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Universality of Hydrodynamics

Any thermalizing system, quantum or classical, is described by
hydrodynamics at sufficiently late times

How is such a universality possible?

Most excitations ‘relax’ at finite T  thermalization time τth

Conserved densities related to symmetries decay with rate Γ ∼ k2

For k small enough these are parametrically slower than generic
excitations

Hydrodynamics is the late time (t� τth)
description of these ‘coarse grained’ quantities

At weak coupling (g � 1): τth ∼ τPlanck/g
2

At strong coupling expect: τth ∼ τPlanck = ~/kBT

usefulness
of hydro

(log scale)

# of (almost)
conserved quantities

none                      a few                      many

n(x1) n(x2)
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How it works

Theory of a conserved density n (or its potential µ), subject to

ṅ+∇ · j = 0

This also involves j. Close the equation with a constitutive relation

ji = −D∂in+ · · ·

Solving these equations yields a diffusive Greens function

GRnn(ω, k) = χDk2

−iω +Dk2 + · · ·

Two expansions: gradients ∂ + ∂2 + · · · and fluctuations δn+ δn2 + · · ·

Always controlled Controlled when interactions
(in principle) are irrelevant

ω

−iDk2
δn
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How it works II

Theory of conserved densities T00, T0i or their potentials β(x), uµ(x),
subject to ∂µTµν = 0.
This also involves the ‘currents’ Tij

To close equations we need constitutive relations

Tµν = (ε+ P )uµuν + Pηµν − ζηµν∂ · u− η∂(µuν) +O(∂2) ,

Solving around equilibrium uµ(x) = δ0
µ + δuµ and β(x) = β + δβ gives

GRT0iT0j
(ω, k) ' s

β

[
kikj
k2

ω2

c2
sk

2 − ω2 − iΓk2ω︸ ︷︷ ︸
sound

+
(
δij −

kikj
k2

)
Dk2

−iω +Dk2︸ ︷︷ ︸
diffusion

]
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Ballistic v. Diffusive

ω = −iDk2 + · · · ω = ck − i

2Γk2 + · · ·

Charged fluid

U(1) SSB

Translation SSB

Other possibilities, e.g.:

ω = ck sin θ − iDk2 (smectic, MHD)

ω = ±k2 − ik2 (nematic)

ω = ±k2 − ik4 (spin waves in a ferromagnet)

. . .

When are fluctuations big? Diffusive:

when d ≤ dc = 0

0 = ṅ+ + · · ·

=
(
∂t +D∇2 +D′δn∇2 + · · ·

)
δn

∼ k2 ∼ k2 ∼ k2+ d
2

We need to know how charge fluctuations scale: scaling ω ∼ k2

〈n(x, t)n〉 ∝ e−x
2/4Dt

td/2 ⇒ δn ∼ ωd/4 ∼ kd/2

When are fluctuations big? Ballistic:

when d ≤ dc = 2

0 = ṅ+ c(n)∇n+D(n)∇2n+ · · ·

=
(
+c′δn∇+D∇2 + · · ·

)
δn

∼ k2 ∼ k1+ d
2 ∼ k2

In the reference frame of the pulse x′ = x− ct we again scale ω′ ∼ k2

〈n(x′, t)n〉 ∝ e−x
′2/4Dt

td/2 ⇒ δn ∼ ω′d/4 ∼ kd/2
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0 = ṅ+∇[D(n)∇n] + · · ·

=
(
∂t +D∇2 +D′δn∇2 + · · ·

)
δn

∼ k2 ∼ k2 ∼ k2+ d
2

We need to know how charge fluctuations scale: scaling ω ∼ k2

〈n(x, t)n〉 ∝ e−x
2/4Dt

td/2 ⇒ δn ∼ ωd/4 ∼ kd/2

When are fluctuations big? Ballistic:

when d ≤ dc = 2
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0 = ṅ+ c(n)∇n+D(n)∇2n+ · · ·

=
(
∂t′ + c′δn∇+D∇2 + · · ·

)
δn

∼ k2 ∼ k1+ d
2 ∼ k2

In the reference frame of the pulse x′ = x− ct we again scale ω′ ∼ k2

〈n(x′, t)n〉 ∝ e−x
′2/4Dt

td/2 ⇒ δn ∼ ω′d/4 ∼ kd/2



Ballistic v. Diffusive

ω = −iDk2 + · · · ω = ck − i

2Γk2 + · · ·

Charged fluid

U(1) SSB

Translation SSB

Other possibilities, e.g.:

ω = ck sin θ − iDk2 (smectic, MHD)

ω = ±k2 − ik2 (nematic)

ω = ±k2 − ik4 (spin waves in a ferromagnet)

. . .

