Turbulent hydrodynamics in strongly correlated Kagome materials

Ioannis Matthaiakakis Julius-Maximilians-Universität Würzburg

Based on

Domenico Di Sante, Johanna Erdmenger, Martin Greiter, IM, René Meyer, David Rodríguez Fernández, Ronny Thomale, Erik Van Loon, Tim Wehling, *Turbulent hydrodynamics in strongly correlated Kagome metals*, Nature Communications 11, 3997 (2020)

Holotube Jr. – October 2020

Motivation & Overview

- Increase coupling strength —> New and interesting transport behaviour
- E.g. High T_c superconductors, quantum critical phases, quark-gluon plasma

• Strong coupling = testing ground for AdS/CFT (and vice versa)

Transport effects due to η/s

- Here focus on shear viscosity to entropy density ratio η/s

$$\eta = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle T^{xy} T^{xy} \rangle_{\mathrm{R}}$$

Transport effects due to η/s

• Here focus on shear viscosity to entropy density ratio η/s

$$\eta = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle T^{xy} \ T^{xy} \rangle_{\mathrm{R}}$$

• Known coupling dependence at "small" and "large" coupling strengths

[Müller, Schmalian, Fritz, PRL (2009); Policastro, Son, Starinets, PRL (2001); Buchel, Liu, PRL (2004); Kovtun, Son, Starinets, PRL (2005)]

$$\frac{\eta}{s} \simeq \frac{1.64}{\alpha^2} \frac{\hbar}{4\pi k_{\rm B}}$$

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi k_{\rm B}}$$

Transport effects due to η/s

• Here focus on shear viscosity to entropy density ratio η/s

$$\eta = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle T^{xy} \ T^{xy} \rangle_{\mathrm{R}}$$

• Known coupling dependence at "small" and "large" coupling strengths

[Müller, Schmalian, Fritz, PRL (2009); Policastro, Son, Starinets, PRL (2001); Buchel, Liu, PRL (2004); Kovtun, Son, Starinets, PRL (2005)]

$$\frac{\eta}{s} \simeq \frac{1.64}{\alpha^2} \frac{\hbar}{4\pi k_{\rm B}}$$

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi k_{\rm B}}$$

- Affects transport properties in metals:
 - Smaller differential resistivity
 - Decreased Joule heating

[Erdmenger, IM, Meyer, Rodríguez Fernández, PRB (2018)]

• Also affects the Reynolds number

$$Re = \left(\frac{\eta k_{\rm B}}{s \hbar}\right)^{-1} \frac{k_{\rm B}T}{\hbar v_{\rm F}} \frac{u_{\rm typ}}{v_{\rm F}} W \propto \left(\frac{\eta}{s}\right)^{-1}$$

• Larger coupling \rightarrow Larger $Re \rightarrow$ Turbulence?

Overview

We propose a Kagome Dirac material, Sc-Hb, with coupling strength ~ 3:

- 1) Proposal of AdS/CFT model
- 2) More robust hydrodynamic regime*
- 3) "Small" η/s
- 4) Access to turbulent flow regime

Outline

- Electron hydrodynamics
- Kagome materials and Sc-Hb
- AdS/CFT and η/s for Sc-Hb
- Conclusions and outlook

Electron Hydrodynamics

- Hydrodynamics = "long" wavelength, "small" frequency effective description of matter in thermal equilibrium
- No direct access to microscopic degrees of freedom

Electron Hydrodynamics

- Hydrodynamics = "long" wavelength, "small" frequency effective description of matter in thermal equilibrium
- No direct access to microscopic degrees of freedom
- Conditions for electron hydrodynamics: $l_{ee} \ll l_{imp}, l_{ph}, W$ [Andreev, Kivelson, Spivak, PRL (2011); Polini, Geim, Physics Today (2020)]

Electron Hydrodynamics

- Hydrodynamics = "long" wavelength, "small" frequency effective description of matter in thermal equilibrium
- No direct access to microscopic degrees of freedom
- Conditions for electron hydrodynamics: $l_{ee} \ll l_{imp}, l_{ph}, W$ [Andreev, Kivelson, Spivak, PRL (2011); Polini, Geim, Physics Today (2020)]

$$l_{\rm ee} \propto \frac{1}{\alpha_{\rm eff}^2} \qquad \qquad \alpha_{\rm eff} = \frac{e^2}{\epsilon_0 \epsilon_r \hbar v_{\rm F}}$$

- Electric permittivity and Fermi velocity define the coupling strength
- Stronger coupling enhances hydrodynamic behaviour* *[Baggioli, arXiv:2010.05916; Starinets., Holotube seminar]

- Prototypical relativistic electronic fluid
- Relativistic spectrum, $v_{\rm F} = c/300$
- Quantum critical around charge neutrality
- Still, only pre-turbulent $Re \sim 100$ [Mendoza, Herrmann, Succi, PRL (2011)]

https://spectrum.ieee.org/semiconductors/materials/graphene-makes-transistors-tunable;

https://analyticalscience.wiley.com/do/10.1002/gitlab.15487

Sources:

Outline

- Electron hydrodynamics
- Kagome materials and Sc-Hb
- AdS/CFT and η/s for Sc-Hb
- Conclusions and outlook

Kagome lattices

• Kagome = japanese basket weaving pattern

Source: http://www.hfmphysics.com/2006/motif.html

[Redder, Uhrig, PRA, 2016]

- Also, tiling of the plane • defines a 2D crystal lattice
- Relativistic spectrum due to (tri)hexagonal symmetry
- 3-sites per-unit cell robust against ordering effects

Scandium Substituted Herbersmithite ScCu₃(OH)₆Cl₂

- Sc allows d-orbital hybridization of Cu = "Flatter" spectrum
- ~7 times smaller Fermi velocity than graphene
- Fermi level at the Dirac point = physics around charge neutrality
- Away from "half-filling" = robust against long-range order

Coupling strength

Coupling enhancement by a factor of 3!

