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Any thermalizing system, quantum or classical, is described by
hydrodynamics at sufficiently late times

How is such a universality possible?

Most excitations ‘relax’ at finite T' ~ thermalization time 7y
Conserved densities related to symmetries decay with rate I’ ~ k2

For k small enough these are parametrically slower than generic
excitations

Hydrodynamics is the late time (¢ > 71,)
description of these ‘coarse grained’ quantities
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Any thermalizing system, quantum or classical, is described by
hydrodynamics at sufficiently late times

How is such a universality possible?

Most excitations ‘relax’ at finite T' ~ thermalization time 7y
Conserved densities related to symmetries decay with rate I’ ~ k2

For k small enough these are parametrically slower than generic
excitations

Hydrodynamics is the late time (¢ > 71,)
description of these ‘coarse grained’ quantities

At weak coupling (g < 1): Tth ~ TPlanck/g>

At strong coupling expect: Tih ~ Tplanck = N/kpT



How IT WORKS

Theory of a conserved density n (or its potential 1), subject to
n+V-.j=0
This also involves j. Close the equation with a constitutive relation
ji=—DOm+ -
Solving these equations yields a diffusive Greens function
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How IT WORKS

Theory of a conserved density n (or its potential 1), subject to
n+V-.j=0
This also involves j. Close the equation with a constitutive relation
ji=—DOm+ -
Solving these equations yields a diffusive Greens function

xDk?
Gonl D) = =

Two expansions: gradients d + 9 + - - and fluctuations én + dn? + - - -

— —

Always controlled Controlled when interactions
(in principle) are irrelevant



How 1T WORKS 11

Theory of conserved densities Ty, T, or their potentials 5(z), u,(z),
subject to 9,T"" = 0.
This also involves the ‘currents’ T;;

To close equations we need constitutive relations

T = (e + Pluyty, + Py, — (N0 - u — 00, u,) + 0(9%),



How 1T WORKS 11

Theory of conserved densities Ty, T, or their potentials 5(z), u,(z),
subject to 9,T"" = 0.
This also involves the ‘currents’ T;;

To close equations we need constitutive relations
T = (e + Pluyty, + Py, — (N0 - u — 00, u,) + 0(9%),

Solving around equilibrium w,,(z) = 63 + du,, and B(x) =  + 63 gives

R N f kzkj (.d2 o k‘ikj Dk2
G, (@, ) = B k2 k2 —w? —ilk2w + (5” k2 ) —iw+ DE2
—_————

sound diffusion
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BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ck—%rk2+---

IN IR

Other possibilities, e.g.:
m w = cksinf —iDk? (smectic, MHD)
m w=+k? — ik? (nematic)
m w = +k? — ik* (spin waves in a ferromagnet)
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When are fluctuations big? Diffusive:
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We need to know how charge fluctuations scale: scaling w ~ k2
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IN IR

When are fluctuations big? Diffusive:
0=n+V[D(n)Vn]+---
= (0, +DV*+ D'6nV?+ .- ) én
~E2 k2~ k2+g

We need to know how charge fluctuations scale: scaling w ~ k2

2
e~ % /4Dt

(n(x,t)n) X W = on ~ wd/4 ~ k’d/2



BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ck—%rk2+---

IN IR

When are fluctuations big? Diffusive: when d <d.=0
0=n+V[D(n)Vn]+---
= (0, +DV*+ D'6nV?+ .- ) én
~E2 k2~ k2+g

We need to know how charge fluctuations scale: scaling w ~ k2

2
e~ % /4Dt

(n(x,t)n) —aE < Sn ~ w4~ /2



BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ck—%rk2+---

IN IR

When are fluctuations big? Ballistic:

0=n+c(n)Vn+ Dn)Vn+---
= (0y+cV+onV +DV?*+---)én

In the reference frame of the pulse 2’ = = — ct we again scale w’ ~ k?



BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ck—%rk2+---

IN IR

When are fluctuations big? Ballistic:

0=n+c(n)Vn+Dn)Vn+---
= (0 +énV +DV? + .- ) én

In the reference frame of the pulse 2’ = = — ct we again scale w’ ~ k?



BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ck—%rk2+---

IN IR

When are fluctuations big? Ballistic:

0=n+c(n)Vn+Dn)Vn+---
= (0 +énV +DV? + .- ) én

In the reference frame of the pulse 2’ = = — ct we again scale w’ ~ k?
e—w/2/4Dt

W = 5n ~ OJ/d/4 ~ kd/Q

(n(z',t)n)



BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ck—%Fk2+---

IN IR

When are fluctuations big? Ballistic: when d < d, =2

0=n+c(n)Vn+Dn)Vn+---
= (0 +énV +DV? + .- ) én

~ k2 S EMTE g2
In the reference frame of the pulse 2’ = = — ct we again scale w’ ~ k?
e—w/2/4Dt

W = 5n ~ OJ/d/4 ~ kd/Q

(n(z',t)n)



BALLISTIC V. DIFFUSIVE

w=—iDk?+ - w:ck—%Fk2+---
Bottomline:
Diffusive modes Ballistic modes
Weak fluctuations d>0 d>2

Strong fluctuations never d<2
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“Breakdown of diffusion on the edge”
2002.08365
with Paolo Glorioso
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IRRELEVANT INTERACTIONS

We found that diffusive fluctuations dn ~ k%2 are irrelevant in d > 0

ji = Ddn + Dnon + ---

Studied within theory of hydrodynamic fluctuations
Martin Siggia Rose '73, Forster Nelson Stephen '77

(long history: Zwanzig '61 Mori '65 Kawasaki '68 Alder Wainwright '70 Ernst Hauge van

Leeuwen '70 Pomeau Résibois '75 ... )



IRRELEVANT INTERACTIONS

We found that diffusive fluctuations dn ~ k%2 are irrelevant in d > 0

ji = Ddn + Dnon + ---

Studied within theory of hydrodynamic fluctuations
Martin Siggia Rose '73, Forster Nelson Stephen '77

(long history: Zwanzig '61 Mori '65 Kawasaki '68 Alder Wainwright '70 Ernst Hauge van

Leeuwen '70 Pomeau Résibois '75 ... )

Modern approach: path integral on a Schwinger-Keldysh contour

Kamenev '11, Grozdanov Polonyi '13, Crossley Glorioso Liu '15, Haehl Loganayagam Rangamani

'15, Jensen Pinzani-Fokeeva Yarom '17
Roughly: n ~ ¢top + ¢bottom

f ~ ¢top - ¢b0ttom

t = —oo t = 400
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IRRELEVANT INTERACTIONS

We found that diffusive fluctuations dn ~ k%2 are irrelevant in d > 0

ji = Domn + D'ndn + -

For this talk, a simplified treatment of hydro fluctuations will be enough
to illustrate concepts Ernst Hauge van Leeuwen '70, Kovtun Yaffe '03

1 d/2
ow) = UMW k=0) = xD  + #|”? + w4
— e -— + = — +
Long-time tails

5
3 m Discovered in molecular dynamics numerics
5l Alder Wainwright '70

4
_%‘5 0 05 m Seen in holography Caron-Huot Saremi '09

Mukerjee Oganesyan Huse '05 m Recent interest for RHIC



ANALYTIC STRUCTURE

These calculations can also be performed at finite & Chen-Lin LVD Hartnoll '18
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ANALYTIC STRUCTURE

These calculations can also be performed at finite & Chen-Lin LVD Hartnoll '18

xDk* + - - -

R _
Cunlw: k) = = S v

2] 7
S(w, k) = (Hiot+#52) [k2 - ]’;]
w]
— £ Dk?
—iDk?

—>

Relativistic massive particle G(p?)

]
W'k W = iDk”?
:
|
|
iw+w' = —iD(k+ k)2

Two-'diffuson’ threshold: w, k
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Real time explanation

(OO)(t, k) = = - 4 = .= .

~ g(t,k’) + k'dg(t, g)Q +
N e~ Dk?t + Ede—DE’t/2 +

Forrn <t < the first term dominates

S!S e
The n-diffuson contributions take the form

~ n! (kgth)dn e7ch21t/n

_ 1 _ Dk2t
At late times ——= < t, the term that dominates have n(t) ~ , | —————
Dk dlog 7~

Plugging back gives (OO)(t, k) ~ e~ VPF*t | LVD, online soon

(Convergence? Borel summable? Heller Spalinski '15 Grozdanov Kovtun Starinets Tadi¢ '19)




A RICHER STORY AT FINITE k

(OO0)(t, k)

(log)A

uv

~ ¢~ Dkkmint
(kmin = ZTW)

I11

Tth 1/Dk> L?/D t
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The edge of a QH droplet supports gapless excitations
Theorists like T' = 0, but thermalization is crucial  Polchinski Kane Fisher '94

What is the hydrodynamic description
of the edge?



PROPOSAL IN A NUTSHELL

The edge of a QH droplet supports gapless excitations
Theorists like T' = 0, but thermalization is crucial  Polchinski Kane Fisher '94

What is the hydrodynamic description
of the edge?

