The Neutrino Option

Ilaria Brivio

Institut für Theoretische Physik, Universität Heidelberg

based on 1703.10924, 1809.03450, 1905.12642, 2010.15428 with M. Trott, K. Moffat, S. Pascoli, S. Petcov, J. Talbert, J. Turner

The issue: origin of the Higgs potential

The Higgs potential gives a successful parameterization of the electroweak symmetry breaking

 \leftrightarrow

$$V(H^{\dagger}H) = -\frac{m_{H}^{2}}{2} (H^{\dagger}H) + \lambda (H^{\dagger}H)^{2}$$

but it lacks a dynamical origin !

several theoretical problems:

hierarchy, stability, triviality, phase transition? ...

The hierarchy problem in an EFT perspective

Brivio, Trott 1706.08945

The hierarchy problem in an EFT perspective

Brivio, Trott 1706.08945

The hierarchy problem in an EFT perspective

Brivio, Trott 1706.08945

these corrections are always proportional to the scale integrated out

 \rightarrow one of the main complications when UV completing the potential

Ilaria Brivio (ITP Heidelberg)

Traditional solutions

Common approaches:

(a) SUSY way: extra symmetry to force cancellations among thresholds

(b) Composite way: shift symmetry to protect $H^{\dagger}H$

potential generated radiatively.

$$V(H) \simeq \frac{g_{SM}^2 \Lambda^2}{8\pi^2} \left(-a H^{\dagger} H + b \frac{(H^{\dagger} H)^2}{f^2} \right)$$

Bellazzini, Csáki, Serra 1401.2457

Traditional solutions

Common approaches:

(a) SUSY way: extra symmetry to force cancellations among thresholds

(b) Composite way: shift symmetry to protect $H^{\dagger}H$

potential generated radiatively.

$$V(H) \simeq rac{g_{SM}^2 \Lambda^2}{8\pi^2} \left(-a H^{\dagger} H + b rac{(H^{\dagger} H)^2}{f^2}
ight)$$

Troubles:

Bellazzini, Csáki, Serra 1401.2457

both require resonances not far from TeV scale

Traditional solutions

Common approaches:

(a) SUSY way: extra symmetry to force cancellations among thresholds

(b) Composite way: shift symmetry to protect $H^{\dagger}H$

potential generated radiatively.

$$V(H) \simeq \frac{g_{SM}^2 \Lambda^2}{8\pi^2} \left(-a H^{\dagger} H + b \frac{(H^{\dagger} H)^2}{f^2} \right)$$

Troubles:

Bellazzini, Csáki, Serra 1401.2457

- both require resonances not far from TeV scale
- the potential must be generated at once. That's not trivial!

Ilaria Brivio (ITP Heidelberg)

A change in perspective

Having measured the Higgs mass opens new possibilities!

An important one: controlling the running of the potential to very high energies.

Elias-Miro et al. 1112.3022, Degrassi et al,1205.6497, Espinosa et al. 1505.04825

We can move the stabilization problem from the TeV to a much higher scale

Ilaria Brivio (ITP Heidelberg)

idea: some very heavy UV sets the initial conditions at a high scale

idea: some very heavy UV sets the initial conditions at a high scale

idea: some very heavy UV sets the initial conditions at a high scale

idea: some very heavy UV sets the initial conditions at a high scale

idea: some very heavy UV sets the initial conditions at a high scale

$$\mathcal{L}_{N} = \frac{1}{2}\overline{N}(i\partial - M)N - \left[\overline{N}\omega\,\tilde{H}^{\dagger}\ell_{L} + \overline{\ell_{L}}\,\tilde{H}\,\omega^{\dagger}N\right]$$

Minkowski 1977 Gell-Mann,Ramond,Slansky 1979 Mohapatra,Senjanovic 1980 Yanagida 1980

with *n* Majorana neutrinos $N = N^c$:

M real, diagonal

 ω n × 3 matrix in flavor space

$$\mathcal{L}_{N} = \frac{1}{2} \overline{N} (i \vec{\phi} - M) N - \left[\overline{N} \, \omega \, \tilde{H}^{\dagger} \ell_{L} + \overline{\ell_{L}} \, \tilde{H} \, \omega^{\dagger} N \right]$$
$$\mathbf{M} \gg \mathbf{v}$$

(flavor indices omitted) Vissani hep-ph/9709409 Casas et al hep-ph/9904295

Preliminary study

Key assumptions

▶ start with nearly-vanishing classical potential at $\mu \gtrsim M$:

approximate scale invariance + explicit breaking only from Majorana mass

 threshold contributions from other NP and SM contributions to the Coleman-Weinberg potential are subdominant.
 SM: OK for M|ω| ≫ v, Λ_{QCD}.

