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Introduction

AdSd+1/CFTd correspondence:

I Gravity in (d + 1)-dimensional asymptotically Anti de-Sitter
spacetime.

I Conformal Field Theory in d-dimensional spacetime.

I Weakly coupled gravity is dual to strongly coupled CFT.

I Can we use CFTs to define and describe quantum gravity?

I First, we need to understand the duality at classical level in
gravity.

I Holographic CFTs (CT →∞ and ∆gap →∞) have a weakly
coupled gravity dual with local physics below the AdS scale.
[Heemskerk, Penedones, Polchinski, Sully, ′09.]

I Second, learn more about strongly coupled CFTs.



Introduction

I We are interested in CFTs with large central charge
CT ∼ N2 →∞ and large gap ∆gap →∞. We study

〈OH(∞)OL(1)OL(z , z̄)OH(0)〉,

where ∆L ∼ O(1) and ∆H ∼ O(CT ) while µ ∼ ∆H
CT

is fixed
and used as an expansion parameter.

I In CFT2 there is an infinite-dimensional Virasoro algebra that
strongly constraints correlators in CT →∞ limit.

I 〈OH(∞)OL(1)OL(z)OH(0)〉
∣∣∣
V .v .b.

∼ e∆LF(µ,z),

where F is a known function that can be expanded as
F(µ, z) =

∑∞
k=0 µ

kF (k)(z).



Introduction

I At O
(
µk
)
, F (k)(z) can be written as

F (k)(z) =
∑
{ip}

bi1...ik fi1(z)...fik (z),
k∑

p=1

ip = 2k ,

where ip are integers and

fa(z) = (1− z)a2F1(a, a, 2a, 1− z).

I F (k) contains contributions from all quasi-primaries made of k
stress-tensors:

F (0)(z) ∼ 1 − 1̂,

F (1)(z) ∼ b2f2 − T (z),

F (2)(z) ∼ b22f
2

2 + b13f1f3 − : T (z)∂ . . . ∂T (z) : .



CFTd>2

I No Virasoro symmetry anymore.

I We consider the exchange of multi-stress tensors.

I Their contribution to the correlator we denote as stress-tensor
sector:

〈OH(∞)OL(1)OL(z , z̄)OH(0)〉
∣∣
multi−stress tensors =

∑
k

µkG(k)(z , z̄).

I Now, multi-stress tensors are labeled by their spin s and twist
τ ,

τ = ∆− s.

I Multi-stress tensors made with k stress-tensors contribute to
G(k).



Minimal-twist contributions in CFTd>2

I First, we focus on minimal-twist multi-stress tensor operators.

I Operators with minimal twist, that contribute at O
(
µk
)
, can

be schematically represented as:

[T (k)]τ,s =: Tµ1ν1 . . .Tµk−1νk−1
∂α1 . . . ∂αl

Tµkνk :,

τ = k(d − 2),

s = 2k + l .

I The contribution of operators with the minimal twist is
dominant over those from higher-twist operators in the
lightcone limit 1− z̄ � 1.

I OPE coefficients of these operators are the same in all
holographic CFTs. [Fitzpatrick, Huang, ′19.][Fitzpatrick, Huang,

Meltzer, Perlmutter, Simmons-Duffin, ′20.]



Minimal-twist contributions in CFTd>2

I In even-dimensional spacetime, we propose

G(k)(z , z̄) ≈
z̄→1

(1− z̄)k( d−2
2

)

[(1− z)(1− z̄)]∆L

∑
{ip}

ai1...ik fi1(z)...fik (z).

ip ∈ N,
k∑

p=1

ip = k

(
d + 2

2

)
=
τ

2
+ smin,

where smin is the minimal spin of operators that contribute at
O(µk) (For minimal-twist operators: τ = k(d − 2),
smin = 2k).

I We now have to fix the unknown coefficients ai1...ik .
These can be fixed via the lightcone bootstrap.



Lightcone bootstrap in CFT4

Figure: Lightcone bootstrap - schematically

G(z , z̄) =
1

[(1− z)(1− z̄)]∆L

∑
Oτ,s

P
(HH,LL)
Oτ,s g

(0,0)
τ,s (1− z , 1− z̄),

where Oτ,s ∈ {1,T , : T�n∂ lT :, . . .}.

G(z , z̄) =
1

(zz̄)
1
2

(∆H+∆L)

∑
Oτ ′,s′

P
(HL,HL)
Oτ ′,s′

g
(∆HL,−∆HL)
τ ′,s′ (z , z̄),

where Oτ ′,s′ ∈ {: OH�n∂lOL :}.



Lightcone bootstrap in CFT4

T-channel

I Conformal blocks of operators in the T-channel:

g
(0,0)
τ,s (1− z , 1− z̄) = (1− z̄)

τ
2

(
f τ

2
+s(z) +O(1− z̄)

)
.

