Evaporating Black Holes Coupled to a Thermal Bath

Shan-Ming Ruan Perimeter Institute & University of Waterloo

HoloTube Online Conference-Oct 2020

arXiv:1911.03402,2007.11658

with Vincent Chen, Zachary Fisher, Juan Hernandez, and Robert C. Myers

- Motivations & Background
- Generalized Entropy
- Doubly Holographic Models
- QES and Islands
- Entanglement Wedge Reconstruction

Black hole Information paradox

A quick answer from AdS/CFT

Yes! It is unitary.

An answer without answering any question

Shan-Ming Ruan (PI)

01.Background

Shan-Ming Ruan (PI)

BH coupled to a Thermal Bath

01.Background- Page Curve

Shan-Ming Ruan (PI)

Black hole Information paradox

First Step to the solution of information paradox

Recover Page Curve!

Shan-Ming Ruan (PI)

BH coupled to a Thermal Bath

What is Hawking's mistake?

Shan-Ming Ruan (PI)

BH coupled to a Thermal Bath

Need a correct formula for entropy

Shan-Ming Ruan (PI)

BH coupled to a Thermal Bath

Generalized entropy (Cauchy surface $\Sigma_{\rm out}$)

$$S_{\text{gen}}[\Sigma_{\text{out}}] = \frac{A[\chi]}{4G_N} + S_{\text{bulk}}(\text{tr}_{\Sigma_{in}}\rho)$$

$$\tilde{\Sigma}$$
bulk entropy

(Von Neumann entropy of quantum fields)

$$S_{\text{bulk}}(\rho) = -\operatorname{Tr}(\rho \ln \rho)$$

Fig 4.2 from arXiv:1609.01287

9

Generalized entropy (Σ_{out})

$$S_{\text{gen}}[\Sigma_{\text{out}}] = \frac{A[\chi]}{4G_N} + S_{\text{bulk}}(\text{tr}_{\Sigma_{in}}\rho)$$

Quantum extremal surfaces χ Minimizing generalized entropy

$$\partial_{x}S_{\text{gen}} = 0 \qquad \qquad \chi : x_{\text{QES}}$$

$$S_{\text{bulk}} \text{ is important!}$$

$$S_{\text{gen}}[\Sigma_{\text{out}}] = \text{Min}_{\chi} \left[\text{Ext}_{\chi} \left(\frac{A[\chi]}{4G_{N}} + S_{\text{bulk}}(\Sigma_{\text{out}}) \right) \right]$$

 \mathcal{A}

10

Fig 4.2 from arXiv:1609.01287

Shan-Ming Ruan (PI)

A correct formula for the fine grained entropy of Hawking radiation

Island Formula: $S_{\text{radiation}} = \text{Min}_{\chi} \left[\text{Ext}_{\chi} \left(\frac{A[\chi]}{4G_N} + S_{\text{bulk}} \left(\Sigma_{\text{radiation}} \cup \Sigma_{\text{Island}} \right) \right) \right]$

03. Doubly Holographic Models

How to build a solvable model?

Shan-Ming Ruan (PI)

03. Doubly Holographic Models

Two-dimensional CFT and JT gravity

Shan-Ming Ruan (PI)

03. AEMM Model (arXiv:1905.0876)

The simplest gravity model JT gravity + CFT Matter

$$I_{0} = \frac{\phi_{0}}{16\pi G_{N}} \left[\int_{M} d^{2}x \sqrt{-g}R + 2 \int_{\partial M} K \right]$$
$$I_{G} = \frac{1}{16\pi G_{N}} \left[\int_{M} d^{2}x \sqrt{-g} \phi(R+2) + 2 \int_{\partial M} \phi_{b} K \right]$$
$$I_{M} = I_{\text{CFT}}[g]$$