Preliminary study: results

 $\lambda(m_t)$ is not sensitive to $|\omega|$ but depends significantly on M

best fit $M \simeq 10^{7.4}$ GeV $\simeq 25$ PeV

Preliminary study: results

 $\lambda(m_t)$ is not sensitive to $|\omega|$ but depends significantly on M

best fit $M \simeq 10^{7.4}$ GeV $\simeq 25$ PeV

with fixed M, $m_H^2(m_t)$ determines uniquely $|\omega| \simeq 10^{-4.5}$ \downarrow $\sum |m_{\nu}| = \frac{3|\omega|^2}{2} \frac{v^2}{M} \simeq 3 \cdot 10^{-3} \text{ eV}$

Ilaria Brivio (ITP Heidelberg)

Preliminary study: results

(Un)buried bodies

- High numerical sensitivity to *m*_t + RGE order
- ► Higher order RGEs point to lighter m_ν (too light!)

Improved study

relax the assumption $\lambda_0 \simeq 0$

simply start from a conformal potential $m^2_{\text{H},0}\simeq 0$

Improved study

relax the assumption $\lambda_0 \simeq 0$

simply start from a conformal potential $m^2_{H,0}\simeq 0$

consider flavor effects

- choose seesaw with 2 heavy N $\rightarrow m_{
 u, \rm \ lightest} = 0$
- Δm_{ij}^2 , θ_i , δ , α_i fully specified via Casas-Ibarra par. and varied in 3σ allowed range

Brivio.Trott 1809.03450

Esteban et al. 1611.01514

Improved study results: ω , M

running effects have a small impact on both m_H , m_{ν}

$$m_H^2 \simeq \frac{M^2 |\omega|^2}{8\pi^2} \sim (10^2 \,\mathrm{GeV})^2$$
$$|\omega|^2 \kappa^2$$

$$m_{
u} \simeq rac{|\omega|^2 v^2}{2M} \gtrsim 0.01 \, \mathrm{eV}$$

$$ert \omega ert \simeq rac{1\,{
m TeV}}{M}$$

 $M \lesssim 10^4\,{
m TeV}$

This result is **very stable** under variations of *m*_t and RGE running order! ↓ **prediction** of this scenario

Improved study results: λ_0

the boundary condition for λ in the $\mu = M$ region selected by m_{ν} , m_H cannot be matched by the seesaw threshold contribution alone

Brivio, Trott 1809.03450

Improved study results: λ_0

the boundary condition for λ in the $\mu = M$ region selected by m_{ν} , m_H cannot be matched by the seesaw threshold contribution alone

Brivio, Trott 1809.03450

Improved study results: λ_{0}

The value of

 λ_0 needed to obtain the SM potential depends on m_t , n_{RGE}

- thermal
- thermal with enhanced R-matrices
- resonant
- non-thermal assuming $T_{RH} < M$

Moffat, Pascoli, Petcov, Schulz, Turner 1804.05066

Pilaftsis, Underwood 0309342, 0506107

- there al ightarrow too small ω / violates DI bound $M\gtrsim 10^9~{
 m GeV}$ Davidson,Ibarra 0202239
- thermal with enhanced R-matrices

Moffat, Pascoli, Petcov, Schulz, Turner 1804.05066

resonant

Pilaftsis, Underwood 0309342, 0506107

• non-thermal assuming $T_{RH} < M$

- + the fal ightarrow too small ω / violates DI bound $M\gtrsim 10^9~{
 m GeV}$ Davidson,Ibarra 0202239
- thermal with phanced *R*-matrices Moffat, Pascoli, Petcov, Schulz, Turner 1804.05066 \rightarrow leads to too large m_H , or extremely large tuning of tree vs loop m_{ν}
- resonant

Pilaftsis, Underwood 0309342, 0506107

• non-thermal assuming $T_{RH} < M$

- the fal ightarrow too small ω / violates DI bound $M\gtrsim 10^9~{
 m GeV}$ Davidson,Ibarra 0202239
- thermal with manced *R*-matrices
 Moffat,Pascoli,Petcov,Schulz,Turner 1804.05066
 - \rightarrow leads to too large m_H , or extremely large tuning of tree vs loop m_{ν}
- 🕨 resonant

