Stress tensor sector of Holographic CFTs

Petar Tadić Trinity College Dublin

R. Karlsson, M. Kulaxizi, A. Parnachev, PT 1909.05775 [hep-th] R. Karlsson, M. Kulaxizi, A. Parnachev, PT 2002.12254 [hep-th]

HoloTube Junior

ロト・「同ト・ビニト・ビニー」の文化

Introduction

AdS_{d+1}/CFT_d correspondence:

- Gravity in (d + 1)-dimensional asymptotically Anti de-Sitter spacetime.
- Conformal Field Theory in *d*-dimensional spacetime.
- Weakly coupled gravity is dual to strongly coupled CFT.
- Can we use CFTs to define and describe quantum gravity?
- First, we need to understand the duality at classical level in gravity.
- ► Holographic CFTs (C_T → ∞ and Δ_{gap} → ∞) have a weakly coupled gravity dual with local physics below the AdS scale. [Heemskerk, Penedones, Polchinski, Sully, '09.]
- Second, learn more about strongly coupled CFTs.

Introduction

We are interested in CFTs with large central charge C_T ~ N² → ∞ and large gap Δ_{gap} → ∞. We study

 $\langle \mathcal{O}_H(\infty)\mathcal{O}_L(1)\mathcal{O}_L(z,\bar{z})\mathcal{O}_H(0)\rangle,$

where $\Delta_L \sim \mathcal{O}(1)$ and $\Delta_H \sim \mathcal{O}(C_T)$ while $\mu \sim \frac{\Delta_H}{C_T}$ is fixed and used as an expansion parameter.

In CFT₂ there is an infinite-dimensional Virasoro algebra that strongly constraints correlators in C_T → ∞ limit.

ロシス ほうえき システレー シックペ

•
$$\langle \mathcal{O}_{H}(\infty)\mathcal{O}_{L}(1)\mathcal{O}_{L}(z)\mathcal{O}_{H}(0)\rangle\Big|_{V,v.b.} \sim e^{\Delta_{L}\mathcal{F}(\mu,z)}$$
,
where \mathcal{F} is a known function that can be expanded as
 $\mathcal{F}(\mu,z) = \sum_{k=0}^{\infty} \mu^{k} \mathcal{F}^{(k)}(z)$.

Introduction

• At $\mathcal{O}(\mu^k)$, $\mathcal{F}^{(k)}(z)$ can be written as

$$\mathcal{F}^{(k)}(z) = \sum_{\{i_p\}} b_{i_1...i_k} f_{i_1}(z) ... f_{i_k}(z), \qquad \sum_{p=1}^{n} i_p = 2k,$$

L

ロトス目をスティート・ヨークタマ

where i_p are integers and

$$f_a(z) = (1-z)^a {}_2F_1(a, a, 2a, 1-z).$$

\$\mathcal{F}^{(k)}\$ contains contributions from all quasi-primaries made of k stress-tensors:

$$egin{array}{rll} \mathcal{F}^{(0)}(z)\sim 1&-&\hat{1},\ \mathcal{F}^{(1)}(z)\sim b_2f_2&-&\mathcal{T}(z),\ \mathcal{F}^{(2)}(z)\sim b_{22}f_2^2+b_{13}f_1f_3&-&:\mathcal{T}(z)\partial\dots\partial\mathcal{T}(z):. \end{array}$$

 $CFT_{d>2}$

- **No** Virasoro symmetry anymore.
- We consider the exchange of multi-stress tensors.
- Their contribution to the correlator we denote as stress-tensor sector:

$$\left\langle \mathcal{O}_{H}(\infty)\mathcal{O}_{L}(1)\mathcal{O}_{L}(z,\bar{z})\mathcal{O}_{H}(0)
ight
angle \Big|_{\mathrm{multi-stress tensors}} = \sum_{k} \mu^{k} \mathcal{G}^{(k)}(z,\bar{z}).$$

ロトメ得トメヨトメヨト・ヨーの久で

 \blacktriangleright Now, multi-stress tensors are labeled by their spin s and twist τ ,

$$\tau = \Delta - s.$$

• Multi-stress tensors made with k stress-tensors contribute to $\mathcal{G}^{(k)}$.

