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Thank you for your invitation to speak!! 
 
(Although I wish I were speaking live – I am not happy giving 
a talk sitting at my desk rather than standing at a blackboard.) 

These are truly depressing times… 

More than any time in history mankind stands at a crossroads. One 
path leads to despair and utter hopelessness, the other to total 
extinction. Let us pray we have the wisdom to choose correctly.  
                                                                                      -- Woody Allen 



THEME OF THIS TALK: 
 
Mathematicians find it enlightening to extend the real number system 
to the complex number system. This helps us to understand the real 
number system better. 
 
In this talk we will extend conventional real physics to complex 
physics. By doing so we can: 
 
(1)   Understand quantization better 
(2)   Explain the divergence of perturbation theory 
(3)   Generate new PT-symmetric quantum theories 
(4)   Tame instabilities 
(5)   (and much much more…perhaps some other time!) 

Outline: This talk is organized in three parts… 



Outline 
(1)  Beginning 

(2)  Middle 

(3)  End 

 



Conventional world is described by real numbers: 

-Election results 
 
 
 
-IQ test results 
 
 
 
-Money Real measure of money … 



Real quantity of money: 



Complex mathematics is powerful! 

(1)  Explains the convergence of (real) Taylor series 

(2)  Determines asymptotic behavior (of real integrals) 

(3)  Enables us to sum divergent series 

(4)  Explains real functions, such as square root 

(5)  And much much much more (some other time) 



(1) Why do Taylor series stop converging? 

Answer: Singularities in the complex plane 

Complex plane … 





(2) Asymptotic expansion of integrals 

real-t axis -1 0 1 

For large x the contribution to 
I(x) is NOT localized at t = 0 (!!!) 



For large |x| the 
contribution 
to the integral is 
localized at a  
saddle point in the 
complex plane 

Method of 
steepest descents 



1-1+1-1+1-1+1-1+… = ?? 
 1+2+4+8+16+32+… = ?? 

 
 

1+1+1+1+1+1+1+… = ?? 
1+2+3+4+5+6+7+… = ?? 

 
 

(3) Summing divergent series 



  1-1+1-1+1-1+1-1+… = 1/2 
 1+2+4+8+16+32+… = -1 

 
 

   1+1+1+1+1+1+1+… = -1/2 
     1+2+3+4+5+6+7+… = -1/12 

 
 

Real-variable techniques: 

Complex-variable techniques: 



Square-root function is confusing! 

Q: Why are there two answers?? 

A: Square-root function is defined on a Riemann surface … 

              (4) Understanding real functions    



Square-root function is defined on a two-sheeted Riemann surface: 

The surface is two complex planes cut and glued together. 
 
Like a Möbius strip, if you go around twice,  
you return back to the starting point…  



Things that remain the same when 
you go around twice… 

Möbius strip… 
 
 
 
 
 
 
 
Electron… 
 



Complex variables are already used 
in modern physics 

xp – px = i 

Time reversal corresponds to complex 
conjugation --- changes the sign of i 

ħ Heisenberg algebra: 

Schrödinger equation: 

Eugene Wigner 



In school you learn: 
 
In quantum mechanics 
a particle in a potential 
well has quantized 
energy levels 
 
 
 
 
 
Going from one level to 
another is a discrete 
“quantum leap” 
  



 Complex analysis provides a deeper 
understanding of quantization… 

Imagine a two-state system 
having energies a and b… 

Couple the states: 



Energies for this two-state system 

Square-root singularities 
in the complex-g plane at 

(called Bender-Wu singularities) 



E(g) is a smooth function defined on 
 a two-sheeted Riemann surface: 

Complex-g 
surface 

On this complex-g surface the quantum levels are not discrete! 
 
Quantization is topological – the quantized energy levels 
correspond to the discrete sheets in the Riemann surface. 
 
These singularities explain the divergence of perturbation series. 
(And complex-variable techniques can be used to sum the series!) 



Imagine a parking garage… 

Unlike what is taught in conventional quantum theory 
courses, all energy levels smoothly deform into one another 
under analytic continuation! 



Laboratory analytic continuation of eigenvalues 

(2) H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Nature 537, 80 (2016) 
 
 
(3) J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, 
     T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Nature 537, 76 (2016) 

(1) 

Note the term PT symmetry … 



PT reflection – a simultaneous reflection of space and time 

PT-symmetric quantum mechanics: 
Extending quantum mechanics into the complex domain. 
 
If you respect PT symmetry, the eigenvalues can remain real and unitarity can be 
preserved even though the Hamiltonian is not Hermitian! 

