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Motivation



Landau was even more right than we thought.

Landau paradigm part 1:
Phases of matter are classified by how they represent their symmetries.

(Phases of matter are classified by the symmetries they break.)

Gapless excitations or degeneracy (in a phase) are Goldstone modes for

spontaneously broken symmetries.

Some apparent exceptions:
• topological order [Wegner, Wen]

e.g. deconfined phase of Z2 lattice gauge theory,

fractional quantum Hall states.

• other deconfined states of gauge theory (e.g. Coulomb phase of E&M).

• (Landau) Fermi liquid.

• topological insulator and integer quantum Hall states.

• CFTs with no (symmetric) relevant operators.

But...



Higher-form symmetries. [Nussinov-Ortiz, Willett et al, Hofman-Iqbal, Lake...]

(D ≡ number of spacetime dimensions.)

0-form symmetry: 1-form symmetry:

∂µjµ = 0 (i.e. d ? j = 0)
=⇒ Q =

∫
ΣD−1

?j is independent of

time-slice Σ,

i.e. is topological. [Thorngren]

Jµν = −Jνµ with ∂µJµν = 0
(i.e. d ? J = 0)

=⇒ QΣ =
∫

ΣD−2
?J depends only on

the topological class of Σ.

Charged objects are local operators

δO(x) = i[Q,O(x)] = iqO(x).

Charged objects are loop operators:

δW (C) = i[QΣ,W (C)] = iq# (Σ, C)W (C)
e.g. in free Maxwell theory:

JM = F , WM (C) = ei
∮
C A and

JE = ?F,WE(C) = ei
∮
C Ã (dA ≡ ?dÃ).

Finite transformation:

Ug=eiα = eiαQ = e
iα

∫
ΣD−1

?j
.

Finite transformation:

Ug=eiα(ΣD−p−1) = eiαQΣ = e
iα

∫
ΣD−p−1

?J
.

Charged particle worldlines
can’t end (except on charged

operators).
Discrete (Zk) version: particles can

disappear in groups of k.

Charged string worldsheets
can’t end (except on charged

operators).
Discrete (Zk) version: strings can

disappear or end in groups of k.



Higher-form symmetries.

[Nussinov-Ortiz, Willett et al, Hofman-Iqbal, Lake]

0-form symmetry: 1-form symmetry:

Unbroken phase: correlations of charged
operators are short-ranged, decay when
the charged object (S0 = two points)
grows.

〈O(x)†O(0)〉 ∼ e−m|x|

(|x| = Area(S0(x)).)

Unbroken phase: correlations of charged
operators are short-ranged, decay when
the charged object grows.

〈W (C)〉 ∼ e−Tp+1Area(C)

For E&M, area law for 〈WE(C)〉 is the

superconducting phase.

Broken phase for 0-form sym:

〈O(x)†O(0)〉 = 〈O†〉〈O〉+ ... independent

of size of S0.

Broken phase for 1-form sym:

〈W (C)〉 = e−TpPerimeter(C) + ...
(set to 1 by counterterms local to C:

large loop has a vev)



Landau was even more right than we thought.
• topological order

?
= SSB of discrete higher-form symmetry.

TO ≡ degenerate

groundstates which are

locally indistinguishable.

SSB of (q > 1)-form discrete symmetry implies

topological order, since the algebra of loop (or surface)

operators must be realized on the vacuum.
• eg 1 (Zk gauge theory/toric code): in D spacetime dimensions with

Z(1)
k × Z(D−2)

k 1-form and (D − 2)-form symmetries, represented by
Um(C1), V n(MD−2),m, n = 1..k

Um(C)V n(M) = e
2πimn#(C,M)

k V n(M)Um(C). (#(C,M) ≡ intersection #)

This is the algebra of electric and magnetic flux surfaces in Zk gauge
theory. Simple realization is BF theory:

S =
k

2π

∫
D

BD−2 ∧ dA, Um(C) = eim
∫
C A, V n(M) = ein

∫
M BD−2

• eg 2 (Laughlin FQHE): in D = 2 + 1, Z(1)
k 1-form symmetry with an ’t

Hooft anomaly

Um(C)Un(C′) = e
2πimn#(C,C′)

k Un(C′)Um(C).

