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• This work brings together two notions from 
different contexts: Outer Entropy from 
holography, and Bartnik-Bray quasilocal mass 
from mathematical relativity, and shows their 
equivalence. 

• Motivated by holography, it gives us some insights 
about an unsolved geometrical problem in 
geometric analysis/mathematical relativity.
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•The outer entropy is introduced by Engelhardt & 
Wall (EW) as a coarse-grained Black Hole entropy 
associated with an apparent horizon . 
 

  

•Motivated by holography, the von Neumann 
entropy is computed using the Ryu-Takayanagi 
surface , that is the extremal surface with the 
minimal area homologous to the boundary region. 

•EW shows that for an apparent horizon , the 

maximiser always exists. . 

•Statistical interpretation of the BH entropy and 
area law. Built-in area laws associated with 
trapping horizons. 

•Generalised by Bousso, Nomura & Remmen (BNR) 
to normal surfaces. They develop a EWBNR 
algorithm for construct fill-in data.
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• Bartnik had an idea about quasilocal mass back in the 80’s. The Bartnik mass has 
been an active research interest in geometric analysis ever since. We seek a 

minimal mass extension  of initial data without horizons satisfying DEC. 

• Given the positive mass theorem, the Bartnik mass  can be defined as the 

infimum ADM mass over all horizon-free extensions of the given surface . 
 

 

• Bray proposed a dual/inner version of the Bartnik mass in his seminal paper 
proving the Riemannian Penrose Inequality (RPI) : 
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Our main result is that the outer entropy is 
equivalent to the Bartnik-Bray inner mass: 

   

for an outer-minimising, mean-convex . 

Minner(Σ) = Mirr(4ℏGN𝒮(Σ))

Σ

Equivalence

The proof uses standard focusing arguments.  
Check out the details in the paper 2007.00030



•  is outer-minimizing means that for any  enclosing ,  . 

•  is mean-convex (normal) means that . 

• Both (1) outer-minimisation and (2) mean-convexity are “necessary”.  

• Bartnik: (1) is used to avoid “bag of gold”-like extensions trivialising the 
Bartnik mass. 
 
EW: (1), as part of their “minimar” condition, is used to ensure the HRT 
surface can be found following their procedure. 

• (2) is common in geometric analysis. e.g. Weyl problem, positivity of 
Brown-York mass, Liu-Yau mass, etc.
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•The area laws = monotonicity of the 
quasilocal mass. 

• In the small sphere limit, any 
quasilocal mass should reduce to the 
stress tensor, so should the outer 
entropy. Calculation using the 
EWBNR algorithm confirms this: 
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•A marching ant wonders what’s the minimal energy given what she 
has observed so far. We look for the energy-minimising state over 
the purifications while holding fixed the interior marginal state. 

•Wall’s conjecture in 1+1 dimensions:  
        

•Ceyhan-Faulkner proved it for a “null” ant on a Rindler Horizon in 
Minkowski spacetime w.r.t. any null variation  on a cut . 

          

•This conjecture concerns the matter sector, do we have one for the 
gravity sector?
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• The Penrose Inequality implies . 

•  We propose the gravitational analog of the ant conjecture (GAC): 
 

                                      . 

• In words, it conjectures the Bartnik mass of some closed surface is given by 
the irreducible mass of the largest black hole that can be fit behind it. 

• It’s natural that the outer entropy sits at the lower bound. It relates coarse-
grained entropy with quasilocal mass, whereas Wall’s ant conjecture 
concerns fine-grained entropy and stress tensor.  

• It is a purely geometrical statement. Trivially, the conjecture is true if the 
Bartnik data can be isometrically embedded into Schwarzschild. There are 
also some non-trivial examples supporting this claim in the Riemannian 
setting. 
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• We’ve shown that the Bartnik-Bray quasilocal mass is equivalent to the 
Outer Entropy. 

• We propose the gravitational ant conjecture: 
 

. 

• Can we prove a Riemannian version of the conjecture ? It would be an 
important result in geometric analysis/mathematical relativity. 

• Can we understand the microscopic origin of any quasilocal mass in any 
candidate theory of quantum gravity?
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• We want to prove  for an outer-minimising mean-convex . 

• Firstly, the gluing conditions in both problems are essentially the same. They are related by a basis change in 

the normal bundle. In particular, . 

• We need the following lemma to “quasilocalise” the outer entropy:  
 

Lemma 1: For an outer-minimising surface , the HRT surface for the outer entropy, if it exists, always lies 
inside the inner wedge. 

• The outer entropy is more restrictive than the inner mass: 
 

Lemma 2: For an outer-minimising surface , the supremum areas for the Bartnik-Bray inner mass and the 

HRT surface satisfy  

• We also want . For this, we need mean-convexity. 
 

Lemma 3: For a mean-convex surface , the HRT surface for the outer entropy, if it exists, has area 

.
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Equivalence
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• Suppose  both exist but differ,  is 

extremal on some slice  in the interior (Lemma 1), so 

 

• The standard focusing argument, mean-convexity and DEC gives 
, so  is minimal on slice 

. 

• By definition of inner mass, . Lemma 

2 also implies that , so they are equal. 

• Consider now the case that neither optimiser exists. Suppose 

the supremum areas satisfy  , then

 for some . Area  is realised 

at some fill-in, so .  Contradiction. 

• Similarly, one can show that  both exist or 
neither exists. 
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A[X] ≤ A[Y ] .

A[XHRT] ≤ A[Y ] ≤ A[Σ] XHRT
XHRT − Y − Σ

A[Xinner] ≥ A[XHRT]
A[Xinner] ≤ A[XHRT]

AHRT > Ainner
AHRT − ϵ > Ainner ϵ AHRT − ϵ

Ainner ≥ AHRT − ϵ ⟹

XHRT & Xinner
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Secretly an Semidefinite program?

inf
(Ω,h,K)

M(Ω, h, K) ≥ Mirr(4ℏGN𝒮(Σ))

inf
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M(Ω, h, K) = Mirr(4ℏGN𝒮(Σ))

PI is Weak Duality:  

Primal  Dual≥

GAC is Strong Duality:  

Primal  Dual=

SDP is a very    important tool in QI.⊗ N

Primal Dual

The gravitational ant 
conjecture implies the Penrose 

Inequality.

Is the holographic dual an SDP ?


