

Gravitational waves

from metastable cosmic strings

Valerie Domcke CERN

Invisibles webinar September 19 2023

based on 1202.6679, 1203.0285, 1912.03695, 2009.10649, 2107.04578, 2307.04691 w. W. Buchmüller, H. Murayama and K. Schmitz

Outline

• Metastable cosmic strings

• Gravitational wave signal

cosmic strings in a nutshell

- one-dimensional topological defects formed in an early Universe phase transition
- symmetry breaking pattern $G \to H$ produces cosmic strings iff $\Pi_1(G/H) \neq \mathbb{1}$

- form cosmic string network, evolves through
 - string (self-)intersection & loop formation
 - emission of particles and gravitational waves

Allen & Shellard `90

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

- $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \longrightarrow \cos \mathbb{I}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \longrightarrow \cos \mathbb{I}$
 - cosmic strings
 - no cosmic strings

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

 $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \quad \longrightarrow \quad \text{cosmic strings}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \quad \longrightarrow \quad \text{no cosmic strings}$

resolution: no topologically stable cosmic strings

 $SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$ generates monopoles

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates cosmic strings,

metastable string & monopole network

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

 $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \quad \longrightarrow \quad \text{cosmic strings}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \quad \longrightarrow \quad \text{no cosmic strings}$

resolution: no topologically stable cosmic strings

 $SO(10) \to G_{SM} \times U(1)_{B-L}$

cosmic inflation

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates monopoles

dilutes monopoles

metastable string & monopole network

generates cosmic strings,

decay via nucleation of monopoles

 $\Gamma_d \sim \mu \exp(-\pi \kappa^2), \quad \kappa^2 = m^2/\mu$

 $\mu \sim v_{B-L}^2$ string tension $m \sim v_{GUT}$ monopole mass

dynamics of metastable CS network

[see also Leblond, Shlaer, Simons `09]

dynamics of metastable CS network

[see also Leblond, Shlaer, Simons `09]

number densities for long strings, loops and segments from kinetic equations:

$$\partial_t n(\ell, t) = S(\ell, t) - \partial_\ell \left[u(\ell, t) n(\ell, t) \right] - \left[3H(t) + \Gamma_d \ell \right] n(\ell, t) ,$$

source term length change per unit time

initial conditions: numerical simulations for scaling regime, matching conditions.

An example: loops

Buchmüller, VD, Schmitz 21

$$\partial_t n(\ell, t) = S(\ell, t) - \partial_\ell \left[u(\ell, t) n(\ell, t) \right] - \left[3H(t) + \Gamma_d \ell \right] n(\ell, t) ,$$

$$u(\ell, t) = -\Gamma G \mu \rightarrow \bar{\ell}(t') = \ell + \Gamma G \mu (t - t')$$

$$S(\ell, t) = \frac{B}{\alpha^{3/2} t^4} \,\delta(\ell - \alpha t)\theta(t_s - t)$$

energy loss due to GW emission

loop production function

 Γ, B, α from numerical simulations

Blanco-Pillado, Olum, Shlaer '14

solution in radiation background:

$$t < t_s: \qquad \stackrel{\circ}{n}(\ell, t) \simeq \frac{B}{t^{3/2} \left(\ell + \Gamma G \mu t\right)^{5/2}} \Theta\left(\alpha t - \ell\right)$$
$$t > t_s: \qquad \stackrel{\circ}{n}(\ell, t) = \frac{B}{t^{3/2} \left(\ell + \Gamma G \mu t\right)^{5/2}} e^{-\Gamma_d \left[\ell (t - t_s) + 1/2 \Gamma G \mu (t - t_s)^2\right]} \Theta\left(\alpha t_s - \bar{\ell}\left(t_s\right)\right)$$

Another example: segments from loops

Buchmüller, VD, Schmitz `21

$$\partial_t n(\ell, t) = S(\ell, t) - \partial_\ell \left[u(\ell, t) n(\ell, t) \right] - \left[3H(t) + \Gamma_d \ell \right] n(\ell, t) ,$$

$$u(\ell,t) = -\tilde{\Gamma}G\mu \rightarrow \bar{\ell}(t') = \ell + \tilde{\Gamma}G\mu(t-t')$$
$$S(\ell,t) = +2\Gamma_d \int_{\ell}^{\infty} d\ell' \,\tilde{n}_{>}^{(l)}(\ell',t) + \Gamma_d \,\ell \,\hat{n}_{>}(\ell,t)$$

energy loss due to GW emission

segments from loop segments and from full loops

 $\tilde{\Gamma} = \Gamma$ (simulations needed!)

