Complexity of Purification in free CFT_{2} 's arXiv:2009.11881 [hep-th]

Hugo Camargo

Gravity, Quantum Fields and Information (GQFI)
Max Planck Institute for Gravitational Physics - AEI
hugo.camargo@aei.mpg.de

HoloTube Jr. - October 30, 2020

Holography

In holography, the emergence of spacetime is encoded in the quantum data at the boundary CFT:

$$
\begin{equation*}
S[A]=\min _{\partial \gamma=\partial \mathrm{A}} \frac{\operatorname{Area}(\gamma)}{4 G_{N}} \quad\left(\text { Leading order in } G_{N}\right) \tag{1}
\end{equation*}
$$

Holographic Subregion Complexity

- Holographic EE is insufficient to determine the entire bulk geometry!
- Holographic "complexity" \mathcal{C} encodes additional information about states to which EE is insensitive to.
- Is there a holographic "complexity" measure associated with a single CFT subregion?

- Three subregion-complexity proposals with particular divergent structure: subregion- $\mathcal{C}_{V},-\mathcal{C}_{A}$ and $-\mathcal{C}_{V 2.0}$.

Complexity of Pure States (à la Nielsen)

Complexity \mathcal{C} tells us how difficult it is to produce/reach a certain target state $\left|\psi_{\mathrm{T}}\right\rangle$.

- Defined via quantum circuits:

$$
\begin{equation*}
\left|\psi_{\mathrm{T}}\right\rangle=\hat{U}\left|\psi_{\mathrm{R}}\right\rangle \tag{2}
\end{equation*}
$$

where $\left|\psi_{\mathrm{R}}\right\rangle$ is some (unentangled) reference state (e.g. $|00 \ldots\rangle$), and where \hat{U} is a unitary operator that can be written as:

$$
\begin{equation*}
\hat{U}=\overleftarrow{\mathcal{P}}\left\{e^{-i \int_{0}^{1} \mathrm{~d} \tau \sum_{\mathrm{I}} Y^{\mathrm{I}}(\tau) \hat{\mathcal{O}}_{\mathrm{I}}}\right\} \tag{3}
\end{equation*}
$$

- The Hermitian operators $\left\{\hat{\mathcal{O}}_{\mathrm{I}}\right\}$ (gate generators) form an operator algebra \mathcal{A}, while the parameters $\left\{Y^{\mathrm{I}}(\tau)\right\}$ are tangent vectors to \hat{U}.

Computational (circuit) Complexity

To compute complexity, we define a circuit depth \mathcal{D} :

$$
\begin{equation*}
\mathcal{D}(\hat{U})=\int_{0}^{1} d \tau \mathcal{F}\left(Y^{\mathrm{I}}(\tau)\right) \tag{4}
\end{equation*}
$$

where the cost function $\mathcal{F}\left(Y^{\mathrm{I}}(\tau)\right)$ is a local functional of the position and the tangent vectors.

- Extremising \mathcal{D} for a given choice of \mathcal{F} yields the computational (circuit) complexity \mathcal{C} of \hat{U}.
- Different choices for \mathcal{F} give different measures for the circuit complexity \mathcal{C}.
- Example: L^{2}-norm: $\mathcal{F}_{2}=\sqrt{\sum_{\mathrm{IJ}} \eta_{\mathrm{IJ}} Y^{\mathrm{I}} Y^{\mathrm{J}}}$. Minimizing $\mathcal{D} \Longrightarrow$ finding geodesics in a Riemannian space and $\mathcal{C}=$ length of geodesic.

Gaussian States in free QFTs

Gaussian states, with vanishing one-point functions, are completely characterized by their two-point functions, which make up their covariance matrix:

$$
\begin{equation*}
G_{ \pm}^{a b}=\langle\psi| \xi^{a} \xi^{b} \pm \xi^{b} \xi^{a}|\psi\rangle \tag{5}
\end{equation*}
$$

where $\xi^{a} \equiv\left\{x^{1}, p^{1}, \ldots, x^{N}, p^{N}\right\}$ are the dimensionless phase-space operators for N dof. Natural symmetry group: $\operatorname{Sp}(2 N, \mathbb{R})$.