When are fluctuations big? Diffusive: when d ≤ dc = 0

0 = ṅ+∇[D(n)∇n] + · · ·

=
(
∂t +D∇2 +D′δn∇2 + · · ·

)
δn

∼ k2 ∼ k2 ∼ k2+ d
2

We need to know how charge fluctuations scale: scaling ω ∼ k2

〈n(x, t)n〉 ∝ e−x
2/4Dt

td/2 ⇒ δn ∼ ωd/4 ∼ kd/2

When are fluctuations big? Ballistic: when d ≤ dc = 2
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Ballistic v. Diffusive

ω = −iDk2 + · · · ω = ck − i

2Γk2 + · · ·

Bottomline:

Diffusive modes Ballistic modes

Weak fluctuations d > 0 d > 2
Strong fluctuations never d < 2
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Irrelevant interactions

We found that diffusive fluctuations δn ∼ kd/2 are irrelevant in d > 0

ji = D∂in + D′n∂in + · · ·

= + + · · ·

Studied within theory of hydrodynamic fluctuations
Martin Siggia Rose ’73, Forster Nelson Stephen ’77

(long history: Zwanzig ’61 Mori ’65 Kawasaki ’68 Alder Wainwright ’70 Ernst Hauge van

Leeuwen ’70 Pomeau Résibois ’75 ... )

ji = D∂in + D′n∂in + ξi + · · · , 〈ξi(x, t)ξj〉 = 2χDTδd(x)δ(t)δij

Modern approach: path integral on a Schwinger-Keldysh contour

Kamenev ’11, Grozdanov Polonyi ’13, Crossley Glorioso Liu ’15, Haehl Loganayagam Rangamani

’15, Jensen Pinzani-Fokeeva Yarom ’17

Roughly: n ∼ φtop + φbottom

Roughly: ξ ∼ φtop − φbottom

t = −∞ t = +∞

ρβ
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’15, Jensen Pinzani-Fokeeva Yarom ’17

Roughly: n ∼ φtop + φbottom

Roughly: ξ ∼ φtop − φbottom

t = −∞ t = +∞

ρβ



Irrelevant interactions

We found that diffusive fluctuations δn ∼ kd/2 are irrelevant in d > 0

ji = D∂in + D′n∂in + · · ·

= + + · · ·

For this talk, a simplified treatment of hydro fluctuations will be enough
to illustrate concepts Ernst Hauge van Leeuwen ’70, Kovtun Yaffe ’03

σ(ω) = 1
2T 〈jj〉(ω, k = 0) = χD + #|ω|d/2 + #ω + · · ·

= + + · · ·
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Long-time tails

Discovered in molecular dynamics numerics
Alder Wainwright ’70

Seen in holography Caron-Huot Saremi ’09

Recent interest for RHIC



Analytic structure
These calculations can also be performed at finite k Chen-Lin LVD Hartnoll ’18

GRnn(ω, k) = χDk2 + · · ·
−iω +Dk2 + Σk2 , Σ(ω, k) = (#iω+#k2)

[
k2 − 2iω

D

] d−2
2

ω

− i
2Dk

2

−iDk2

Relativistic massive particle G(p2)

p2

m2 4m2

Two-‘diffuson’ threshold:

ω′ = iDk′2

ω + ω′ = −iD(k + k′)2

ω, k

ω′, k′
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Real time explanation

〈OO〉(t, k) = + + · · ·

∼ g(t, k) + kdg(t, k2 )2 + · · ·

∼ e−Dk
2t + kde−Dk

2t/2 + · · ·

For τth . t .
1

Dk2 , the first term dominates

The n-diffuson contributions take the form

∼ n! (k`th)dn e−Dk
2t/n

At late times
1

Dk2 . t, the term that dominates have n(t) '
√

Dk2t

d log 1
k`th

Plugging back gives 〈OO〉(t, k) ∼ e−
√
Dk2t ! LVD, online soon

(Convergence? Borel summable? Heller Spalinski ’15 Grozdanov Kovtun Starinets Tadić ’19)



Real time explanation

〈OO〉(t, k) = + + · · ·

∼ g(t, k) + kdg(t, k2 )2 + · · ·

∼ e−Dk
2t + kde−Dk

2t/2 + · · ·

For τth . t .
1

Dk2 , the first term dominates

The n-diffuson contributions take the form

∼ n! (k`th)dn e−Dk
2t/n

At late times
1

Dk2 . t, the term that dominates have n(t) '
√

Dk2t

d log 1
k`th

Plugging back gives 〈OO〉(t, k) ∼ e−
√
Dk2t ! LVD, online soon

(Convergence? Borel summable? Heller Spalinski ’15 Grozdanov Kovtun Starinets Tadić ’19)



A richer story at finite k

〈OO〉(t, k)
(log)

1

e−S

UV

τth 1/Dk2 L2/D t

RMT

∼ e−Dk2t

1→ n(t) 1→ nmax

∼ e−
√
Dk2t

∼ e−Dkkmint

(kmin = 2π
L
)

I II III
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Proposal in a Nutshell

The edge of a QH droplet supports gapless excitations

Theorists like T = 0, but thermalization is crucial Polchinski Kane Fisher ’94

What is the hydrodynamic description
of the edge?

