Hydrodynamics of Spinning Holographic Fluids

Markus Garbiso 9/13/2020

The University of Alabama in collaboration with Matthias Kaminski [arXiv: 2007.04345]

Outline

- Motivation
- Globally Spinning
- Setup (Background)
- $a=b$
- Myers-Perry in AdS_{5}
- Setup (Fluctuations)
- Results

- Example Tensor QNMs
- Scalar Sector
- Vector Sector

Motivation

Hyperon Polarization [2017 The STAR Collaboration]

Does a spinning 5D black hole correspond to a spinning strongly coupled fluid and what are it's hydrodynamics?

Setup (Background) (Rotating)

- [1998 Hawking et at] for 5D
- [2004 Pope et al] for > 5D
- In D dimensions: up to (D-1)/2 independent rotation parameters
- For 5D 2 independent rotation parameters \{a, b\}
- We set $a=b$ for enhanced symmetry[2007 Soda et al] [2009 Murata]
- Linear superradiant instabilities when for D = 5 case [2009 Murata] [2005 Carter et al] [2014 Cardoso et al] at large enough a to constrain values a will take.

Reference Slide (General 5D Myers Perry AdS)

$$
\begin{aligned}
d s^{2}= & -\frac{\Delta}{\rho^{2}}\left(d t_{H}-\frac{a \sin ^{2} \theta_{H}}{\Xi_{a}} d \phi_{H}-\frac{b \cos ^{2} \theta_{H}}{\Xi_{b}} d \psi_{H}\right)^{2}+ \\
& \frac{\Delta_{\theta_{H}} \sin ^{2} \theta_{H}}{\rho^{2}}\left(a d t_{H}-\frac{r_{H}^{2}+a^{2}}{\Xi_{a}} d \phi_{H}\right)^{2}+\frac{\Delta_{\theta_{H}} \cos ^{2} \theta_{H}}{\rho^{2}}\left(b d t_{H}-\frac{r_{H}^{2}+b^{2}}{\Xi_{b}} d \psi_{H}\right)^{2}+ \\
& \frac{\rho^{2}}{\Delta} d r_{H}^{2}+\frac{\rho^{2}}{\Delta_{\theta_{H}}} d \theta_{H}^{2}+ \\
& \frac{1+r_{H}^{2} / L^{2}}{r_{H}^{2} \rho^{2}}\left(a b d t_{H}-\frac{b\left(r^{2}+a^{2}\right) \sin ^{2} \theta_{H}}{\Xi_{a}} d \phi_{H}-\frac{a\left(r^{2}+b^{2}\right) \cos ^{2} \theta_{H}}{\Xi_{b}} d \psi_{H}\right)^{2},
\end{aligned}
$$

Metric Function Defs

Reference Slide (Metric Functions Hawking)

$$
\Delta=\frac{1}{r_{H}^{2}}\left(r_{H}^{2}+a^{2}\right)\left(r_{H}^{2}+b^{2}\right)\left(1+r_{H}^{2} / L^{2}\right)-2 M,
$$

$$
\Delta_{\theta_{H}}=1-\frac{a^{2}}{L^{2}} \cos ^{2} \theta_{H}-\frac{b^{2}}{L^{2}} \sin ^{2} \theta_{H},
$$

$$
\rho=r_{H}^{2}+a^{2} \cos ^{2} \theta_{H}+b^{2} \sin ^{2} \theta_{H},
$$

$$
\Xi_{a}=1-a^{2} / L^{2},
$$

$$
\Xi_{b}=1-b^{2} / L^{2}
$$

Setup (Background) ($a=b$ 5D Myers Perry AdS) Sigma Defs

$$
\begin{gathered}
d s^{2}=-\left(1+\frac{r^{2}}{L^{2}}\right) d t^{2}+\frac{d r^{2}}{G(r)}+\frac{r^{2}}{4}\left(4 \sigma^{+} \sigma^{-}+\left(\sigma^{3}\right)^{2}\right)+\frac{2 \mu}{r^{2}}\left(d t+\frac{a}{2} \sigma^{3}\right)^{2} \text { [2009 Murata] } \\
G\left(r_{+}\right)=G\left(r_{-}\right)=0 \\
\text { Round 3-Sphere ie"d } \Omega^{\wedge} 2^{\prime \prime} \\
\text { Vanishes at } \mathrm{r}=\infty
\end{gathered}
$$