- For 1 Harmonic oscillator $(\mathrm{N}=1)$:

$$
\psi(x) \sim \exp \left\{-\frac{1}{2}(a+\mathrm{i} b) x^{2}\right\} \Longrightarrow G=\left(\begin{array}{cc}
\frac{1}{a} & -\frac{b}{a} \tag{6}\\
-\frac{b}{a} & \frac{a^{2}+b^{2}}{a}
\end{array}\right)
$$

- Complexity \mathcal{C} can be then recast purely as a function of the spectrum of $G!\Longrightarrow$ Info. about full state $|\psi\rangle$.

Complexity of Mixed States: CoP

Is there a measure of complexity for mixed states? Yes! Complexity of Purification (CoP).

- Given a mixed state ρ_{A} in some Hilbert Space \mathcal{H}_{A}, we define a new Hilbert space:

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{A^{\prime}} \tag{7}
\end{equation*}
$$

with ancillary system A^{\prime}. There exist many purifications $\left|\psi_{\mathrm{T}}\right\rangle \in \mathcal{H}$ such that $\rho_{\mathrm{A}}=\operatorname{Tr}_{\mathcal{H}_{A^{\prime}}}\left(\left|\psi_{\mathrm{T}}\right\rangle\left\langle\psi_{\mathrm{T}}\right|\right)$.

- CoP is defined as the minimum of complexity \mathcal{C} with respect to a reference state $\left|\psi_{\mathrm{R}}\right\rangle$ and to all possible purifications $\left|\psi_{\mathrm{T}}\right\rangle$:

$$
\begin{equation*}
\mathcal{C}_{P}\left[\rho_{\mathrm{A}}\right]=\min _{|\psi\rangle \in \mathcal{H}} \mathcal{C}\left(\left|\psi_{\mathrm{R}}\right\rangle,\left|\psi_{\mathrm{T}}\right\rangle\right) . \tag{8}
\end{equation*}
$$

Geometric Meaning of CoP

The manifold (red line) of all possible purifications $\left|\psi_{\mathrm{T}}\right\rangle_{A A^{\prime}}$ related by (e.g. Gaussian) unitaries $U_{A^{\prime}} . \mathcal{C}_{P}$ is given by the geodesic distance (blue) between the purified reference state $\left|\psi_{\mathrm{R}}\right\rangle_{A A^{\prime}}$ and $U_{A^{\prime}}\left|\psi_{\mathrm{T}}\right\rangle_{A A^{\prime}}$.

CoP for 2-Modes (arXiv:1807.07075 [hep-th])

What's the CoP for a system of 2 harmonic oscillators? Look at the covariance matrix:

- $E E$ is only sensitive to G_{A} (i.e. determined by spectrum of ρ_{A}).
- Pure State Complexity: Sensitive to full $G_{|\psi\rangle}$.
- Mixed State Complexity: Fix G_{A} (given by ρ_{A}) and consider $G_{\left|\psi^{\prime}\right\rangle}$. Then $\mathcal{C}_{P}\left[\rho_{A}\right]:=\min _{\left|\psi^{\prime}\right\rangle} \mathcal{C}\left(\left|\psi^{\prime}\right\rangle\right)$.
- \mathcal{C} satisfies: $\mathcal{C}_{P}\left[\rho_{A}\right]+\mathcal{C}_{P}\left[\rho_{\bar{A}}\right] \geq \mathcal{C}(|\psi\rangle)$.

Gaussian Purifications of Vacuum Subregions of CFT ${ }_{(1+1)}$'s

Focus on 2 CFT's: the Klein-Gordon field in the massless limit ($c=1$) and of the critical transverse-field lsing model ($c=1 / 2$) on a circle.