0
0
0
0 



Complex origin of PT symmetry: Homogeneous real Lorentz  
group -- A continuous group consisting of four disconnected parts: 

Proper  
orthochronous 
Lorentz group 

Elements of 
POLG  

multiplied by 

T 

Elements of 
POLG 

multiplied by 

PT 

Elements of 
POLG 

multiplied by 

P 

The complex Lorentz group consists of TWO disconnected parts 



Early example of a PT-symmetric 
Hamiltonian. This Hamiltonian 
is not Hermitian, but --- 
It has REAL EIGENVALUES!  
(1-D model of Lee-Yang edge singularity) 

P:  x à -x,  p à -p 
 
T:  x à x,  p à -p,   i à -i 



One-parameter family of PT-symmetric Hamiltonians  
obtained by complex deformation of the harmonic oscillator 

Special cases: 

Look! H is not 
Hermitian but 
its eigenvalues 
are all real! 

Quartic: H = p2 - x4  
Cubic: H = p2 + ix3  

Sextic: H = p2 + x6  

Proof of spectral reality: 
 
P. Dorey, C. Dunning, and R. Tateo 
J. Phys. A 34, 5679 (2001) 
 
P. Dorey, C. Dunning, and R. Tateo 
J. Phys. A 40, R205 (2007) 

H = p2 + x2(ix)ε      (ε real) 



PT symmetry unmasked: 
PT-symmetric Hamiltonians are 

complex deformations of Hermitian 
Hamiltonians 

You begin with a Hermitian Hamiltonian 
and introduce a deformation parameter ε … 



Simple example: H = p2 + x2 + iεx  

En = 2n + 1 + ε2/4       (n = 0, 1, 2, 3, …) 

-φ’’(x) + x2 φ(x) + iεx φ(x) = E φ(x) 
 
φ(±∞) = 0 



H = p2 + x4 (ix)ε  

This picture of eigenvalues is generic… 



H = p4 + x2 (ix)ε  



H = p2 + x2 (ix)ε log(ix) 









Stability of upside-down potentials 

This potential looks unstable (on the real axis) 
 
Complex variables explains why such a potential has 
quantum bound states 
 

V(x) = -x4 



To explain, we first study simple classical harmonic motion 
in the complex domain. 
 
 
 
 
 
 
 
 
 
 
 
 
                   Remember what they teach in physics 101… 



Classical harmonic oscillator 

 
             Turning point Turning point 

Back and forth motion on the real-x axis: 

Classically allowed and classically forbidden regions… 

E = p2 + x2  



Classically allowed and 
classically forbidden regions 



Classical harmonic oscillator in the complex plane  

 
             

Turning point Turning point 

H = p2 + x2  

Classical trajectory in 
the complex-x plane 

(ε = 0) 

E = p2 + x2  (These orbits are not Keplerian!) 



(ε = 1) Classical trajectories in 
the complex-x plane 
 

H = p2 + ix3  



(ε = 2) 

Classical trajectories 
in the complex-x plane 
 

H = p2 – x4  

Q: On the real axis classical particles roll down to infinity 
in finite time T, so where is the particle at T+1?? 



As the classical trajectories approach the real axis, the 
classical orbits go further out into complex-x plane 



Probability density for 
a classical particle in 
the potential V(x) = -x4 
to be found on the 
real-x axis at the point x 



The static instability becomes dynamically stable 
in the complex domain (like a bicycle or a top)  



π	



Instability at x = 0 is tamed! 

Complex analysis allows us to tame instabilities 
 
 
Physical systems that seem to be unstable can 
become stable in the complex domain! 



Q: WHY IS THERE NO INSTABILITY?? 
 
A: If you extend real numbers to complex 
numbers, you lose the ordering property 
of real numbers 
 
You lose the concept of > and < 
 
Physical systems that look 
unstable may be stable! 



PT Boundary 
Region of unbroken 
PT symmetry 

Region of broken 
PT symmetry 

Transition 
 at ε = 0 

H = p2 + x2(ix)ε         (ε real) 



PT symmetry does not conflict with conventional 
quantum theory, but it is weaker than Hermiticity: 
All eigenvalues E of a Hermitian Hamiltonian are real. 
For PT-symmetric Hamiltonians only the 
secular equation    det(H - IE) = 0    is real.  
 
 
Unlike Hermitian Hamiltonians, there are 
       
 TWO POSSIBILITIES: 
 
PT-symmetric theories may have an all real or a partly 
real spectrum.  



Broken ParroT Unbroken ParroT 



Hermitian Hamiltonians: 
 BORING! 

Eigenvalues are always real – nothing interesting happens 



PT-symmetric Hamiltonians: 
ASTONISHING! 

Transition between parametric regions of 
broken and unbroken PT symmetry – 
Easy to observe experimentally! 