Poincare Coordinate $ds_{AdS}^{2} = -\frac{4L_{AdS}^{2}}{(x^{+} - x^{-})^{2}}dx^{+}dx^{-},$ $(x^{\pm} = t \pm s).$

$$2\partial_{x^{+}}\partial_{x^{-}}\phi + \frac{4}{(x^{+} - x^{-})^{2}}\phi = 16\pi G_{N}T_{x^{+}x^{-}}$$
$$\cdot \frac{1}{(x^{+} - x^{-})^{2}}\partial_{x^{+}}\left(\left(x^{+} - x^{-}\right)^{2}\partial_{x^{+}}\phi\right) = 8\pi G_{N}T_{x^{+}x^{+}}$$
$$\cdot \frac{1}{(x^{+} - x^{-})^{2}}\partial_{x^{-}}\left(\left(x^{+} - x^{-}\right)^{2}\partial_{x^{-}}\phi\right) = 8\pi G_{N}T_{x^{-}x^{-}}$$

Shan-Ming Ruan (PI)

03. AEMM Model

JT gravity + CFT Matter

$$ds^{2} = -\frac{4f'(y^{+})f'(y^{-})dy^{+}dy^{-}}{\left(f(y^{+}) - f(y^{-})\right)^{2}}$$

Vacuum solution: $< T_{++} > = 0$, $< T_{--} > = 0$

$$f(u) = \frac{1}{\pi T_0} \tanh(\pi T_0 u)$$
$$\phi = 2\bar{\phi}_r \frac{1 - (\pi T_0)^2 x^+ x^-}{x^+ - x^-}$$

$$E_0 \equiv \frac{\phi_r}{8\pi G_N} \{ f(u), u \} = \frac{\pi \phi_r}{4G_N} T_0^2$$

eternal black hole

Shan-Ming Ruan (PI)

03. AEMM Model

JT gravity + CFT Matter

How to build a model for BH evaporation?

03. AEMM Model

JT gravity + CFT Matter

Put the black hole in a fridge!

03. Doubly Holographic Model

Page Curve

Unitary evolution of an evaporating black hole

More details:1911.03402

19

Shan-Ming Ruan (PI)

put a black hole in an oven

Couple a black hole with a thermal bath $T_b \neq 0$

arXiv:2007.11658

with V.Chen, Z.Fisher, J.Hernandez, and R.Myers

Shan-Ming Ruan (PI)

03. Doubly Holographic Models- $T_{\rm b}$

03. Doubly Holographic Models- $T_{\rm b}$

Three equivalent descriptions

Time Evolution of the Black Hole

ADM energy of AdS2

$$E(u) \equiv \frac{\bar{\phi}_r}{8\pi G_{\rm N}} \{f(u), u\}$$

$$\partial_u E(u) = f'(u)^2 (T_{x^-x^-} - T_{x^+x^+})$$

Stress tensor in physical coordinate

$$\left\langle T_{x^{\pm}x^{\pm}}\left(x^{\pm}\right)\right\rangle_{\text{AdS}} = E_{S}\delta\left(x^{\pm}\right) - \frac{c}{24\pi}\left\{Y^{\pm}, x^{\pm}\right\}\Theta\left(\mp x^{\pm}\right)$$
$$= E_{S}\delta\left(x^{\pm}\right) - \frac{c}{24\pi}\Theta\left(\mp x^{\pm}\right)\left[\left\{y^{\pm}, x^{\pm}\right\} - 2\left(\frac{\pi T_{\text{b}}}{f'\left(y^{\pm}\right)}\right)^{2}\right]$$

$$\{f(u), u\} = -2\pi^2 \left[T_b^2 + \left(T_1^2 - T_b^2 \right) e^{-ku} \right], \quad \text{with} \quad k \equiv \frac{cG_N}{3\bar{\phi}_r} \ll 1$$

Shan-Ming Ruan (PI)