Pilaftsis, Underwood 0309342, 0506107

• non-thermal assuming $T_{RH} < M$

• the fal ightarrow too small ω / violates DI bound $M\gtrsim 10^9~{
m GeV}$ Davidson, Ibarra 0202239 • thermal with Manced R-matrices Moffat,Pascoli,Petcov,Schulz,Turner 1804.05066 \rightarrow leads to too large m_H , or extremely large tuning of tree vs loop m_{ν} resonant

Pilaftsis.Underwood 0309342.0506107

non-thermal assuming $T_{RH} < M$

Samanta, Biswas, Battacharya 2006.02960

minimal case: $N_1, N_2, \quad M_i = 10^6 - 10^7 \text{ GeV}$

Brivio, Moffat, Pascoli, Petcov, Turner 1905.12642 Brdar, Helmboldt, Iwamoto, Schmitz, 1905, 12634

resonant leptogenesis $\leftrightarrow \Delta M \sim \Gamma_N \ll \frac{M_1 + M_2}{2}$ \rightarrow asymmetry amplified by mixing among heavy states

• there al ightarrow too small ω / violates DI bound $M\gtrsim 10^9~{
m GeV}$ Davidson,Ibarra 0202239 thermal with manced *R*-matrices
 Moffat, Pascoli, Petcov, Schulz, Turner 1804.05066 \rightarrow leads to too large m_H , or extremely large tuning of tree vs loop m_{ν} 🕨 resonant Pilaftsis.Underwood 0309342.0506107 non-thermal assuming $T_{RH} < M$ Samanta, Biswas, Battacharya 2006.02960 minimal case: $N_1, N_2, \quad M_i = 10^6 - 10^7 \text{ GeV}$ Brivio.Moffat.Pascoli.Petcov.Turner 1905.12642 Brdar, Helmboldt, Iwamoto, Schmitz, 1905, 12634 resonant leptogenesis $\leftrightarrow \Delta M \sim \Gamma_N \ll \frac{M_1 + M_2}{2}$ \rightarrow asymmetry amplified by mixing among heavy states are there points for which $\begin{cases} \Delta m_H^2 = m_H^2 (\mu = M) \\ \eta_B = 6.1 \times 10^{-10} \end{cases}$ simultaneously? λ_0 is irrelevant here \rightarrow condition on **M**

Ilaria Brivio (ITP Heidelberg) The Neutri

(A) approximate solution of Boltzmann equations:

largest dependence on: M

Му

Δm_H^2 ~	~	$\cosh(2y)M^3$	\sum_{i}	$m_{\nu,i}$
------------------	---	----------------	------------	-------------

in Casas-Ibarra param. (NH):

$$R = \begin{pmatrix} 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \\ 1 & 0 & 0 \end{pmatrix}, \theta = x + iy$$

(A) approximate solution of Boltzmann equations:

largest dependence on: Μ

V $\Delta m_H^2 \sim \cosh(2y) M^3 \sum_i m_{\nu,i}$ $\min M \leftrightarrow \max y$ maximize $\eta_{B-L} \sim f_{res}(M_i, \Gamma_i) e^{-4 \mathbf{y}} \sin 2x$ over other params maximize y

in Casas-Ibarra param. (NH): $R = \begin{pmatrix} 0 & \cos\theta & \sin\theta\\ 0 & -\sin\theta & \cos\theta\\ 1 & 0 & 0 \end{pmatrix}, \ \theta = x + i\mathbf{y}$

(A) approximate solution of Boltzmann equations:

largest dependence on: M

 $\Delta m_{\mu}^2 \sim \cosh(2y) M^3 \sum_i m_{\nu i}$ $\min M \leftrightarrow \max y$ maximize $\eta_{B-L} \sim f_{res}(M_i, \Gamma_i) e^{-4 \mathbf{y}} \sin 2x$ over other params maximize y

in Casas-Ibarra param. (NH): $R = \begin{pmatrix} 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \\ 1 & 0 & 0 \end{pmatrix}, \theta = x + iy$

 $\max M \leftrightarrow y = 0$

 η_B can always be matched adjusting phases. \downarrow *M* fixed by m_H constraint