Intuitive explanation of 
the PT transition … 



Imagine a closed box with gain. The 1 x 1 Hamiltonian 
for this system is non-Hermitian:  H = [a+ib]  

Box 1: Gain 

Intuitive explanation of the PT transition 



Two noninteracting closed boxes,  one with gain, the 
other with loss: 

Box 2: Loss 

This system is not in equilibrium 

Box 1: Gain 



     Couple the boxes: 

Box 2: Loss 

This Hamiltonian is not Hermitian but it is PT symmetric: 

Box 1: Gain 

Time reversal:       = complex conjugation 
 
Parity:   



Eigenvalues satisfy a real secular equation: 
 
det(Hcoupled – IE) = E2 – 2aE + a2 + b2 – g2 

Transition at |g| = |b| 
Energy is REAL if |g| > |b| 

This system is in equilibrium for sufficiently large coupling! 

± E   = a ± (g2 – b2)1/2 



      PT-symmetric systems lie between 
      closed and open systems 

Hermitian H Non-Hermitian H PT-symmetric H 



Theoretical applications: renormalizing makes 
a Hamiltonian non-Hermitian, but still PT symmetric 

•  Lee model is unitary (there are no ghosts!) 
•  Pais-Uhlenbeck model (no ghosts!) 
•  Self-force on the electron (runaway modes) 
•  Double-scaling limit in QFT 
•  Stability of the Higgs vacuum 
•  Asymptotic behavior of the Painlevé  transcendents 
•  Application to the Riemann hypothesis 
           …and many many many many more! 

Experimental Studies of PT symmetry: 

•  PT-symmetric wave guides 
•  PT-symmetric lasers 
•  PT-symmetric electronic and mechanical systems 
•  Unidirectional transmission of light 
•  PT-symmetric atomic diffusion 
•  PT-symmetric superconducting wires 
•  PT-symmetric optical graphene 
•  PT-symmetric power transfer 
•  PT-symmetric fluid instabilities 
           …and many many many many more! 



Experimental studies of  
PT–symmetric systems 

First observation of PT transition using 
optical wave guides: 

“Observation of PT-symmetry breaking in complex optical 
potentials,” A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. 
Volatier-Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides, 
Physical Review Letters 103, 093902 (2009) 





PT-symmetric diffusion – Shanghai/Rutgers 



PT-symmetric optics – Caltech 



PT-symmetric superconducting wires – Indiana 



PT-symmetric microwave cavities – Germany 



PT-symmetric cavity lasers – Yale 



PT-symmetric photonic graphene – Israel 



PT lasers – Vienna/Princeton/Yale/Zurich 



Multiple PT-symmetric waveguides – Germany/Florida 



PT-symmetric superconducting wires – Argonne 



PT-symmetric NMR – Beijing 



PT-symmetric metasurfaces – Texas 



PT-symmetric photonic crystals – Stanford 



PT-symmetric wireless power transfer – Stanford 



J. Schindler et al., Phys. Rev. A (2011) 
Experimental study of active LRC circuits with PT symmetries 
Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos 
Phys. Rev. A 84, 040101 (2011) 
Published October 13, 2011 
Everyone learns in a first course on quantum mechanics that the result of a measurement cannot be a complex 
number, so the quantum mechanical operator that corresponds to a measurement must be Hermitian. However, 
certain classes of complex Hamiltonians that are not Hermitian can still have real eigenvalues. The key property 
of these Hamiltonians is that they are parity-time (PT) symmetric, that is, they are invariant under a mirror 
reflection and complex conjugation (which is equivalent to time reversal). 
 
Hamiltonians that have PT symmetry have been used to describe the depinning of vortex flux lines in type-II 
superconductors and optical effects that involve a complex index of refraction, but there has never been a simple 
physical system where the effects of PT symmetry can be clearly understood and explored. Now, Joseph Schindler 
and colleagues at Wesleyan University in Connecticut have devised a simple LRC electrical circuit that displays 
directly the effects of PT symmetry. The key components are a pair of coupled resonant circuits, one with active 
gain and the other with an equivalent amount of loss. Schindler et al. explore the eigenfrequencies of this system 
as a function of the “gain/loss” parameter that controls the degree of amplification and attenuation of the system. 
For a critical value of this parameter, the eigenfrequencies undergo a spontaneous phase transition from real to 
complex values, while the eigenstates coalesce and acquire a definite chirality (handedness). This simple electronic 
analog to a quantum Hamiltonian could be a useful reference point for studying more complex applications.  
– Gordon W. F. Drake 

APS: Spotlighting exceptional research 



“Observation of PT phase transition in a simple mechanical system,” 
CMB, B. Berntson, D. Parker, E. Samuel, American Journal of Physics 81, 173 (2013)  



Loss and gain:  
Remove energy from the x pendulum 
and transfer it to the y pendulum. 