Outline

- Electron hydrodynamics
- Kagome materials and Se-Hb-
- AdS/CFT and η/s for Sc-Hb
- Conclusions and outlook

We want:

- Estimate of η/s
- Holographic effective action of an Sc-Hb like system

$$\eta = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle T^{xy} \ T^{xy} \rangle_{\mathrm{R}}$$

We want:

- Estimate of η/s
- Holographic effective action of an Sc-Hb like system

$$\eta = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle T^{xy} \ T^{xy} \rangle_{\mathrm{R}}$$

- Typical ($S_G \sim R$) AdS/CFT calculations not applicable
- Coupling corrections = higher derivative corrections
- Maxwell terms irrelevant around charge neutrality [Myers, Paulos, Sinha, JHEP (2009)]

$$S_G[J] = S_G[g_{\mu\nu}, A_\mu] \to S_G[g_{\mu\nu}]$$

$$S_G = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \left[R - 2\Lambda + c_1 \alpha' R^2 + c_2 (\alpha')^2 R^3 + c_3 (\alpha')^3 R^4 \right]$$

$$S_G = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \left[R - 2\Lambda + c_1 \alpha' R^2 + c_2 (\alpha')^2 R^3 + c_3 (\alpha')^3 R^4 \right]$$

• R^2 term = topological in 4D = irrelevant [Brigante, Liu, Myers, Shenker, Yaida, PRD (2008)]

$$S_G = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \left[R - 2\Lambda + c_1 \alpha' R^2 + c_2 (\alpha')^2 R^3 + c_3 (\alpha')^3 R^4 \right]$$

- R^2 term = topological in 4D = irrelevant [Brigante, Liu, Myers, Shenker, Yaida, PRD (2008)]
- R^3 term leads to breakdown of causality and/or supersymmetry

[Metsaev, Tseytlin, Phys. Lett. B (1987); Camanho, Edelstein, Maldacena, Zhiboedov, JHEP (2016)]

$$S_G = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \left[R - 2\Lambda + c_1 \alpha' R^2 + c_2 (\alpha')^2 R^3 + c_3 (\alpha')^3 R^4 \right]$$

- R^2 term = topological in 4D = irrelevant [Brigante, Liu, Myers, Shenker, Yaida, PRD (2008)]
- *R*³ term leads to breakdown of causality and/or supersymmetry [Metsaev, Tseytlin, Phys. Lett. B (1987); Camanho, Edelstein, Maldacena, Zhiboedov, JHEP (2016)]
- R^4 only relevant term

$$S_G = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \left[R - 2\Lambda + c_3 (\alpha')^3 R^4 \right]$$

$$S_G = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \left[R - 2\Lambda + c_1 \alpha' R^2 + c_2 (\alpha')^2 R^3 + c_3 (\alpha')^3 R^4 \right]$$

- R^2 term = topological in 4D = irrelevant [Brigante, Liu, Myers, Shenker, Yaida, PRD (2008)]
- *R*³ term leads to breakdown of causality and/or supersymmetry [Metsaev, Tseytlin, Phys. Lett. B (1987); Camanho, Edelstein, Maldacena, Zhiboedov, JHEP (2016)]
- R^4 only relevant term

[Buchel, Liu, Starinets, Nucl. Phys. B (2005); Benincasa, Buchel, JHEP (2006)]

• Parametrize corrections by $C \in [5 \times 10^{-4}, 5]$

• For N = 4 SYM, equivalent to $N \in [2, 10^3]$

Turbulence

$$Re = \left(\frac{\eta k_{\rm B}}{s \hbar}\right)^{-1} \frac{k_{\rm B}T}{\hbar v_{\rm F}} \frac{u_{\rm typ}}{v_{\rm F}} W \propto \left(\frac{\eta}{s}\right)^{-1}$$

laminar flow

turbulent flow

 $Re \ll 1000$

$$Re \gtrsim \mathcal{O}(1000)$$

• Enhanced *Re* due to smaller η/s , $v_{\rm F}$

$$Re_{\rm ScHb} \sim 100 Re_{\rm Gr} \sim 10^3 - 10^4$$

Conclusions and Outlook

- 1. Sc-Hb has an $\alpha \sim 3$ well into the non-perturbative regime
- 2. Well-suited for a holographic description
- 3. Enables transition to hydro regime*
- 4. Enables transition to turbulent regime

• Turbulence from gravity?

[Adams, Chesler, Liu P R L (2014)] [See also Paul Wittmer's talk and Christiana Pantelidou's Holotube seminar 27/10]

• Similar materials?

[Fuchs, Liu, Schwemmer, Sangiovanni, Thomale, Franchini, Di Sante, J. Phys. Mater. (2020)]

Thank you!