(A) approximate solution of Boltzmann equations:

largest dependence on: Μ

in Casas-Ibarra param. (NH): V $R = \begin{pmatrix} 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \\ 1 & 0 & 0 \end{pmatrix}, \ \theta = x + iy$ $\Delta m_H^2 \sim \cosh(2y) M^3 \sum_i m_{\nu,i}$ $\max M \leftrightarrow v = 0$ $\min M \leftrightarrow \max y$ maximize η_B can always be matched $\eta_{B-L} \sim f_{res}(M_i, \Gamma_i) e^{-4 \mathbf{y}} \sin 2x$ adjusting phases. over other params M fixed by m_H constraint maximize y $rac{\Delta M}{M} \sim 10^{-8}$ $M > 1.2 \times 10^{6}$ GeV, $\gamma < 3.32$ [NH] $M < 8.8 \times 10^6 \text{ GeV}$ [IH] $M < 7.4 \times 10^6 \text{ GeV}$ $M > 2.4 \times 10^6$ GeV, y < 2.06

(B) numerical analysis with exact Boltzmann equations

fixed $M \rightarrow$ fix y from m_H constraint \rightarrow scan over other parameters

2D projections @ min M: 1σ , 2σ compatible with η_B NH IH [0] δ -51 48 θ_{23} \circ $[\circ]$ $1.2 \times 10^{6} \text{ GeV}, y = 3.32,$ $33.63^{\circ}, \theta_{13} = 8.51^{\circ}$ θ_{23} [°] 2.06, 10⁶ GeV 83 33. 2.4 42 θ_{12} θ_{12} Σ 320 80 160 240 80 160 240 320

Ilaria Brivio (ITP Heidelberg)

 $@ \max M, y = 0 \rightarrow \mathcal{L}^{P} only from SM phases (\delta, \alpha, \alpha')$

consistent results and same physical conclusions Brdar,Helmboldt,Iwamoto,Schmitz 1905.12634 different approach: look for $\max \Delta M/M$ in a fixed y region

Ilaria Brivio (ITP Heidelberg)

UV completions

required to explain the **origin of the Majorana mass** in an otherwise scale-less theory

further requests:

- at least 2 eigenvalues for M at PeV
- m_H doesn't receive other large contributions $((\bar{N}N)(H^{\dagger}H)$ absent)
- leads to a stable EW vacuum
- Higgs and ν RGE not spoiled by light BSM states
- avoids fine-tunings

options explored so far:

conformal completions

Brdar, Emonds, Helmboldt, Lindner 1807.11490 Brdar, Helmboldt, Kubo 1810.12306 Aoki, Brdar, Kubo 2007.04367 Kubo, Kuntz, Lindner, Reazcek, Saake, Trautner 2012.09706 Aoki, Kubo, Yang 2109.04814

- × perturbative generation from Planck scale
- ✓ string theory

Brivio, Talbert, Trott 2010.15428

Talbert 2009.11813

Ilaria Brivio (ITP Heidelberg)

Perturbative generation of *M*: no-go limitations

can PeV Majorana masses originate from threshold corrections or RG evolution from deeper UV?

idea: loop corrections scale as
$$\delta = \frac{|\omega|^2}{16\pi^2} M_{UV}$$

requiring
$$\delta \simeq \text{PeV}$$
 with $\begin{aligned} |\omega| \simeq 10^{-4} \rightarrow M_{UV} \simeq M_{GUT} \\ |\omega| \simeq 10^{-5} \rightarrow M_{UV} \simeq M_{PI} \end{aligned}$

start off with "democratic"
$$M_0 = \frac{M_{UV}}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & & \\ & 0 & \\ & & M_{UV} \end{pmatrix}$$

(or with 1 more eigenvalue)

and from here try to get 2+ eigenvalues in the PeV range via loops/RGE

Perturbative generation of *M*: no-go limitations

$$M_0 = \begin{pmatrix} 0 & & \\ & (M_{UV}) & \\ & & M_{UV} \end{pmatrix}$$

1 loop

- ▶ cannot generate non-zero eigenvalues: no 1-loop diagram with $\Delta L = 2$
- ► can lower the size of a mass eigenvalue via RGE: $M(\mu) = \gamma(\mu, \mu_0)M(\mu_0)$ but PeV requires $\gamma = 1 + \frac{\omega^2}{16\pi^2} \ln \frac{\mu}{\mu_0} \simeq 10^{-10} - 10^{-13} \rightarrow \text{tuned}$