(the flux carries charge) gives k groundstates on T 2.

(Whether the most general topologically ordered state can be understood in

this way is an open question [Wen 18].)



Landau was even more right than we thought.

[Willett et al, Hofman-Iqbal, Lake]

• The gaplessness of the photon can be understood as required
by spontaneously broken U(1) 1-form symmetry.

If we couple to a bg field ∆L = jµAµ,

Leff = κ
2

 dφ︸︷︷︸
Goldstone

+A

2

.

The goldstone transforms nonlinearly

φ→ φ+ λ,A → A− dλ. This is a global

symmetry if dλ = 0.

(By (form)2 I mean (form) ∧ ?(form).)

If we couple to a bg field ∆L = JµνBµν ,

Leff = g2

4

 dÃ︸︷︷︸
Goldstone

+B

2

.

The goldstone transforms nonlinearly

Ã→ Ã+ λ,B → B − dλ. This is a global

symmetry if dλ = 0.

Maxwell term for A.



Consequences of emergent 1-form
symmetries



Consequences of emergent symmetries
In particle physics, we are used to the idea of emergent (aka accidental)
symmetries, which are explicitly broken by irrelevant operators:

S = Ssymmetric +

∫
dDx

g

Λ∆−D (O∆,charged(x) + h.c.) .

Approximate symmetries can be spontaneously broken and lead to

pseudo-Goldstone bosons, with m2
π ∼ g

Λ∆−D fπ, only massless when Λ→∞.

Q: The existence of magnetic monopoles with m = Mmonopole

explicitly breaks the 1-form symmetry of electrodynamics:

∂µJEµν = jmonopole
ν

If the photon is a Goldstone for this symmetry, does this mean
the photon gets a mass?
Cheap answer #1: No, by dimensional analysis (take me →∞).

mγ → 0 when Mmonopole →∞.

Cheap answer #2: The operators which are charged under a 1-form

symmetry are loop operators – they are not local. We can’t add non-local

operators to the action at all.



Consequences of emergent 1-form symmetries

• Discrete analog: In the toric code, the discrete 1-form

symmetries are exact, but in the rest of the deconfined

(broken) phase, they are emergent (and still spontaneously

broken). A rigorous proof of this [Hastings-Wen 04] constructs

the string operators by quasi-adiabatic continuation.

• To remove the distinction between 0-form and 1-form symmetries,

compactify the theory on a circle of radius R. Then the 3+1d gauge field

decomposes into a 2+1d gauge field a (dσ = ?3da) and a scalar φ =
∮
A.

Worldlines of electrically-charged particles wrapping the circle produce

∆Seff ∝ eiq
∮
Ae−meR+· · · = e−meR cosφ+· · · =⇒ mσ = 0,mφ ∼ e−meR.

Magnetically-charged particles in 3+1d become pointlike sources of
magnetic flux – monopole instantons.

[Polyakov 74]
=⇒ ∆Seff ∼ e−mmR cosσ =⇒ mσ ∼ e−mmR.

When R→∞, the photon mass goes to zero.



Consequences of emergent symmetries at T > 0

•We could interpret the circle as the thermal circle, R = β.

Known forms of topological order in d ≤ 3 + 1 have the property that at any

T > 0 they are smoothly connected to T =∞ (a trivial product state).

The argument above is perfectly consistent with this fact: if the 1-form

symmetry is emergent, then as soon as T > 0, a mass is generated for the

photon, and the state is smoothly connected to T =∞.

Note: ∃ stable TO at T > 0: 2-form toric code in 4+1d.
[Landahl-Dennis-Kitaev-Preskill, 01]

U(1) version: 2-form gauge field is massless even at finite temperature
0 < T < Tc.
Why: a theory with a 2-form symmetry on a circle still has a 1-form
symmetry.

(The phase transition at Tc where the topological order is finally destroyed

by proliferation of strings now seems even more interesting.)



Consequences of emergent symmetries, continued
The appeal to locality of the action is not completely satisfying. On the

lattice, the action is a sum of loops: S =
∑

small loops,C

∏
`∈C u` + · · · .