Minimal-twist contributions in $CFT_{d>2}$

First, we focus on minimal-twist multi-stress tensor operators.
 Operators with minimal twist, that contribute at O (μ^k), can be schematically represented as:

$$[T^{(k)}]_{\tau,s} :=: T_{\mu_1\nu_1} \dots T_{\mu_{k-1}\nu_{k-1}} \partial_{\alpha_1} \dots \partial_{\alpha_l} T_{\mu_k\nu_k} :,$$

$$\tau = k(d-2),$$

$$s = 2k + l.$$

• The contribution of operators with the minimal twist is dominant over those from higher-twist operators in the lightcone limit $1 - \bar{z} \ll 1$.

 OPE coefficients of these operators are the same in all holographic CFTs. [Fitzpatrick, Huang, '19.][Fitzpatrick, Huang, Meltzer, Perlmutter, Simmons-Duffin, '20.]

ロシスロシスモンスモン、モニタへの

Minimal-twist contributions in $CFT_{d>2}$

In even-dimensional spacetime, we propose

$$\mathcal{G}^{(k)}(z,ar{z}) \mathop{\approx}\limits_{ar{z} o 1} rac{(1-ar{z})^{k(rac{d-2}{2})}}{[(1-z)(1-ar{z})]^{\Delta_L}} \sum_{\{i_p\}} a_{i_1...i_k} f_{i_1}(z)...f_{i_k}(z).$$

$$i_p \in \mathbb{N}, \quad \sum_{p=1}^k i_p = k\left(\frac{d+2}{2}\right) = \frac{\tau}{2} + s_{min},$$

where s_{min} is the minimal spin of operators that contribute at $\mathcal{O}(\mu^k)$ (For minimal-twist operators: $\tau = k(d-2)$, $s_{min} = 2k$).

ロシス語シスヨシスヨシー語の今日

We now have to fix the unknown coefficients a_{i1...ik}. These can be fixed via the lightcone bootstrap.

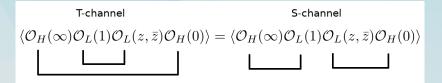


Figure: Lightcone bootstrap - schematically

$$\begin{split} \mathcal{G}(z,\bar{z}) &= \frac{1}{[(1-z)(1-\bar{z})]^{\Delta_L}} \sum_{\mathcal{O}_{\tau,s}} \mathcal{P}_{\mathcal{O}_{\tau,s}}^{(HH,LL)} g_{\tau,s}^{(0,0)}(1-z,1-\bar{z}), \\ & \text{where } \mathcal{O}_{\tau,s} \in \{1,T,:\,T\Box^n\partial^I T:,\ldots\}. \\ \mathcal{G}(z,\bar{z}) &= \frac{1}{(z\bar{z})^{\frac{1}{2}(\Delta_H+\Delta_L)}} \sum_{\mathcal{O}_{\tau',s'}} \mathcal{P}_{\mathcal{O}_{\tau',s'}}^{(HL,HL)} g_{\tau',s'}^{(\Delta_{HL},-\Delta_{HL})}(z,\bar{z}), \end{split}$$

where $\mathcal{O}_{\tau',s'} \in \{: \mathcal{O}_H \Box^n \partial^I \mathcal{O}_L :\}$.