I At order O(µ), there is only the stress-tensor contribution
that is fixed by the Ward identity:

G(1)(z , z̄) =
1

((1− z)(1− z̄))∆L−1

∆L

120(z − z̄)

(
f3(z) + f3(z̄)

)
≈

z̄→1

(1− z̄)

((1− z)(1− z̄))∆L

∆L

120
f3(z)



Lightcone bootstrap in CFT4

S-channel : OH∂
2n∂ lOL :

g
(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z , z̄) ≈

∆H→∞

(zz̄)
1
2

(∆H+∆L+2n+γ)

z̄ − z

(
z̄ l+1 − z l+1

)

γn,l =
∞∑
k=1

µkγ
(k)
n,l =

∞∑
k=1

µk
∞∑
p=0

γ
(k,p)
n

lk+p
,

P
(HL,HL)
n,l = P

(HL,HL);MFT
n,l

∞∑
k=0

µkP
(HL,HL);(k)
n,l , P

(HL,HL);(k)
n,l =

∞∑
p=0

P
(k,p)
n

lk+p
.



Lightcone bootstrap in CFT4

I fi (z) = qi ,1(z) + log(z)qi ,2(z), where qi ,1/2(z) are rational
functions.

I By matching O(µ) from S-channel with T-channel

(stress-tensor contribution), we fix γ
(1,p)
n and P

(1,p)
n .

I At O(µ2), terms that contain log2(z) in the S-channel are

fixed by γ
(1,p)
n and P

(1,p)
n .

I Generally, at O(µk), terms that contain logi (z), 2 ≤ i ≤ k , in
the S-channel are fixed by OPE data up to O(µk−1).



Lightcone bootstrap in CFT4

I On the other hand, ansatzes in the T-channel are of the
following form:

G(k)(z , z̄) ≈
z̄→1

(1− z̄)k

((1− z)(1− z̄))∆L

(
q̃k,z logk(z) + . . .

+ q̃1,z log(z) + q̃0,z)
)
,

where q̃i ,z are rational functions of z that depend on unknown
coefficients ai1...ik .

I Therefore, we can match terms that behave as logi (z) for
2 ≤ i ≤ k , with those from the S-channel calculation, that are
fixed in terms of OPE data at subleading order in µ.



Lightcone bootstrap in CFT4

I At O(µ2), we match terms that contain log2(z) from T- and
S-channel.

I Matching these terms fixes coefficients the unknown
coefficients a33, a24 and a15 in the ansatz:

G(2)(z , z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(
∆L

28800(∆L − 2)

)
×{

(∆L − 4)(∆L − 3)f 2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z)

+
40

7
(∆L + 1)f1(z)f5(z)

}
I By this means, we reproduce the correlator calculated in

[Kulaxizi, Ng, Parnachev, ′19.].

I Same method has been used calculate O(µ4) contributions in
d = 4 and O(µ2) in d = 6. [Karlsson, Kulaxizi, Parnachev, PT,
′19.]



Non-minimal twist - CFT4

[Karlsson, Kulaxizi, Parnachev, PT, ′20.]

I In d = 4, at O(µ2), minimal twist is τ = 4, while first
non-minimal twist double stress tensors have twist τ = 6.

I These are two families of such operators:

: Tµα∂λ1 . . . ∂λsT
α
ν :,

τ

2
+ smin = 5,

: Tµν∂λ1 . . . ∂λs∂
2Tρσ :,

τ

2
+ smin = 7.

I Now, we propose:

G(2,1)(z , z̄) ∝
z̄→1

(1− z̄)3

((1− z)(1− z̄))∆L

(
b14f1f4 + b23f2f3

+ c16f1f6 + c25f2f5 + c34f3f4
)
.



Non-minimal twist - CFT4

[Karlsson, Kulaxizi, Parnachev, PT, ′20.]

I Again, we use the lightcone bootstrap to fix the unknown
coefficients.

I We look for terms proportional to the log2(z) in the S-channel
calculation.

I We have to keep subleading corrections to the S-channel OPE
data in large-spin limit.

I We get b23, c16, c25, c34 in terms of ∆L and b14.

I b14 is the OPE coefficient of : TµαT
α
ν :.

I Generally: The lightcone bootstrap does not fix the OPE
coefficients of operators with spin s = 0, 2.



Exponentiation and OPE coefficients

I It is shown that one can write the minimal-twist stress-tensor
sector up to the O(µ4) in d = 4 as

G(z , z̄) ≈
z̄→1

1

[(1− z)(1− z̄)]∆L
e∆LF(µ;z,z̄),

for some function F which is a rational function of ∆L and
remains O(1) as ∆L →∞.

I One can use the following relation

fa(z)fb(z) =
∞∑

m=0

p[a, b,m]fa+b+2m(z)

to read off the OPE coefficients of minimal-twist multi-stress
tensors from ansatzes with fixed coefficients.



Conclusion and future developments

I We found a method for the efficient calculation of the
multi-stress tensor contributions.

I We confirm the universality of OPE coefficients of
minimal-twist multi-stress tensors.

I We find that the minimal-twist contributions exponentiate in
analogy with the Virasoro vacuum block.

In future:

I What happens with minimal-twist OPE coefficients in theory
with finite ∆gap?[Fitzpatrick, Huang, Meltzer, Perlmutter,

Simmons-Duffin, ′20.], [20xx.xx - Karlsson, Kulaxizi, Parnachev, PT]

I Exploring the possibility of summing all minimal-twist
contributions in a closed analytic form.
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