The question is: as we coarse-grain, do the loops become larger or smaller?
0-form sym: S = SCFT + g

ΛD−∆

∫
x

(O∆(x) + h.c.) ≡ SCFT + δS.

Z = 〈e−δS〉 = 1−
( g

ΛD−∆

)2
∫
x

∫
y

〈O∆(x)O∆(y)†〉+ · · ·

= 1−
( g

ΛD−∆

)2 (
L2(D−∆) − a2(D−∆)

)
+ · · ·

IR divergence if ∆ < D. Relevant op changes the IR behavior.

1-form sym: Consider δS = g
∑
C(W [C] + h.c.).

Z = 〈e−δS〉 = 1− g
∑
C〈W [C]〉+ h.c..

Assumptions: (1) regulate
∑
C with cubic lattice

(2) strict area law (broken phase): 〈W [C]〉 = t`[C].

(3) Approximate loops as independent. Result (use transfer matrix):

〈
∑
CW [C]〉 = LD 1

2

∑∞
`=1 〈0|

t`T `

`
|0〉 = −L

D

2

∫
d̄Dq log

(
1− 2t

∑D
µ=1 cos aqµ

)
For t < tc ≡ 1

2D
, the sum over loops is finite. Near the critical point, this is

〈
∑
CW [C]〉 ∼ −L

D

2

∫
d̄Dq log

(
q2 +m2

)
, m2 = 1−2tD

2ta2 .

This is just the worldline description of a Higgs particle. If it condenses, the

photon is massive, otherwise not.



Method of the missing box

0-form symmetry : mean field theory
::

1-form symmetry : ?



Mean String Field Theory

[work in progress]

Recall: order parameter for U(1) 0-form symmetry-breaking,
φ(x) 7→ eiαφ(x). Demand locality in space, derivative expansion:

SLandau-Ginzburg-Wilson[φ] =

∫
dDx

(
r|φ|2 + u|φ|4 + · · ·+ |∂φ|2 + · · ·

)
.

One way to think about this action is as a

variational statement: |groundstate〉 ?
= ⊗x|φ(x)〉.

Order parameter for U(1) 1-form symmetry-breaking, Ψ[C] 7→ Ψ[C]ei
∫
C Λ.

Demand locality in loop space, area derivative expansion:

SLGW[Ψ] =

∫
[dC]

(
v
(
|Ψ[C]|2

)
+

∣∣∣∣ δ

δCµν
Ψ[C]

∣∣∣∣2 + · · ·

)
, v(x) ≡ rx+ux2+· · · .

δ
δCµν

: area derivative [Migdal, Polyakov]

variational statement: |groundstate〉 ?
=
∑
C Ψ[C]|C〉.

Plausible goal: develop a crude picture of the phase diagram (and

transitions) for systems with 1-form symmetries.



Mean String Field Theory
[work in progress]

eom: 0 =
δS

δΨ[C]†
=

∮
ds

δ

δCµν(s)

δ

δCµν(s)
Ψ[C]− rΨ[C] + · · ·

Unbroken phase: (confinement) r > 0 =⇒ Ψ[C] ∼ 0.

Ansatz: Ψ[C] = e−βA[C], A[C] = min
Σ,∂Σ=C

Area(Σ)

For large β, β =
√
r/2. Area law.

Broken phase: Ψ[C] ∼ 1 “string condensed phase” [Levin, Wen]

Component field ansatz:

Ψ[C] = exp

(∮
C

ds (−µ(x(s)) + iAµ(x(s))ẋµ(s) + hµν(x(s))ẋµẋν + · · ·)
)

.

Assume 〈µ(x)〉 ≡ µ,worldline tension, plug back into action:

S[Ψ] =

∫
[dC]

(
e−2µ`[C]

∮
dsFµν(x(s))Fµν(x(s))− v

(
e−2µ`[C]

))
µ�1
' 1

g2

∫
dDxFµν(x)Fµν(x),

1

g2
=

√
|r|
2u
.

Check: Following the logic for ZN gives the (BF ) EFT for the toric code.



Generalized Landau paradigm,
part 2



‘Beyond-Landau’ critical points?

