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Outline

e This work brings together two notions from
different contexts: from
holography, and
from mathematical relativity, and shows their

e Motivated by holography, it gives us some insights
about an unsolved geometrical problem in
geometric analysis/imathematical relativity.



The outer entropy

e The outer entropy is introduced by Engelhardt &
Wall (EW) as a coarse-grained Black Hole entropy

associated with an apparent horizon p.
Engelhardt, Wall, 2018

S(u) := sup S,n(p) : D(Q) fixed
),

e Motivated by holography, the von Neumann
entropy is computed using the Ryu-Takayanagi
surface Xp, that is the extremal surface with the
minimal area homologous to the boundary region.

Apr = Alp]

Black line: characteristic initial data
e EW shows that for an apparent horizon u, the

maximiser always exists. &'(u) = Areal[u]/4Gh.

e Statistical interpretation of the BH entropy and

area law. Built-in area laws associated with \—//v/—
trapping horizons.

e Generalised by Bousso, Nomura & Remmen (BNR) (@) €2

U
to normal surfaces. They develop a EWBNR

L] [ L] \ /
algorithm for construct fill-in data.
Nomura, Remmen, 2018

Bousso, Nomura, Remmen, 2019




Outer entropy

The outer entropy of the outer wedge data (9, hg, Ko) bounded by ¥ = 0Q with the
asymptotic end B 1is

maximin way
_ A[HRT(B)] \ TA[G)"
S(Q, hy, Kg) := su + su max  min
(2, ho, Ko) (Q,h,I;{) 4Gnh (Q,h,I;{) NeD@us®) oo 4GNh

where (Q, h, K) is the fill-in data that joins the fized (Q, ho, Ko) at ¥ satisfying DEC and the
following constraints:

gluing
+ +
VISin = VSous; 015 = 0550w XISim = X|Sous conditions

where x := K(-,£7) is the twist or anholonomicity 1-form and ¢~ is the ingoing null vector
normal to ..

Engelhardt, Wall, 2018
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Bartnik mass

e Bartnik had an idea about quasilocal mass back in the so’s. The Bartnik mass has
been an active research interest in geometric analysis ever since. We seek a
minimal mass extension (€2, /1, K) of initial data without horizons satisfying DEC.

e Given the positive mass theorem, the Bartnik mass Mz(X) can be defined as the
infimum ADM mass over all horizon-free extensions of the given surface 2.

) — Bartnik, 1989
(,h,K)

e Bray proposed a dual/inner version of the Bartnik mass in his seminal paper
proving the Riemannian Penrose Inequality (RPI) :

M. K) > M. (A[u]) == (A[”] >_g .
)= M A /Y/
Minner(2) := sup min M, (Alo]). k/
@) @, h, K)
o € [X] (Q, h, K) . , I,

N



Equivalence

Our main result is that the outer entropy is
equivalent to the Bartnik-Bray inner mass:

for an outer-minimising, mean-convex 2.

The proof uses standard focusing arguments.
Check out the details in the paper 2007.00030



A few remarks

® 2 is outer-minimizing means that for any 2’ enclosing 2, A[2] < A[X]].

® Y is mean-convex (hormal) means that =0* > 0.

e Both (1) outer-minimisation and (2) mean-convexity are «<necessary.

e Bartnik: (1) is used to avoid “bag of gold~»-like extensions trivialising the
Bartnik mass.

EW: (1), as part of their “minimar” condition, is used to ensure the HRT
surface can be found following their procedure.

e (2) is common in geometric analysis. e.g. Weyl problem, positivity of
Brown-York mass, Liu-Yau mass, etc.



A few implications

e The area laws = monotonicity of the
quasilocal mass.

e In the small sphere limit, any
quasilocal mass should reduce to the
stress tensor, so should the outer
entropy. Calculation using the
EWBNR algorithm confirms this:

Qn_zln_z ( 2lZQn—ZGNT(eoa €o) | P \
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Wall’'s ant conjecture

e A marching ant wonders what’s the minimal energy given what she
has observed so far. We look for the energy-minimising state over

the purifications while holding fixed the interior marginal state. ,
Q Lol

eWall's conjecture in 1+1 dimensions:

h _
inf [ (T)p dx =—=—09,5,(Q)] , Q= (xp00),Q2=(—00,xp).
pitrgp=po Jg 27 0

0 Wall, 2017

e Ceyhan-Faulkner proved it for a “null” ant on a Rindler Horizon in
Minkowski spacetime w.r.t. any null variation X on a cut 2.

h
inf J (T)pdx =2— xD(pallog)ls . o/ *
P rgp=po J U0 T

Ceyhan, Faulkner, 2020
e This conjecture concerns the matter sector, do we have one for the

gravity sector?