A E N A E N E DQQ

T-channel

Conformal blocks of operators in the T-channel:

$$g^{(0,0)}_{ au,s}(1-z,1-ar{z}) = (1-ar{z})^{rac{ au}{2}} \Big(f_{rac{ au}{2}+s}(z) + \mathcal{O}(1-ar{z})\Big).$$

At order O(μ), there is only the stress-tensor contribution that is fixed by the Ward identity:

$$egin{aligned} \mathcal{G}^{(1)}(z,ar{z}) &= rac{1}{((1-z)(1-ar{z}))^{\Delta_L-1}}rac{\Delta_L}{120(z-ar{z})}\Big(f_3(z)+f_3(ar{z})\Big) \ & pprox & rac{(1-ar{z})}{ar{z} o 1} rac{(1-ar{z})}{((1-z)(1-ar{z}))^{\Delta_L}}rac{\Delta_L}{120}f_3(z) \end{aligned}$$

ロト・「同ト・ビニト・ビニー」の文化

S-channel : $\mathcal{O}_H \partial^{2n} \partial^l \mathcal{O}_L$:

$$g^{(\Delta_{HL},-\Delta_{HL})}_{\Delta_{H}+\Delta_{L}+2n+\gamma,l}(z,ar{z}) \mathop{pprox}\limits_{\Delta_{H} o\infty} rac{(zar{z})^{rac{1}{2}(\Delta_{H}+\Delta_{L}+2n+\gamma)}}{ar{z}-z} \left(ar{z}^{l+1}-z^{l+1}
ight)$$

$$\gamma_{n,l} = \sum_{k=1}^{\infty} \mu^{k} \gamma_{n,l}^{(k)} = \sum_{k=1}^{\infty} \mu^{k} \sum_{p=0}^{\infty} \frac{\gamma_{n}^{(k,p)}}{l^{k+p}},$$

 $P_{n,l}^{(HL,HL)} = P_{n,l}^{(HL,HL);\text{MFT}} \sum_{k=0}^{\infty} \mu^k P_{n,l}^{(HL,HL);(k)}, \quad P_{n,l}^{(HL,HL);(k)} = \sum_{p=0}^{\infty} \frac{P_n^{(k,p)}}{l^{k+p}}.$

(ロシス語シス語シス語)の文化

• $f_i(z) = q_{i,1}(z) + \log(z)q_{i,2}(z)$, where $q_{i,1/2}(z)$ are rational functions.

By matching O(μ) from S-channel with T-channel (stress-tensor contribution), we fix γ_n^(1,p) and P_n^(1,p).

At O(μ²), terms that contain log²(z) in the S-channel are fixed by γ_n^(1,p) and P_n^(1,p).

Generally, at O(µ^k), terms that contain logⁱ(z), 2 ≤ i ≤ k, in the S-channel are fixed by OPE data up to O(µ^{k-1}).

ロ > < 同 > < 三 > < 三 > 、 三 ・ の < や

On the other hand, ansatzes in the T-channel are of the following form:

$$egin{aligned} \mathcal{G}^{(k)}(z,ar{z})_{ar{z}
ightarrow 1}&rac{(1-ar{z})^k}{((1-z)(1-ar{z}))^{\Delta_L}}\Big(ilde{q}_{k,z}\log^k(z)+\ldots\ &+ ilde{q}_{1,z}\log(z)+ ilde{q}_{0,z})\Big), \end{aligned}$$

where $\tilde{q}_{i,z}$ are rational functions of z that depend on unknown coefficients $a_{i_1...i_k}$.

► Therefore, we can match terms that behave as logⁱ(z) for 2 ≤ i ≤ k, with those from the S-channel calculation, that are fixed in terms of OPE data at subleading order in µ.

- At O(µ²), we match terms that contain log²(z) from T- and S-channel.
- Matching these terms fixes coefficients the unknown coefficients a₃₃, a₂₄ and a₁₅ in the ansatz:

$$\begin{aligned} \mathcal{G}^{(2)}(z,\bar{z}) &\approx_{\bar{z} \to 1} \frac{(1-\bar{z})^2}{[(1-z)(1-\bar{z})]^{\Delta_L}} \left(\frac{\Delta_L}{28800(\Delta_L-2)}\right) \times \\ &\left\{ (\Delta_L - 4)(\Delta_L - 3)f_3^2(z) + \frac{15}{7}(\Delta_L - 8)f_2(z)f_4(z) \right. \\ &\left. + \frac{40}{7}(\Delta_L + 1)f_1(z)f_5(z) \right\} \end{aligned}$$

- By this means, we reproduce the correlator calculated in [Kulaxizi, Ng, Parnachev, '19.].
- Same method has been used calculate O(μ⁴) contributions in d = 4 and O(μ²) in d = 6. [Karlsson, Kulaxizi, Parnachev, PT, '19.]