Landau paradigm part 2:
At a critical point, the critical dofs are the fluctuations of the
order parameter.
Apparent exceptions:
• Direct transitions between states

which break different symmetries

(deconfined quantum critical points),

e.g. Neel to VBS in D = 2 + 1.

[Image: Alan Stonebraker]

• Transitions out of deconfined

phases, such as topologically-ordered

states (no local order parameter).

[Image: Fradkin-Shenker]



‘Beyond-Landau’ critical points?

•

Can be understood as a consequence

of symmetries with mixed ’t Hooft

anomalies [Metlitski-Thorngren 18]

=⇒ WZW terms coupling the

order parameters on both sides.

(Not today’s focus.)

•

Biggio

Can we understand the critical theory

in terms of fluctuations of the string

order parameter W (C)? But by Weg-

ner’s duality, this theory (up to global

data) is in the same universality class

as the 3d Ising model.

This suggests that the near-critical 3d Ising model should have
a description as a string theory.



3d Ising model as a string theory



3d Ising model as a string theory.

This is something which has been suggested before, from other
points of view. [Fradkin-Srednicki-Susskind 80, Polyakov 81, Dotsenko, Itzykson 82,

Casher-Foerster-Windey 85, Kavalov, Sedrakyan, Distler 92, Caselle-Gliozzi-Vinti, Magnea 94]

Reasons to hope for progress here:
• We’re going to propose a modification to the Ising model, which we think
may have a better string theory description.

• We’ve learned a lot about non-perturbative string theory since 1994!



Fermions from 2d Ising model.[Jordan-Wigner, Lieb-Mattis, ..., Polyakov]

Z4(β) =
∑
σ

e−β
∑
〈ij〉(1−σiσj)

= 2
∑
γ

e−2βL[γ]
( = spin up)

On the square lattice, this can happen:

(This is an avoidable, non-universal

technicality, but its resolution is in-

structive.) hello

Resolution:

Z2(β) = 2
∑
γ

(−1)n[γ]e−2βL[γ] n[γ] ≡ # of self-intersections



Fermions from 2d Ising model.
[Jordan-Wigner, Lieb-Mattis, ..., Polyakov]

Z2(β) = 2
∑
γ

(−1)n[γ]e−2βL[γ] = 2 exp


∑

γ,connected

(−1)n[γ]e−2βL[γ]

︸ ︷︷ ︸
worldline sum for real fermion


n[γ] ≡ # of self-intersections

w/ PBC: only even winding configs wx,y[γ] ∈ 2Z correspond to spins

ZT 2 =
∑
γ

1

2

(
1 + (−1)wx(γ)

) 1

2

(
1 + (−1)wy(γ)

)
(−1)n[γ]e−2βL[γ]

= Z++ + Z+− + Z−+ + Z−−.
This sum over spin structures says (−1)F is gauged.



Fermions from 2d Ising model.
[Jordan-Wigner, Lieb-Mattis, ..., Polyakov]

More explicitly, we can make fermion operators:

Disorder operator: µ(x) ≡
∏
〈ij〉⊥Cx e

−2βσiσj .

x ∈ dual lattice. (Flip sign of β along links crossed by C.)

µ is independent of local changes in C by σi → −σi
symmetry. C is a branch cut for σi.

Duality interchanges µ↔ σ.

The self dual object ψa(x) ≡ σ(x)µ(x+ ea) is a fermion

R2π (ψ(x)) = ψa+4(x) = −ψa(x)

and satisfies

〈ψa(x)〉 = cosh(2β)〈ψa+1(x)〉−sinh(2β)〈ψa+2(x+ δa+1)〉

In the continuum limit, this is the Dirac equation, with m ∝ β − βc.



Fermionic strings from 3d Ising model.

[Polyakov, 80s]

Disorder operator:

µ(C) ≡
∏
〈ij〉⊥SC ,∂SC=C e

−2βσiσj .

µ is independent of local changes in SC by σi → −σi
symmetry. SC is a branch cut for σi.

Ψa1···aL(C) ≡ µ(C)
∏L
s=1 σ(xs + eas)

(xs = center of link s) satisfies

Ψa1···aL(C) = cosh(2β)Ψa1···as+1,as+1,···aL(C)

− sinh(2β)Ψa1···as−1,a′s,as+2,a′s+2,as+1,···aL(C + Πas)

Links like free Dirac particles, connected by

unbreakability of domain wall.