The vacuum states $|0\rangle$ of these theories are both Gaussian!

$$
\begin{gather*}
G_{i j}^{a b}=\sum_{\kappa \in \mathcal{K}^{+}} c_{\kappa}(i-j)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad c_{\kappa}(j)=\left|\cos \frac{\kappa}{2}\right| \cos (\kappa j)-\frac{\sin \kappa \sin (\kappa j)}{2\left|\cos \frac{\kappa}{2}\right|} \tag{10}\\
G_{i j}^{a b}=\sum_{k=1}^{N} e^{\mathrm{i} \frac{2 \pi k}{N}(i-j)}\left(\begin{array}{cc}
\omega_{k} & 0 \\
0 & \frac{1}{\omega_{k}}
\end{array}\right), \quad \omega_{k}=\sqrt{m^{2}+\frac{4}{\delta^{2}} \sin ^{2} \frac{\pi k}{N}} \tag{9}
\end{gather*}
$$

L^{2} Cost Function and Single Interval Behaviour

We consider a L^{2} cost function (based on geodesic distance):

$$
\begin{equation*}
\mathcal{C}\left(\left|G_{\mathrm{T}}\right\rangle,\left|G_{\mathrm{R}}\right\rangle\right)=\sqrt{\frac{\left|\operatorname{tr}\left(\log \left(-G_{\mathrm{T}} G_{\mathrm{R}}\right)\right)^{2}\right|}{8}} . \tag{11}
\end{equation*}
$$

- $\left|G_{R}\right\rangle=$ spatially unentangled subregion, and $\left|G_{T}\right\rangle=$ vacuum subregion.
We minimize \mathcal{C} over the most general Gaussian minimal purifications. For a single interval of size w / δ :
- For the bosonic CFT (with reference scale μ):

$$
\begin{equation*}
\mathcal{C}_{P}=\left(f_{2}(\mu \delta) \frac{w}{\delta}+f_{1}\left(\frac{m}{\mu}, \mu \delta\right) \log \frac{w}{\delta}+f_{0}\left(\frac{m}{\mu}, \mu \delta\right)\right)^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

- For the Ising CFT:

$$
\begin{equation*}
\mathcal{C}_{P}=\left(e_{2} \frac{w}{\delta}+e_{1} \log \frac{w}{\delta}+e_{0}\right)^{\frac{1}{2}} \tag{13}
\end{equation*}
$$

Adjacent-Interval Behaviour

For the adjacent interval case, we consider a regularization akin to MI called mutual complexity (of purification):

$$
\begin{equation*}
\Delta \mathcal{C}_{P}^{(2)} \equiv \mathcal{C}_{P}(A)^{2}+\mathcal{C}_{P}(B)^{2}-\mathcal{C}_{P}(A \cup B)^{2} \tag{14}
\end{equation*}
$$

$$
\Delta \mathcal{C}_{P}^{(2)}=e_{1} \log \frac{w_{A} w_{B}}{\left(w_{A}+w_{B}\right) \delta}+e_{0}
$$

Bosons

$$
\begin{aligned}
\Delta \mathcal{C}_{P}^{(2)}= & f_{1}\left(\frac{m}{\mu}, \mu \delta\right) \log \frac{w_{A} w_{B}}{\left(w_{A}+w_{B}\right) \delta}+ \\
& +f_{0}\left(\frac{m}{\mu}, \mu \delta\right)
\end{aligned}
$$

\mathcal{C}_{P} vs Holographic Subregion Complexity?

The divergent structure of \mathcal{C}_{P} is comparable to the divergent structure of the holographic subregion complexity proposals. Particularly with the subregion- $\mathcal{C}_{V 2.0}$ and subregion- \mathcal{C}_{A} proposals.

- Single Interval:

$$
\mathcal{C} \propto\left\{\begin{array}{cc}
\frac{w}{\delta}-2 \log \left(\frac{w}{\delta}\right)-\frac{\pi^{2}}{4} & \left(\mathrm{~s}-\mathcal{C}_{\mathrm{V} 2.0}\right) \tag{16}\\
\log \left(\frac{\ell_{C T}}{\mathcal{L}}\right) \frac{w}{2 \delta}-\log \left(2 \frac{\ell_{C T}}{\mathcal{L}}\right) \log \left(\frac{w}{\delta}\right)+\frac{\pi^{2}}{8} & \left(\mathrm{~s}-\mathcal{C}_{\mathrm{A}}\right)
\end{array}\right.
$$