No translation invariance assumed,
only charge conservation

QH
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Proposal in a Nutshell
The collective excitation is a chiral ballistic mode Kane Fisher ’95

ω = ck − iDk2 + · · ·

Hydrodynamic interactions are relevant
Breakdown of diffusion drives system to KPZ universality class z = 3/2

ω = ck − iDk3/2 + · · ·

Universal prediction for low-frequency
transport on the edge:

σ(ω) ∼ 1
ω1/3 (ω � 1/τth)

Heat diffusion also breaks down

Higher dimension: surface chiral metal
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3 Key Aspects

A hydrodynamic theory describes a condensed matter system, but
no translation invariance (no long-lived momentum)

Anomaly: ṅ+ ∂xjx ∝ Ex

Large hydrodynamic fluctuations



The anomaly
Single conserved charge like before, but with an anomaly

ṅ+ ∂xjx = νEx

Ex

Account for anomalies in constitutive relations Son Surowka ’09

jx = νµ− χD∂xµ+ · · ·

‘Anomalous diffusion’ equation:

0 = ṅ+ c∂xn− ∂x(D∂xn) + · · · with c = ν/χ

Solving again for the Green’s function gives Kane Fisher ’95

GRnn(ω, k) = χ
ick +Dk2

−i(ω + ck) +Dk2 + · · ·

But c can depend on n! (like D)
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Breakdown of diffusion

‘Anomalous diffusion’ equation: (recall δn ∼ kd/2 = k1/2)

0 = ṅ + c∂xn − ∂x(D∂xn) + c′n∂xn + · · ·

∼ k3/2 ∼ k5/2 ∼ k2

 breakdown of diffusion!

What to do?

Dim reg: expand from upper critical dimension dc = 2.
The theory at dc = 2 describes chiral surface metals

Exact solution for d = 1?

Burger’s equation Forster Nelson Stephen ’77, KPZ Kardar Parisi Zhang ’86,
1d Navier-Stokes Narayan Ramaswamy ’02
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KPZ universality on the edge

‘Anomalous diffusion’ equation:

0 = ṅ + c∂xn − ∂x(D∂xn) + c′n∂xn + · · ·

Follow chiral front: x′ = x− ct, so ∂t′ = ∂t + c∂x

0 = ∂t′n − ∂x(D∂xn) + c′n∂xn + · · ·

Map to KPZ equation n↔ ∂xh Kardar Parisi Zhang ’86

0 = ∂t′h − D∂2
xh + c′(∂xh)2 + · · ·

(the noise term also maps appropriately, as it must by fluctuation-dissipation)

Edge is in Burger’s-KPZ universality, with z = 3/2 !



KPZ universality on the edge

Collective mode disperses as

ω = ck − iDkz + · · · with D =

√
T

χ3
|ν|
2π |χ

′| and z = 3
2

similar dispersion relations observed in 1d hydro Narayan Ramaswamy ’02 Spohn ’14

but these are not robust vs disorder Das Damle Dhar Huse Kulkarni Mendl Spohn ’19

Transport:

KPZ scaling function controls transport

Gnn(ω, k) = χT

ω
gKPZ

(
ω − ck
Dkz

)
+ · · ·

and gives

σ(ω) = lim
k→0

ω

k2 ImGRnn(ω, k) = #χD4/3

ω1/3 + · · ·

(gKPZ known to high precision, with # ' 0.417816.. Prähofer and Spohn ’04)
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Heat

Neglecting thermoelectric effects first:

Charge propagates chirally with velocity σxy/χ

Heat propagates chirally with velocity κxy/cV

 2 decoupled KPZ fronts

Interactions between modes are kinematically disfavored
because of their different velocities.

ω = ck − iDk3/2 + · · · κ(ω) ∼ 1
ω1/3
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Heat

Special case: κxy = 0 (e.g. for ν = 2/3)
The chiral velocity of heat vanishes.

Linearized hydro says it should diffuse Kane Fisher ’97

GRhh(ω, k) ' cVD

−iω +Dk2

Does this prediction survive hydrodynamic fluctuations?

ḣ−D∂2
xh+ λn∂xn = 0

Open problem in stochastic physics Dhar ’08, Spohn ’14

‘Mode-coupling’ approximation predicts z = 5/3, which gives

ω ∼ −iDk5/3 σ(ω) ∼ 1
ω2/5
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Experiments

Singular edge transport: σ(ω) ∼ 1
ω1/3

Anomalous damping of edge modes:

ω ' ck − iDk3/2 with D =

√
χ′2T

χ3
|ν|
2π

Ashoori Stormer Pfeiffer Baldwin West ’92 Kumada Glattli et al ’14 Goldman Spielman et al ’13

GaAs Graphene Cold atoms
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Experiments

Neutral heat mode is similar, except if κxy = 0, like for ν = 2/3

ω ∼ −iDk5/3

‘Upstream’ heat transport

Bid Mahalu et al ’10

Venkatachalam Hart Yacoby et al ’12
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