No translation invariance assumed,
only charge conservation
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PROPOSAL IN A NUTSHELL
The collective excitation is a chiral ballistic mode Kane Fisher '95
w=ck —4iPE> + - -

Hydrodynamic interactions are relevant
Breakdown of diffusion drives system to KPZ universality class z = 3/2

w=ck—iDE*? 4+ ...

Universal prediction for low-frequency
transport on the edge:

1
E

o(w) ~ (w < 1/7n)

m Heat diffusion also breaks down

m Higher dimension: surface chiral metal



3 KEY ASPECTS

m A hydrodynamic theory describes a condensed matter system, but
no translation invariance (no long-lived momentum)

m Anomaly: "+ 0., x E,

m Large hydrodynamic fluctuations



THE ANOMALY

Single conserved charge like before, but with an anomaly

----- * = =
. Y
E, o ¢ °
Account for anomalies in constitutive relations Son Surowka '09

Jo = Vi = XDOgp + -+



THE ANOMALY

Single conserved charge like before, but with an anomaly

----- * = =
. Y
E, o ¢ °
Account for anomalies in constitutive relations Son Surowka '09

Jo = Vi = XDOgp + -+
‘Anomalous diffusion’ equation:

0=n+cdyn— 0, (DIn) + - with e¢=v/x



THE ANOMALY

Single conserved charge like before, but with an anomaly

----- * = =
. o O
E, - °
—
Account for anomalies in constitutive relations Son Surowka '09
‘Anomalous diffusion’ equation:
0=n+cdyn— 0, (DIn) + - with e¢=v/x

Solving again for the Green's function gives Kane Fisher '95

ick + Dk? n
—i(w + ck) + Dk?

an(“’? k) =X



THE ANOMALY

Single conserved charge like before, but with an anomaly

----- * = =
. o O
E, - °
—
Account for anomalies in constitutive relations Son Surowka '09
‘Anomalous diffusion’ equation:
0=n+cdyn— 0, (DIn) + - with e¢=v/x

Solving again for the Green's function gives Kane Fisher '95

ick + Dk? n
—i(w + ck) + Dk?

an(“’? k) =X



THE ANOMALY

Single conserved charge like before, but with an anomaly

----- * = =
. o O
E, - °
—
Account for anomalies in constitutive relations Son Surowka '09
‘Anomalous diffusion’ equation:
0=n+cdyn— 0, (DIn) + - with e¢=v/x

Solving again for the Green's function gives Kane Fisher '95

ick + Dk? n
—i(w + ck) + Dk?

an(“’? k) =X



THE ANOMALY

Single conserved charge like before, but with an anomaly

----- * = =
. o O
E, - °
—
Account for anomalies in constitutive relations Son Surowka '09
‘Anomalous diffusion’ equation:
0=n+cdyn— 0, (DIn) + - with e¢=v/x

Solving again for the Green's function gives Kane Fisher '95

ick + Dk? n
—i(w + ck) + Dk?

an(“’? k) =X



THE ANOMALY

Single conserved charge like before, but with an anomaly

----- * = =
. o O
E, - °
—
Account for anomalies in constitutive relations Son Surowka '09
‘Anomalous diffusion’ equation:
0=n+cdyn— 0, (DIn) + - with e¢=v/x

Solving again for the Green's function gives Kane Fisher '95

ick + Dk? n
—i(w + ck) + Dk?

an(“’? k) =X

But ¢ can depend on n! (like D)



THE ANOMALY

Single conserved charge like before, but with an anomaly

----- * = =
. o O

E, - °
—

Account for anomalies in constitutive relations Son Surowka '09

Jo = Vi = XDOgp + -+
‘Anomalous diffusion’ equation:
0=n+cOyn — 0, (DIyn) + ndyn + - with c=v/x

Solving again for the Green's function gives Kane Fisher '95

ick + Dk? n
—i(w + ck) + Dk?

an(“’? k) =X

But ¢ can depend on n! (like D)
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BREAKDOWN OF DIFFUSION

‘Anomalous diffusion’ equation: (recall on ~ k%2 = k1/?)
0 = n + cden — 0.(DIn) + nden +
~ k3/2 ~ k5/2 ~ k2

~» breakdown of diffusion!
What to do?

m Dim reg: expand from upper critical dimension d. = 2.