Non-minimal twist - CFT₄ [Karlsson, Kulaxizi, Parnachev, PT, '20.]

In d = 4, at O(μ²), minimal twist is τ = 4, while first non-minimal twist double stress tensors have twist τ = 6.

These are two families of such operators:

$$: T_{\mu\alpha}\partial_{\lambda_1}\dots\partial_{\lambda_s}T^{\alpha}{}_{\nu}:, \qquad \frac{\tau}{2}+s_{\min}=5,$$

$$: T_{\mu\nu}\partial_{\lambda_1}\ldots\partial_{\lambda_s}\partial^2 T_{\rho\sigma} :, \qquad \frac{\tau}{2} + s_{min} = 7.$$

Now, we propose:

$$egin{aligned} \mathcal{G}^{(2,1)}(z,ar{z})_{ar{z}
ightarrow 1}&rac{(1-ar{z})^3}{((1-z)(1-ar{z}))^{\Delta_L}}\Big(b_{14}f_1f_4+b_{23}f_2f_3\ &+c_{16}f_1f_6+c_{25}f_2f_5+c_{34}f_3f_4\Big). \end{aligned}$$

ロト・「同ト・ビニト・ビニー」の文化

Non-minimal twist - CFT_4 [Karlsson, Kulaxizi, Parnachev, PT, '20.]

- Again, we use the lightcone bootstrap to fix the unknown coefficients.
- We look for terms proportional to the log²(z) in the S-channel calculation.
- We have to keep subleading corrections to the S-channel OPE data in large-spin limit.
- We get $b_{23}, c_{16}, c_{25}, c_{34}$ in terms of Δ_L and b_{14} .
- b_{14} is the OPE coefficient of : $T_{\mu\alpha}T^{\alpha}{}_{\nu}$:.
- **Generally:** The lightcone bootstrap does not fix the OPE coefficients of operators with spin s = 0, 2.

Exponentiation and OPE coefficients

It is shown that one can write the minimal-twist stress-tensor sector up to the O(µ⁴) in d = 4 as

$$\mathcal{G}(z,\bar{z})_{\bar{z}\to 1} \approx rac{1}{[(1-z)(1-\bar{z})]^{\Delta_L}} e^{\Delta_L \mathcal{F}(\mu;z,\bar{z})},$$

for some function \mathcal{F} which is a rational function of Δ_L and remains $\mathcal{O}(1)$ as $\Delta_L \to \infty$.

One can use the following relation

$$f_a(z)f_b(z) = \sum_{m=0}^{\infty} p[a, b, m]f_{a+b+2m}(z)$$

to read off the OPE coefficients of minimal-twist multi-stress tensors from ansatzes with fixed coefficients.

ロシス 同シス ヨシス ヨシン ヨー の () ()

Conclusion and future developments

- We found a method for the efficient calculation of the multi-stress tensor contributions.
- We confirm the universality of OPE coefficients of minimal-twist multi-stress tensors.
- We find that the minimal-twist contributions exponentiate in analogy with the Virasoro vacuum block.

In future:

What happens with minimal-twist OPE coefficients in theory with finite Δ_{gap}?[Fitzpatrick, Huang, Meltzer, Perlmutter, Simmons-Duffin, '20.], [20xx.xx - Karlsson, Kulaxizi, Parnachev, PT]

ロシスロシスヨシスヨシンヨーのへの

Exploring the possibility of summing all minimal-twist contributions in a closed analytic form.

THANK YOU.

(ロンス語) (目) (目) (日) (日)