PT-symmetric system of coupled pendula 



“Nonreciprocal light transmission in parity-time-symmetric 
whispering-gallery microcavities,” B. Peng, S. K. Ozdemir, F. Lei, 
F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, CMB, L. Yang, 
Nature Physics 10, 394 (2014)  
 
“Twofold transition in PT-symmetric coupled oscillators,” 
CMB, M. Gianfreda, B. Peng, S. K. Ozdemir, and L. Yang, 
Physical Review A 88, 062111 (2013)  
 
“Loss-induced suppression and revival of lasing,” 
B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, CMB, F. Nori, L. Yang, 
Science 346, 328 (2014)  

Fancy experiments involving whispering-galery microcavities 



Overview 
of my talk: 



A few theoretical examples  
 Example 1: Lee model 



Problem with the Lee model 



“A non-Hermitian Hamiltonian is unacceptable 
partly because it may lead to complex energy 
eigenvalues, but chiefly because it implies a non-
unitary S matrix, which fails to conserve probability 
and makes a hash of the physical interpretation.” 

Renormalization creates instability. 
This is a really hard problem. Pauli, Heisenberg, 
Wick, Sudarshan, … worked on it, but no cigar. 



GHOSTBUSTING: Reviving 
quantum theories that were 
thought to be dead 
 

“Ghost busting: PT-symmetric interpretation of the Lee model,” 
CMB, S. Brandt, J.-H. Chen, and Q. Wang, Phys. Rev. D 71, 025014 (2005)  



Example 2: 
Double-scaling limit in QFT 

The double-scaling limit is a correlated limit; it is universal  
and produces an entire function of scaled variable 
 
BUT! 
The double-scaling limit of a conventional quartic theory gives 
a “wrong-sign” (upside-down potential) universal theory: -gφ4 
 
 
 
 
 
CMB, M. Moshe, and S. Sarkar, J. Phys. A: Math. Theor. 46, 102002 (2013) 
 
CMB and S. Sarkar, J. Phys. A: Math. Theor. 46, 442001 (2013)  



Again: PT-symmetric quantum mechanics 
 to the rescue! 

Meep! Meep! 

PT 



Example 3: Instabilities of nonlinear 
differential equations 

Painlevé transcendents have fundamental instabilities 
that can be tamed and understood quantitatively by 
using PT-symmetric quantum theory 
 
 
“Nonlinear eigenvalue problems” 
CMB, A. Fring, and J. Komijani 
Journal of Physics A: Mathematical and Theoretical 47, 235204 (2014) [arXiv: 1402.1158] 
 
“PT-symmetric Hamiltonians and the Painlevé transcendents” 
CMB and J. Komijani 
Journal of Physics A: Mathematical and Theoretical 48, 475202 (2015) [arXiv: 1502.04089] 
 
“Nonlinear eigenvalue problems for generalized Painlevé equations” 
CMB, J. Komijani, and Q.-h. Wang 
Journal of Physics A: Mathematical and Theoretical 52, 315202 (2019) [arXiv: 1903.10640]  
 



Instability of Painlevé I explained from large eigenvalues of  

cubic PT-symmetric Hamiltonian 

(Do you remember 
the cubic PT-symmetric  
Hamiltonian?) 

Painlevé I corresponds to ε = 1 H = p2 + ix3  



Instability of Painlevé II explained from large eigenvalues of 
quartic PT-symmetric Hamiltonian 

(Do you remember the 
quartic upside-down 
PT-symmetric Hamiltonian?) 

Painlevé II corresponds to ε = 2 

H = p2 – x4  



Instability of Painlevé IV explained in terms of the  

sextic PT-symmetric Hamiltonian 

(Do you remember the 
sextic PT-symmetric  
Hamiltonian?) 

Painlevé IV corresponds to ε = 4 

H = p2 + x6  



Example 4: 
PT-symmetric quantum field theory 

“PT-symmetric quantum field theory in D dimensions” 
CMB, N. Hassanpour, S. P. Klevansky, and S. Sarkar 
Physical Review D 98, 125003 (2018) [arXiv: 1810.12479] 

D-dimensional Euclidean-space quantum field theory 
with a pseudoscalar field 

Objective: Calculate the vacuum energy density, renormalized 
mass, Green’s functions G1, G2(x-y), G3(x-y,x-z), ... as series 
in powers of ε	



If we expand in ε we get logarithmic terms in the Lagrangian:  

Unperturbed Lagrangian is the usual free theory: 

How do we interpret the logarithm term              ??  

The imaginary term is odd in     and the real term is even 
in     so  this is how to ensure PT symmetry!   



n-point Green’s function for n = 1, 3, 4, 5, … 

Exact to order ε	

Free propagator in coordinate space: 



Renormalized mass 

Comments on renormalization 



for listening to my talk! 



I am happy to answer questions… 