- Adjacent Intervals: (using $\left.\Delta \mathcal{C} \equiv \mathcal{C}_{P}(A)+\mathcal{C}_{P}(B)-\mathcal{C}_{P}(A \cup B)\right)$

$$
\Delta \mathcal{C} \propto\left\{\begin{array}{cc}
\log \frac{w_{A} w_{B}}{\left(w_{A}+w_{B}\right) \delta}+\frac{\pi^{2}}{8} & \left(\mathrm{~s}-\mathcal{C}_{\mathrm{V} 2.0}\right) \tag{17}\\
\log \left(2 \frac{\ell(\mathcal{C}}{\mathcal{L}}\right) \log \frac{w_{A} w_{B}}{\left(w_{A}+w_{B}\right) \delta}-\frac{\pi^{2}}{8} & \left(\mathrm{~s}-\mathcal{C}_{\mathrm{A}}\right)
\end{array}\right.
$$

Summary and Outlook

- Complexity \mathcal{C} captures more info. about a quantum state than EE ,
- Vacuum/Ground States in free QFTs are Gaussian \Longrightarrow Full description in terms of Covariance Matrices and $\operatorname{Sp}(2 N, \mathbb{R})$.
- The most general Gaussian purifications capture the universal properties of \mathcal{C}_{P} for the single and adjacent interval cases.
- Numerical tests show \mathcal{C} satisfies: $\mathcal{C}_{P}\left[\rho_{A}\right]+\mathcal{C}_{P}\left[\rho_{\bar{A}}\right] \geq \mathcal{C}(|\psi\rangle)$,
- Complexity of purification \mathcal{C}_{P} of vacuum subregions has comparable divergence structure to holographic subregion proposals.
- Beyond Gaussianity: Non-Gaussian states \Longrightarrow Towards complexity \mathcal{C} in interacting field theories.
- Is it $\mathcal{C}=$ Action, $\mathcal{C}=$ Volume $_{1,2}, \mathcal{C}=\cdots$?

Comparison with Mode-by-mode Purifications and Fisher-Rao Distance Function

There are two other approaches for complexity of mixed states.

- Mode-by-mode Purifications $=$ Split the problem of finding \mathcal{C}_{P} for a system with N_{A} modes into N_{A} problems for a single mode.
- Fisher-Rao Distance $=$ A natural distance function in the manifold of covariance matrices.

(a) " \mathcal{C}_{P} vs Single-Mode Purifications"

(b) " \mathcal{C}_{P} vs Fisher-Rao

Distance"

Non-Unitary Time-Evolution (arXiv:1904.02713 [hep-th])

Consider the thermal state $\rho_{\beta}=e^{-\beta H}$ in a CFT_{1+1}. We can view ρ_{β} as the Euclidean time-evolution operator \mathcal{V} that acts on a state $|\phi(\tau=0, x)\rangle$:

$$
\begin{equation*}
\mathcal{V}=\overleftarrow{\mathcal{P}}\left\{\exp \left(-\int_{0}^{\beta} \mathrm{d} \tau H\right)\right\} \tag{18}
\end{equation*}
$$

Can we interpret the Euclidean path integral $\left.\langle\phi(\beta, x)| \mathcal{V}|\phi(0, x)\rangle\right|_{e^{2 \omega} \delta_{\mu \nu}}$ on a Weyl-rescaled geometry as a circuit?

- Yes! The price to pay: it is built from Hermitian and skew-Hermitian gates: $\mathcal{V}=\overleftarrow{\mathcal{P}} \exp \left(\int d t d y[a(t, y) h(y)+i b(t, y) p(y)]\right)$
- Cost function? An expansion of DBI-inspired one yields the Liouville action:

$$
\begin{equation*}
\mathcal{D}_{L} \sim \int d \tau d x\left\{\frac{e^{2 \omega}}{\epsilon^{2}}+\frac{1}{2} \eta\left(\dot{\omega}^{2}+\omega^{\prime 2}\right)+\ldots\right\} \tag{19}
\end{equation*}
$$