This description is shared by the RNS superstring.

ψµ
(
ẋµ − x′µ

)
|phys〉 = 0.



Strong coupling problem.

Distler (1992) argued that the analog of self-intersection number term in the
3d case is the Euler character

Z3d(β) = 2
∑
Σ

(−1)χ[Σ]e−2βArea[Σ]

Just as in the 2d case, we can avoid this is-
sue by working on a lattice where each edge
touches only 3 faces, such as this one:
(corner-sharing octahedra)

But this highlights the fact that |gs| = 1.



Appeal to universality.

Q: can we modify the Ising model so that the dual string theory is weakly

coupled?

(i.e. decrease the weight of domain walls with higher genus in the sum)

Z3d(β, gs) = 2
∑

Σ

(gs)
χ[Σ]e−2βArea[Σ]

χ = 2:

χ = 0:

Possible outcomes, assuming there is still a continuous transition (there is):
(1) Finite gs < 1 leads to a new universality class, where spherical domain
walls dominate.

(2) This changes Tc, but stays in the same 3d Ising universality class.



The planar 3d Ising model



How not to change gs
First idea: On each link of dual lattice (= face of the primal

lattice), place four N × N -matrix-valued real variables φ1,2
± ,

associated with the four faces incident on the link:

∆S[φ, z] =
∑
〈ij〉

(1+σiσj)Γ
∑

α,`∈∂〈ij〉

φ2
α(`)+

∑
〈ij〉

(1−σiσj)gtrφ4+
∑
`,α,β

φα(`)φβ(`)

The trφ4 interaction connects the indices of the ma-

trices on the links bounded by the plaquette like this:

It costs a factor of g ∼ 1
N

.

Configurations where the indices are not contracted contribute zero because

of the angular integral over the φs.
The contribution of a spin configura-
tion acquires a factor of

g# of facesN# of index loops = λ# of facesN2−2g

with λ ≡ gN .

But this model is difficult to simulate

and has an extra O(N) symmetry.



The planar 3d Ising model.

But there’s a much easier way to change the relative weighting of the

domain walls depending on their topology: just modify the Boltzmann

weights:

Z =
∑
s

g−χ(s)
s W0(s)

where W0(s) = e−β
∑
〈ij〉 ZiZj is the usual Ising model Boltzmann weight,

χ(s) ≡ F (s)− E(s) + V (s).

F,E, V = # of faces, edges and vertices of the dual lattice participating in

a domain wall.

A local Hamiltonian!

This statement requires some refinement.



Ambiguity & Resolution.
In how many DWs does a vertex

participate?

=

=

=

One possibility: add an energetic penalty to

exclude the (9) ambiguous configurations.

Doing the analogous thing to the 2d Ising model

(∆E( ) = CUTOFF) does not change the critical

behavior (it merely moves Tc, but ν = 1 still).

Bad for the MC acceptance rate.

Alternative: decide on a decomposition into

elementary constituents.
There are 28 possible configs α of the 8 spins
adjacent to a vertex of Γ̂

−→ Binary vectors, pα ∈ Z12
2 .

Order them by # of faces = Hamming weight

(0 to 12). Choose a basis of lowest weight.

=

p77 = p2 + p9

=

p126 = p6 + p7 + p8



Ambiguity & Resolution.

[images: Distler]

But: not all vertex resolutions are

mutually compatible.

e.g. These two touching S2s would be

assigned χ = 5:

(1) For each vertex of Γ̂, record face connections

implied by the vertex decomposition.

(2) For each edge, check for compatibility between

these face connections. If not, that edge carries a 4π

branch point, ∆χ = −1.

=

Note: This prescription allows unoriented

configurations. (An unoriented immersed surface

must have an odd number of triple points:

χ = # of triple points, mod 2. [Banchoff, 74])

a triple point:

=



Arts & crafts.

Make your own 4π branch point!

1

4

1

2

3

2

3

4

Cut out along solid black lines. 
Fold     towards you and                away from you. 
Tape together two parallel edges 1 – 1, 2 – 2, etc.     	