Gravitational ant conjecture

o T1he Penrose Inequality implies (ﬁil;}t;()M(ﬁ’ h,K) > M. (4hGydS'(X)).

e We propose the gravitational analog of the ant conjecture (GAC):

e In words, it conjectures the Bartnik mass of some closed surface is given by
the irreducible mass of the largest black hole that can be fit behind it.

e It’'s natural that the outer entropy sits at the lower bound. It relates coarse-
grained entropy with quasilocal mass, whereas Wall's ant conjecture
concerns fine-grained entropy and stress tensor.

e It is a purely geometrical statement. Trivially, the conjecture is true if the
Bartnik data can be isometrically embedded into Schwarzschild. There are
also some non-trivial examples supporting this claim in the Riemannian
setting.

Mantoulidis-Schoen, 15



Conclusions

e We've shown that the Bartnik-Bray quasilocal mass is equivalent to the
Outer Entropy.

e We propose the gravitational ant conjecture:

inf M@, h,K) = My (4hGyS(Z)).
(€2,h,K)

e Can we prove a Riemannian version of the conjecture ? It would be an
important result in geometric analysis/mathematical relativity.

e Can we understand the microscopic origin of any quasilocal mass in any
candidate theory of quantum gravity?






Equivalence

(Z) — Mi (4hGNcS)(Z)) for an outer-minimising mean-convex 2.

e We want to prove Mi

nner IT

e Firstly, the gluing conditions in both problems are essentially the same. They are related by a basis change in
the normal bundle. In particular, (87, 07) — (trsK, H).

e We need the following lemma to “quasilocalise” the outer entropy:

Lemma 1: For an outer-minimising surface 2 the HRT surface for the outer entropy, if it exists, always lies
inside the inner wedge. Nomura, Remmen, 2018

e The outer entropy is more restrictive than the inner mass:

Lemma 2: For an outer-minimising surface 2 the supremum areas for the Bartnik-Bray inner mass and the

HRT surface satisfyAinner S AHRT .

e We also WantAinner < AHRT < A[Z] For this, we need mean-convexity.

Lemma 3: For a mean-convex surface 2 the HRT surface for the outer entropy, if it exists, has area

A < Al21. Engelhardt, Wall, 2018
HRT = [ ] Nomura, Remmen, 2018



Equivalence

e Suppose XHRT’ Xinner both exist but differ, XHRT is

extremal on some slice Nin the interior (Lemma 1), so

AlX] < AlY].

Iy (%)
e The standard focusing argument, mean-convexity and DEC gives N N
A[X ] < A[Y] < A[Z] so X is minimal on slice : ®
¥ HIE" oy HRT : ).( Y
HRT ' ; HRT

: Q
2 also implies thatA[aner] < A[XHRT]’ so they are equal. Xinner

e Consider now the case that neither optimiser exists. Suppose

the supremum areas satisfyAHRT > Ainner , then

AHRT — € > A for some €. AreaAHRT — € is realised

inner
at some fill-in, soA- Z AHRT — €. = Contradiction.

inner

e By definition of inner maSS’A[Xinner] > A[XHRT]' Lemma \*_/é/ Q\
Oy(2)

e Similarly, one can show that XHRT & Xinner both exist or e et
neither exists.
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Secretly an Semidefinite program?

Is the holographic dual an SDP ? SDP is a very” " important tool in Ql.

Pl is Weak Duality:
inf M(Q,h,K)>M

(4hG\S(Z
@.1.K) in{410NS (%) Primal Z Dual
Primal Dual

B GAC is Strong Duality:
inf M(Q,h,K) =M, _(4hG\S(X))

@.h.K) Primal = Dual
The gravitational ant
conjecture implies the Penrose

Inequality.