$\mu \equiv$ Mass Parameter, $a \equiv$ Angular Momentum Parameter
$r_{\mathbf{+}}+\equiv$ Outer Horizon Radius, L \equiv AdS Radius

Reference Slide (Sigma Definitions)

$$
\begin{aligned}
& \sigma^{1}:=-\sin \psi d \theta+\cos \psi \sin \theta d \phi, \\
& \sigma^{2}:=\cos \psi d \theta+\sin \psi \sin \theta d \phi, \\
& \sigma^{3}:=d \psi+\cos \theta d \phi \\
& \hline \sigma^{ \pm}:=\frac{1}{2}\left(\sigma^{1} \mp i \sigma^{2}\right) \\
& \sigma^{t}:=d t \\
& \hline \sigma^{r}:=d r
\end{aligned}
$$

Setup (Linear Perturbations)
 $i \partial_{t} h_{a b}=\omega h_{a b} \quad-\partial_{i} \partial_{i} h_{a b}=\mathcal{J}(\mathcal{J}+1) h_{a b}$

$i \partial_{3} \sigma^{r}=0 \quad i \partial_{3} \sigma^{t}=0$
$i \partial_{3} \sigma^{3}=0 \quad i \partial_{3} \sigma^{ \pm}= \pm \sigma^{ \pm} \quad h_{a b} \propto \sigma^{(a} \sigma^{b)} e^{-\omega t} D_{\mathcal{K}-\sigma s^{\prime} \text { charge }}^{\mathcal{J}}$ $i \partial_{3} D_{\mathcal{K}}^{\mathcal{J}}=\mathcal{K} D_{\mathcal{K}}^{\mathcal{J}}$

Find the equations of motion (EOM) at linear order.

Perform a large temperature limit on EOMs $r, J, K, r+\rightarrow \infty$.

Keep the leading order terms wrt r.

Solve for ω, the Quasinormal Modes at given parameters.

Reference Slide (Large Temperature Limit)

$$
\begin{gathered}
\omega \rightarrow \alpha 2 \nu r_{+} / L \\
\mathcal{J} \rightarrow \alpha j r_{+} / L \\
r_{+} \rightarrow \alpha r_{+} \\
r \rightarrow \alpha r
\end{gathered}
$$

Then perform markus garbiso the a limit

$$
\alpha \rightarrow \infty
$$

QNMs Example (Tensor Sector/Scalar Channel)

Results (Shear Channel/Vector Sector)

Defines Sector

$$
\mathcal{K}=\mathcal{J}+1
$$

Dispersion Relations

$$
\begin{aligned}
\nu & =v_{\|} j-i \mathcal{D}_{\|} j^{2} \\
v_{\|} & =a \\
\mathcal{D}_{\|} & =\frac{1}{2}\left(1-a^{2}\right)^{3 / 2}
\end{aligned}
$$

compare to [2019 Kovtun see eq (4.4)] [2020 Hoult et al]

$$
\frac{\eta_{\|}}{s}=\frac{1}{4 \pi}\left(1-a^{2}\right)
$$

Results (Sound Channel/Scalar Sector)

$$
\begin{aligned}
& \underset{\text { Sector }}{\text { Defines }} \mathcal{K}=\mathcal{J} \\
& \text { compare to [2019 Kovtun } \\
& \text { see eq (4.16)] } \\
& \text { [2020 Hoult et al] } \\
& \nu=v_{s, \pm} j-i \Gamma_{s, \pm} j^{2}, \\
& v_{s, \pm}=\frac{a \pm \frac{1}{\sqrt{3}}}{1 \pm \frac{a}{\sqrt{3}}}, \\
& \text { Relations } \\
& \Gamma_{s, \pm}=\frac{1}{3} \frac{\left(1-a^{2}\right)^{3 / 2}}{\left(1 \pm \frac{a}{\sqrt{3}}\right)^{3}},
\end{aligned}
$$

Conclusion

We find that a spinning large temperature black hole has hydrodynamic modes, depending on a.

Should be identified with modes of a relativistic spinning (strongly coupled) fluid.
There are two speeds of sound and two sound attenuation coefficients and two shears.

Transport coefficients are determined by their value at rest: $\eta_{\|}(a)=\eta_{0} \sqrt{1-a^{2}}$.

Outlook: Non-hydrodynamic modes, hydrodynamic convergence radius [2019 Grozdanov et al JHEP] [2019 Grozdanov et al PRL], Complexity?! [2020 Balushi et al ArXiv]

Thank you for listening to my talk!