Expectations.
H = 2βA+ φχ
As β → ±∞, min/max A.

As φ→ ±∞, min/max χ.

Assuming 2× 2× 2 unit cell, identify

winning configurations, and order

parameters that distinguish their

patterns of symmetry-breaking.

Mean field phase

diagrams:

Similar analysis in

continuum:

[Huse-Leibler 88]
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Dilute	

Disordered	

‘Packed phase’ has the maximum χ:

The ‘Plumber’s nightmare’ has the

minimum χ: [fig: Sethna]



Numerical implementation: cluster updates.

Critical slow-down: Near a critical point, correlation lengths grow, and

for local Monte Carlo dynamics, so do correlation times.
Remedy: non-local MC dynamics [Sweeny, Wolff, Swendsen-Wang 80s]:

propose moves which update an order-1 fraction of spins at once.

Happily, because our modification of the

Ising interactions depends on the domain

wall configuration, we can adapt these

methods to our model.

Detailed balance

π(a)A (a→ b)P (a→ b)
!
= π(b)A (b→ a)P (b→ a)

(π = Boltzmann wt, A = construction prob,
P = acceptance prob) determines

P (a→ b) = min
(

1, g∆χ
s

)
.

a:

b:



Simulation results.
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Simulation results.
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We can infer the correlation-length critical

exponent ν from the collapse of the Binder

cumulant. We find that the 3d Ising value

ν = 0.6299 gives the best data collapse for all

values of gs (option (2) above).

Why: Our perturbation can be decomposed

into a sum of symmetric, local scaling

operators. The Ising fixed point has only one

symmetric relevant local operator.
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Simulation results: how weak can we make the bare
string coupling?

If we set β = 0, (with the

branch-point method) the Ising

transition occurs at gs = eφ = .66.

That is, this is where the Ising Tc has

moved off to T =∞.
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Comment on universality: the 3d Ising fixed point has a fixed point value of

gs, which we cannot change (and do not know yet).

We are merely trying to make the dual string theory weakly coupled on the

way to the fixed point.



Speculations about the worldsheet



Comments on worldsheet theory.

Important Q: how does the Ising Z2 act in the string theory??
Hint 1: The string worldsheet is a branch cut for the spin.

Hint 2: 2 + 1d Ising gauge theory has fermionic excitations – the

boundstate of e (end of string) and m (vison) is a fermion.

RNS superstring spectra:

RR
NS-R R-NS

NS-NS

mod Ω→
RR

NS-R
NS-NS

?
=
e-particle?

dyon
glueballs

has a spacetime fermion number symmetry.

Orbifolding by (−1)Fs
mod (−1)Fs→

RRL ⊕ RRR

−−
NS-NS

?
=

spin⊕ neutral
−−

neutral
This (unoriented) type 0 theory has two RR sectors, labelled by the

chirality operator Γ.

Conjecture: Γ is the Ising Z2.



Comments on worldsheet theory.

It is tempting to interpret this as a holographic duality.

Then at the fixed point, the bulk spacetime should be something like AdS4.

Problem 1: The bosonic non-linear sigma model with target space AdS4 is

not a CFT.

At least at large radius. [Friess-Gubser 05] found evidence for a small-radius

fixed point.

Or maybe some of those RR fluxes can hold up the spacetime as in more

familiar examples.

Problem 2: Adding one extra dimension ϕ doesn’t solve the problem of

making a critical string theory.
A spacelike linear dilaton (in the radial direction, Φ = Qϕ)

could be used to cancel the Weyl anomaly.
But linear dilaton and target-space conformal symmetry (required near the
critical point) are not compatible:
At the critical point, we expect ds2 = ds2

AdS = dϕ2 + e−2ϕd~x2.

If under a spacetime scale transformation ϕ→ ϕ+ λ,

Sworldsheet 3
∫
Qϕ R

2π
→ Sworldsheet +Qλχ.



Comments on worldsheet theory.

Possible resolutions:
• [Gursoy 2011]: warped AdS spacetimes can still have conformal invariance.