The theory at d. = 2 describes chiral surface metals

m Exact solution for d = 17

Burger's equation Forster Nelson Stephen '77, KPZ Kardar Parisi Zhang '86,
1d Navier-Stokes Narayan Ramaswamy '02



KPZ UNIVERSALITY ON THE EDGE

‘Anomalous diffusion’ equation:
0 = n + cdn — 0,(DIn) + ndn +

Follow chiral front: 2/ = 2 — ¢t, so 8y = 0; + cO,

0 = Oyn — 9.(DIn) + nden +
Map to KPZ equation n <+ 9, h Kardar Parisi Zhang '86
0 = O¢h — DFh + d(0.h)?* +

(the noise term also maps appropriately, as it must by fluctuation-dissipation)

Edge is in Burger's-KPZ universality, with z = 3/2 !



KPZ UNIVERSALITY ON THE EDGE

Collective mode disperses as

T
w=ck—iDk* 4 --- with D= —M|x’| and z:§
X3 2w 2

similar dispersion relations observed in 1d hydro Narayan Ramaswamy '02 Spohn '14
but these are not robust vs disorder Das Damle Dhar Huse Kulkarni Mendl Spohn '19
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KPZ UNIVERSALITY ON THE EDGE

Collective mode disperses as

T
w=ck—iDk* 4 --- with D= —M|x’| and z:§
X3 2w 2

similar dispersion relations observed in 1d hydro Narayan Ramaswamy '02 Spohn '14
but these are not robust vs disorder Das Damle Dhar Huse Kulkarni Mendl Spohn '19

Transport:
KPZ scaling function controls transport
xT w —ck
G, k) = 2= )
(w, k) ngPZ<DkZ )—i—
and gives

XD4/3

)
o(w) = lim = T G, (w, k) = #

(gkpz known to high precision, with # ~ 0.417816.. Prihofer and Spohn '04)
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Charge propagates chirally with velocity o, /x
Heat propagates chirally with velocity g, /cy

~~ 2 decoupled KPZ fronts
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HEAT

Neglecting thermoelectric effects first:

Charge propagates chirally with velocity o, /x
Heat propagates chirally with velocity xzy/cv

~~ 2 decoupled KPZ fronts

Interactions between modes are kinematically disfavored
because of their different velocities.

w=ck—iDk*? 4 ... K(w) ~



HEAT

Special case: kg, =0 (e.g. for v = 2/3)
The chiral velocity of heat vanishes.

Linearized hydro says it should diffuse Kane Fisher '97

CvD

G, k) = =0

Does this prediction survive hydrodynamic fluctuations?
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HEAT

Special case: kg, =0 (e.g. for v = 2/3)
The chiral velocity of heat vanishes.

Linearized hydro says it should diffuse Kane Fisher '97

CvD

G, k) = =0

Does this prediction survive hydrodynamic fluctuations?

h — D3%h 4+ Andyn =0

Open problem in stochastic physics Dhar '08, Spohn '14
‘Mode-coupling’ approximation predicts z = 5/3, which gives

1

W —ka5/3 o'(w) ~ m
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Anomalous damping of edge modes:
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EXPERIMENTS

Singular edge transport: o(w) ~ —=

Anomalous damping of edge modes:

X7 |v|
x3 2w

w =~ ck — iDk>/? with

0.6

t=100/7 =20/J =307
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Ashoori Stormer Pfeiffer Baldwin West '92 Kumada Glattli et al '14 Goldman Spielman et al '13

GaAs Graphene Cold atoms



Experimental investigation of the damping of low-frequency edge magnetoplasmons
in GaAs-Al, Ga,_, As heterostructures

V. I. Talyanskii,* M. Y. Simmons, J. E. F. Frost, M. Pepper, D. A. Ritchie, A. C. Churchill,
and G. A. C. Jones
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, United Kingdom
(Received 17 February 1994)

A detailed experimental study of damping and velocity of low-frequency edge magnetoplasmons in
GaAs-Al,Ga,_, As heterostructures is presented. The damping is observed to be frequency dependent
at filling factors close to integer values. The magnitude of the damping increases with frequency, the
dependence being somewhere between linear and quadratic. This finding indicates that the damping of
low-frequency edge magnetoplasmons cannot be described by the effective relaxation time. The experi-
mental results are discussed in terms of existing models of low-frequency edge magnetoplasmons.

Anomalous damping of edge modes:

X2T |v|

w =~ ck — iDk>/? with D=
x3 2w

0.6

t=10n/J t = 20h,
100

0.4
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0.0
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-0.4
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Ashoori Stormer Pfeiffer Baldwin West '92 Kumada Glattli et al '14 Goldman Spielman et al '13

GaAs Graphene Cold atoms
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EXPERIMENTS

Neutral heat mode is similar, except if ., = 0, like for v =2/3

w ~ —iDk5/3

‘Upstream’ heat transport

Bid Mahalu et al '10 Venkatachalam Hart Yacoby et al '12
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