal{N} = 4$ SYM
- Found that F_{∂} behaves as expected for measure of local degrees of freedom at the boundary
 - Unbounded from above
 - $\bullet\,$ Mostly negative/positive for D5-like/NS5-like and small $\lambda\,$
 - Minimized/maximized on "minimum/maximum entropy" BCs for D5-only and NS5-only

Natural follow-up:

- Use results for detailed analysis of boundary RG flows
- Use identical techniques to analyze theories with same symmetry (interface theories)

Thank you!

< 1 k

æ