• [Hellerman-Maeda-Maltz-Swanson 14]: ‘composite linear dilaton’. add

Sworldsheet 3
∫
Qϕ R

2π
where ϕ = 1

∆
lnO∆ is a composite operator which

shifts under a worldsheet scale transformation.

We could choose O2 = e−2ϕ∂αX
µ∂αXµ + ∂αϕ∂

αϕ, the AdS4 kinetic term,

which is invariant under target-space scale transformations

Xµ → eλXµ, ϕ→ ϕ+ λ.

And ϕ = 1
∆

lnO∆ = −ϕ+ log |∂X|+ log |∂ϕ|.
What is log |∂X|?



Effective string theory.
[Polchinski-Strominger 91, ... Hellerman-Swanson et al]

A less ambitious but more concrete connection with string theory governs

the fluctuations of a large flat domain wall.

Worldsheet X(σ, τ) coordinate fields arise as Goldstones for breaking of

translations by the wall.

‘Large and flat’ means X(σ, τ) = σ + fluctuations, so ∂X 6= 0, and log(∂X)2

makes sense.

[Caselle-Fiore-Gliozzi-Hasenbusch-Provero 96]

Effective string theory prediction for

R(L, n) ≡ 〈W (L+n,L−n)〉
〈W (L,L)〉 e−n

2σ =

√
η(i)
√

1−t
η(i 1+t

1−t )
,

t ≡ n/L matches lattice simulation (at β < βc ):

[Kuti 05] find (at β > βc) a gapped breathing mode on the

worldsheet.

Closer to the critical point, we can expect this mode to become gapless: a

goldstone for breaking of scale transformations by the profile of the wall.

This should be the bulk radial coordinate, ϕ.



Comments and puzzles about such a duality.
• Probably we shouldn’t be too dogmatic about the idea that the right

strings to think about are literally the domain walls between the regions of

up and down spins.

[Caselle-Gliozzi-Magnea 94] argue that the effective string (in the ordered phase)

is actually a coarse-grained object like a “wall full of handles,” with a

genus-dependent tension.

Another reasonable choice might be the boundaries of the

(Fortuin-Kasteleyn) clusters involved in the cluster updates. These are

designed to percolate at Tc [Coniglio-Klein 80].

We haven’t studied their statistical topology yet.

• An unoriented string theory without space-filling D-branes?

Actually these seem to exist [Kaidi, Parra Martinez, Tachikawa 19].

• Large-N puzzle: String theory in flat space has Hagedorn growth of

single-string states at high energy. In AdS/CFT, this is matched by the

large-N growth of the number of words tr (XYXXY · · ·). But our

weak-coupling limit did not involve large-N !

Perhaps large curvature removes the Hagedorn spectrum.



A mystery about the 3d Ising model



Simulation results: a mystery

We measured the average euler
character per cluster, 〈χ〉.
〈χ〉 T→0→ 2,

〈χ〉 T→∞→ −∞.

The number of clusters is a

non-local (but computable

[Hoshen-Kopelman 76, Sweeny 83])

observable.

The fluctuations seem small for
T >∼ Tc:
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Is the 3d Ising CFT full of donuts?

After we submitted our paper, we learned

from David Huse that the smallness of χ (not

χ per cluster) near Tc was observed by

[Karowski-Thun 92] in a model like our

no-touching model.

[Huse 93] looked more closely:

There isn’t a local scaling variable in the 3d Ising critical theory with small

dimension, so this would have been a contradiction.

However, 〈χ〉 per cluster is not a local observable. And Nclusters ∼ L3.

Zooming in near Tc, we find:
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Is the 3d Ising CFT full of donuts?
No!
Fraction of clusters vs χ:

mostly
spheres

f-PE

so

The other vertical line is βp, where

the clusters percolate:
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Qs:. Why is the value of β = βχ where 〈χ〉(βχ, L) = 0 so close to βc?

Why is the dependence on L of χ/cluster so weak?

Is this a universal phenomenon (associated with the Ising fixed point, or

some other one)?

Against: It is not clear that χ/cluster exhibits any singular behavior.

For: It happens both for the no-touching and for the branch point

regularizations.



Final comment.

Landau was more right than we thought.
This seems to be a fruitful principle.



The end.

Thanks for listening.