2+ loops

► can generate non-zero eigenvalues. however $\delta^{(2)} \simeq \frac{|\omega|^4}{256\pi^4} M_{UV}$ with $\omega \simeq 10^{-4}$, $\delta^{(2)} \sim \text{PeV} \rightarrow M_{UV} \simeq 10^{27} \text{ GeV}$ with $M_{UV} \simeq 10^{19} \text{ GeV}$, $\delta^{(2)} \sim \text{PeV} \rightarrow \omega \simeq 10^{-2} \rightarrow \sqrt{\Delta m_H^2} \simeq 10^{16} \text{ GeV}$

 \rightarrow tension between *M* and *m_H* generation

Ilaria Brivio (ITP Heidelberg)

Perturbative generation of *M*: no-go limitations

$$\bar{N}^T M_0 N \qquad \qquad \bar{\ell} \tilde{H} \omega N + \text{h.c.}$$

$$M_0 = \begin{pmatrix} 0 & \\ & 0 & \\ & & M_{UV} \end{pmatrix} \qquad \qquad \omega = \begin{pmatrix} \omega_{11} & \omega_{12} & x \\ \omega_{21} & \omega_{22} & x \\ \omega_{31} & \omega_{32} & x \end{pmatrix}$$

 M_0 invariant under $U(2) \times \mathbb{Z}_2$ ω invariant under \mathbb{Z}_2 iff $x \equiv 0$

 \mathbb{Z}_2 preserved → Δm_H^2 protected from M_{UV} → M_{UV} fully isolated! cannot generate anything else

 \mathbb{Z}_2 (softly) broken $\rightarrow \Delta m_H^2$ unprotected: naturally $m_H \simeq x M_{UV}/2\sqrt{2}\pi$ \rightarrow requires **tuning** $x \simeq 10^{-14}$

this tension holds also in the presence of extra BSM states

Ilaria Brivio (ITP Heidelberg)

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S + \frac{1}{2} \partial_{\mu} R \partial^{\mu} R + i \bar{N} \partial N - \left[\frac{1}{2} y_{M} S \bar{N} N^{c} + y_{\nu} \bar{\ell} \tilde{H} N + \text{h.c.} \right] - V(H, S, R)$$

$$V(H, S, R) = \lambda (H^{\dagger} H)^{2} + \lambda_{S} S^{4} + \lambda_{R} R^{4} + \lambda_{HS} S^{2} (H^{\dagger} H) + \lambda_{HR} R^{2} (H^{\dagger} H) + \lambda_{SR} S^{2} R^{2}$$
ake $y_{M}, \lambda_{SR} \sim \mathcal{O}(1)$
Brdar, Helmboldt, Lindner 1807.11490
Brdar, Helmboldt, Kubo 1810.1230

- minimal extension: +2 scalar singlets S, R with $\mathbb{Z}_2 : R \mapsto -R$
- conformal invariance spontaneously broken via **Gildener-Weinberg** mech. $\exists \Lambda_{GW} : \quad \lambda_S(\Lambda_{GW}) = 0$ at this scale: $\langle H^{\dagger}H \rangle = \langle R \rangle = 0, \quad \langle S \rangle = v_S$

$$\rightarrow M = y_M v_S$$
 dynamically generated.

$$\rightarrow$$
 pseudo-Goldstone: $m_S^2 \sim \frac{v_s^2}{16\pi^2}$, $m_R^2 \sim 2\lambda_{SR}v_S^2$. S is the scalon.

▶ restrictions: $\lambda \neq 0, \lambda_S \neq 0, \lambda_R \neq 0, |\lambda_{HS}| \ll 1$, $|\lambda_{HR}|m_R^2 \ll |y_\nu|^2 M^2$...

t

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S + \frac{1}{2} \partial_{\mu} R \partial^{\mu} R + i \bar{N} \partial N - \left[\frac{1}{2} y_{M} S \bar{N} N^{c} + y_{\nu} \bar{\ell} \tilde{H} N + \text{h.c.} \right] - V(H, S, R)$$

$$V(H, S, R) = \lambda (H^{\dagger} H)^{2} + \lambda_{S} S^{4} + \lambda_{R} R^{4} + \lambda_{HS} S^{2} (H^{\dagger} H) + \lambda_{HR} R^{2} (H^{\dagger} H) + \lambda_{SR} S^{2} R^{2}$$