A Solvable Model

Solutions
$$f(u, T_b) = \frac{2}{ka} \frac{I_{\nu}(a)K_{\nu}(ae^{-ku/2}) - K_{\nu}(a)I_{\nu}(ae^{-ku/2})}{I_{\nu}'(a)K_{\nu}(ae^{-ku/2}) - K_{\nu}'(a)I_{\nu}(ae^{-ku/2})} \qquad a = \frac{2\pi}{k} \sqrt{T_1^2 - T_b^2} \\ \nu = \frac{2\pi T_b}{k}$$

$$E(u) = \frac{\phi_r \pi}{4G_N} T_{\text{eff}}^2(u) \qquad T_{\text{eff}}\left(u; T_{\text{b}}\right) = \sqrt{T_{\text{b}}^2 + \left(T_1^2 - T_{\text{b}}^2\right) e^{-ku}}$$

 $T_b > T_1$ Thermalized $T_b = T_1$ Equilibrium $T_b < T_1$ Evaporating

$$\left\langle T_{x^{-}x^{-}}\right\rangle = E_{S}\delta(t) + \frac{c\pi}{12} \frac{1}{\left(f'(u)\right)^{2}} \left(T_{b}^{2} - T_{eff}^{2}(u)\right)$$
Hawking radiation

Shan-Ming Ruan (PI)

03. Doubly Holographic Models

Generalized Entropy

$$S_{\text{gen}}[\Sigma_{\text{out}}] = \text{Min}\left[\text{Ext}_{x^{\pm}}\left(\frac{\phi}{4G_N} + S_{\text{bulk}}(x^+, x^-)\right)\right)\right]$$

A Solvable Model

$$\phi = \bar{\phi}_r \frac{2 - 2 \left(\pi T_1\right)^2 x^+ x^- + k I_0}{x^+ - x^-}$$

Dilaton after coupling with bath

$$I_0 = -\frac{24\pi}{c} \int_0^x dt \left(x^+ - t\right) \left(x^- - t\right) \left\langle T_{x^- x^-}(t) \right\rangle$$

$$f(u, T_b) = \frac{2}{ka} \frac{I_{\nu}(a)K_{\nu}(ae^{-ku/2}) - K_{\nu}(a)I_{\nu}(ae^{-ku/2})}{I_{\nu}'(a)K_{\nu}(ae^{-ku/2}) - K_{\nu}'(a)I_{\nu}(ae^{-ku/2})}$$

$$\phi(x^{\pm}) = \phi_r \left(\frac{2f'(y^{-})}{x^{+} - x^{-}} + \frac{f''(y^{-})}{f'(y^{-})} \right)$$

Shan-Ming Ruan (PI)

BH coupled to a Thermal Bath ²⁶

03. Doubly Holographic Models

How to calculate S_{bulk} in the semi-classical limit?

Shan-Ming Ruan (PI)

Shan-Ming Ruan (PI)

QES with Islands

Island Phase:
$$\frac{dS_{\text{gen,late}}}{du} \approx -\frac{\bar{\phi}_r}{4G_N} \left(1 - \frac{T_b^2}{T_{\text{eff}}^2(u)}\right) k\pi T_{\text{eff}}(u)$$

Shan-Ming Ruan (PI)

BH coupled to a Thermal Bath

Shan-Ming Ruan (PI)

Equilibrium Status $T_1 = T_b$

$$x_{\text{QES}}^{+}(t) = \frac{\sqrt{k^2 + \pi^2 T_1^2} \left(\left(\pi T_1 t\right)^2 - 1 \right) + k \left(\left(\pi T_1 t\right)^2 + 1 \right)}{\pi^2 T_1^2 \left(\pi^2 T_1^2 t^2 + 2kt - 1 \right)}$$
$$x_{\text{QES}}^{-}(t) = \frac{\sqrt{k^2 + \pi^2 T_1^2} \left(\left(\pi T_1 t\right)^2 - 1 \right) + k \left(\left(\pi T_1 t\right)^2 + 1 \right)}{\pi^2 T_1^2 \left(-\pi^2 T_1^2 t^2 + 2kt + 1 \right)}$$

$$S_{\text{gen,late}}\left(T_{1}\right) = \frac{\bar{\phi}}{2G_{\text{N}}}\left(\sqrt{k^{2} + \pi^{2}T_{1}^{2}} - k\log\left[\epsilon\left(k + \sqrt{k^{2} + \pi^{2}T_{1}^{2}}\right)\right]\right)$$