$$\text{rake } y_{M}, \lambda_{SR} \sim \mathcal{O}(1)$$

$$\text{Brdar, Emonds, Helmboldt, Lindner 1807.11490}$$

$$\text{Brdar, Helmboldt, Kubo 1810.1230}$$

there are regions of parameter space where simultaneously

- m_H , λ at EW scale are reproduced
- there are no Landau poles until M_{Pl}
- $\sum m_{\nu} < 0.23 \text{ eV}$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S + \frac{1}{2} \partial_{\mu} R \partial^{\mu} R + i \bar{N} \partial N - \left[\frac{1}{2} y_{M} S \bar{N} N^{c} + y_{\nu} \bar{\ell} \tilde{H} N + \text{h.c.} \right] - V(H, S, R)$$

$$V(H, S, R) = \lambda (H^{\dagger} H)^{2} + \lambda_{S} S^{4} + \lambda_{R} R^{4} + \lambda_{HS} S^{2} (H^{\dagger} H) + \lambda_{HR} R^{2} (H^{\dagger} H) + \lambda_{SR} S^{2} R^{2}$$

$$\text{Eake } y_{M}, \lambda_{SR} \sim \mathcal{O}(1)$$

$$\text{Brdar, Helmboldt, Lindner 1807.11490}$$

$$\text{Brdar, Helmboldt, Kubo 1810.1230}$$

fine tuning: λ_{HS} naturally small if it does not run to large values

$$\xi = \left| \frac{\lambda_{\rm HS} - y_{\nu}^2 y_M^2}{\lambda_{\rm HS}} \right|$$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S + \frac{1}{2} \partial_{\mu} R \partial^{\mu} R + i \bar{N} \partial N - \left[\frac{1}{2} y_{M} S \bar{N} N^{c} + y_{\nu} \bar{\ell} \tilde{H} N + \text{h.c.} \right] - V(H, S, R)$$

$$V(H, S, R) = \lambda (H^{\dagger} H)^{2} + \lambda_{S} S^{4} + \lambda_{R} R^{4} + \lambda_{HS} S^{2} (H^{\dagger} H) + \lambda_{HR} R^{2} (H^{\dagger} H) + \lambda_{SR} S^{2} R^{2}$$

$$\text{rake } y_{M}, \lambda_{SR} \sim \mathcal{O}(1)$$

$$\overset{\text{Brdar,Emonds,Helmboldt,Lindner 1807.11490}}{\text{Brdar,Helmboldt,Kubo 1810.1230}}$$

strong **first order phase transition** realized in sub-regions of parameter space

 \rightarrow predicts testable gravitational wave signal

Conformal UV completion + Dark Matter

Aoki,Brdar,Kubo 2007.04367 Aoki,Kubo,Yang 2109.04814

- replace Gildener-Weinberg with new strongly interacting hidden sector $SU(n): F^{\mu\nu}$ gauge field strength $+ \psi$ vector like fermions
- ▶ only 1 scalar S added

$$\mathcal{L} \supset -y \,\bar{\psi}\psi S - \frac{y_M}{2} S \, N^T C N - y_\nu \,\bar{I}\tilde{H}N - \left[\frac{\lambda_S}{4} S^4 + \lambda_H (H^{\dagger}H)^2 + \frac{\lambda_{SH}}{2} S^2 H^{\dagger}H\right]$$

$$\overline{\psi}\psi$$
 condensates and $\langle S \rangle = rac{v_S^2}{2}$ takes a vev $\rightarrow M = y_M v_S$

DM candidate: Goldstone bosons of global chiral SU(3) symmetry (equivalent of chiral symmetry in QCD \rightarrow pions)

 $10^{10} \lambda_{HS} < m_H^2/v_S^2 \simeq 6 \times 10^{-12} y_M^2$ required to suppress tree-level m_H corrections

Conformal UV completion + Dark Matter

Aoki,Brdar,Kubo 2007.04367

relic abundance by freeze-in

The Neutrino Option: summary

Type I seesaw CAN generate the Higgs potential.

Requires:
$$M \lesssim 10^4 \text{ TeV}$$
 $|\omega| \simeq [1 \text{ TeV}]/M$ $\lambda_0 \sim 0.01 - 0.05$

Does NOT solve the hierarchy problem, but new approach

- lacksim no BSM signatures predicted (besides u masses) up to the PeV

resonant leptogenesis is consistent with this scenario! even with SM CP only

✓ UV completions × perturbative M from M_{UV}
 ✓ conformal models with spontaneous breaking
 → potential GW signal
 ✓ string models

Ilaria Brivio (ITP Heidelberg)

Backup slides

Brdar, Emonds, Helmboldt, Lindner 1807.11490