Island outside horizon

$$x_{\text{QES}}^+(t) < t_{\infty} = x_{\text{QES}}^+(t_{\infty}); \quad \frac{dx_{\text{QES}}^+(t)}{dt} > 0$$

Island outside horizon

$$T_{c_1}(u) \approx \left(1 - \sqrt{\frac{2k}{\pi T_1}}\right) T_{\text{eff}}\left(y_{\overline{\text{QES}}}\right) \qquad \qquad T_{c_2}(u) \approx \left(1 + \sqrt{\frac{2k}{\pi T_1}}\right) T_{\text{eff}}\left(y_{\overline{\text{QES}}}\right)$$

Inside horizon
$$T_{c_1}(u) < T_b < T_{c_2}(u)$$
On the horizon $T_b = T_{c_1}(u)$ or $T_b = T_{c_2}(u)$ Outside horizon $T_b < T_{c_1}(u)$ or $T_b > T_{c_2}(u)$

At very late time, QES always moves outside horizon

$$ku \gtrsim \log\left(\left|1 - \frac{T_1^2}{T_b^2}\right| \sqrt{\frac{\pi T_1}{8k}}\right)$$

A correct formula for Radiation Island formula

Shan-Ming Ruan (PI)

04. Island Formula

Island formula

Shan-Ming Ruan (PI)

05. Entanglement Wedge Reconstruction

Entanglement Wedge of QM_L + bath (Hawking radiation)+Purification

Shan-Ming Ruan (PI)

05. Entanglement Wedge Reconstruction

Reconstruct the interior of BH after Page transition (Island Phase)

Who knows information of the BH interior?

Stored in the Hawking radiation living in the Bath?

How much Hawking radiation we need to reconstruct BH interior?

05. EWR- a finite bath interval

subsystem: QM_L + part of the bath $[\sigma_1, \sigma_2]$ + Purification

Reconstruct the interior of BH ! $S_{\rm R} \leq S_{\rm N}$

05. EWR- a finite bath interval

subsystem: QM_L + part of the bath $[\sigma_1, \sigma_2]$ + Purification

$$\sigma_{2}(u) \gtrsim \frac{T_{1} - T_{0}}{2k\left(T_{1} + T_{b}\right)} + \frac{T_{1}}{4\left(T_{1} + T_{b}\right)} \left(u\left(1 - \frac{T_{b}}{T_{1}}\right)^{2} + u_{\mathrm{HP}}\left(1 - \frac{T_{b}^{2}}{T_{1}^{2}}\right)\right) + \frac{\log\left(\frac{bE_{s}}{cT_{1}}\right)}{2\pi\left(T_{1} + T_{b}\right)} + \cdots$$

The information encoded in Hawking radiation is degenerate!

Shan-Ming Ruan (PI)

05. EWR- the role of purification

Reconstruct the interior of BH ! $S_{QES-1}^{gen} + S_2 < S_{QES''}^{gen} + S_{1-2}$

Only If :

$$T_{\rm b} \lesssim T_p \approx \frac{T_1 + T_0}{2} + \frac{k}{2\pi} \log\left(\frac{6E_s}{cT_1}\right)$$

We also need the purification part when $T_b \ge T_p$

Shan-Ming Ruan (PI)

Remarks and Conclusions

- The information of BH is not lost!
- Surprising Result: Unitarity from semi-classical limit
- Unitarity in the evolution of BH is universal !/? (details of bath, evaporation, equilibrium, growing-up, boundary entropy log g, higher dimensions....)
- Important role of Quantum Extremal Surface (QES)
- Appearance of Island region at late time
- Degeneracy of information in Hawking radiation
- Secret Sharing Scheme

•

Lots to Explore!

Thanks for your attention!

Shan-Ming Ruan (PI)