solution in radiation background:

$$t < t_s:$$
 $\tilde{n}^{(l)}(\ell, t) \simeq 0$

$$t > t_s: \qquad \tilde{n}^{(l)}\left(\ell, t\right) \simeq \Gamma_d \left[\ell\left(t - t_s\right) + \frac{1}{2}\,\Gamma G\mu\left(t - t_s\right)^2\right] \overset{\circ}{n}\left(\ell, t\right)$$

(similar procedure for segments from long strings)

Outline

• Metastable cosmic strings

• Gravitational wave signal

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f(G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$
$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\rm max}} dz \frac{n(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop $P_q = \Gamma/(\zeta(4/3)q^{4/3})$ # of loops emitting GWs observed at frequency *f* today # of loops with length ℓ at time *t* with $\ell = 2q/((1+z)f)$ cosmological history

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f(G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$
$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\rm max}} dz \frac{n(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop $P_q = \Gamma/(\zeta(4/3)q^{4/3})$ # of loops emitting GWs observed at frequency *f* today # of loops with length ℓ at time *t* with $\ell = 2q/((1+z)f)$ cosmological history

$$\begin{split} n(\ell,z) &= n(\ell,z)_{\kappa \to \infty} \times e^{-\Gamma_d [\ell(t-t_s)+1/2\Gamma G \mu(t-t_s)^2]} \times \Theta(\alpha t_s - \ell(t_s)) & \text{finite CS life time} \\ & \text{number density} \\ \text{for stable strings} \\ n_r(\ell,t) &= 0.18 \ t^{-3/2} (\ell + 50G \mu t)^{-5/2} & \text{decay due to monopole} \\ \text{Blanco-Pillado, Olum, Shlaer '14} & \text{suchmüller, VD, Schmitz `21} \end{split}$$

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f(G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$
$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\rm max}} dz \frac{n(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop $P_q = \Gamma / (\zeta (4/3)q^{4/3})$ # of loops emitting GWs observed at frequency f today # of loops with length ℓ at time t with $\ell = 2q/((1+z)f)$ cosmological history analogous for contribution from segments $\Gamma_{1}[\ell(t+1)+1/2\Gamma C_{1}(t+1)^{2}] = 2(1-1)$

$$n(\ell, z) = n(\ell, z)_{\kappa \to \infty} \times e^{-\Gamma_d[\ell(\ell-\ell_s)+1/2\Gamma G\mu(\ell-\ell_s)]} \times \Theta(\alpha t_s - \ell(t_s)) \qquad \text{finite CS life time}$$

$$number \text{ density} \text{ for stable strings} \\ n_r(\ell, t) = 0.18 \ t^{-3/2}(\ell + 50G\mu t)^{-5/2} \qquad \text{decay due to monopole} \\ \text{Blanco-Pillado, Olum, Shlaer '14} \qquad \text{decay due to monopole} \\ \text{Blanco-Pillado, Olum, Shlaer '14} \qquad \text{Buchmüller, VD, Schmitz `21}$$

GWs from loops and segments

- plateau as for stable strings
- suppression at small frequencies due to finite CS life time
- dominant contribution

- only if no unconfined flux
- cut-off at high frequencies due to regularization of total emitted GW power

gravitational wave spectrum

GWs from metastable cosmic strings

Valerie Domcke - CERN

metastable cosmic strings at PTAs?

PTAs – what next?

parameter space of metastable strings

metastable GUT- scale strings are testable

conclusions & outlook

- Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at PTAs, LIGO or LISA
 - → testable with upcoming GW detectors

- Signal observed in NANOGrav and PPTA data may be the first glimpse at a SGWB ?
- Cosmological B-L breaking can link hybrid inflation, reheating, leptogenesis and dark matter production at GUT scale – *testable* !

conclusions & outlook

- Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at PTAs, LIGO or LISA
 - → testable with upcoming GW detectors

- Signal observed in NANOGrav and PPTA data may be the first glimpse at a SGWB ?
- Cosmological B-L breaking can link hybrid inflation, reheating, leptogenesis and dark matter production at GUT scale – *testable* !

backup slides

examples of symmetry breaking patterns

 $51 = SU(5) \times U(1)_X / \mathbb{Z}_5 ,$ $5_{\rm F}1 = SU(5)_{\rm flipped} \times U(1)_{\rm flipped} / \mathbb{Z}_5 ,$ $422 = SU(4)_c \times SU(2)_L \times SU(2)_R / \mathbb{Z}_2 ,$ $3221 = SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} / \mathbb{Z}_6 ,$ $3211 = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X / \mathbb{Z}_6 ,$ $321 = SU(3)_c \times SU(2)_L \times U(1)_Y / \mathbb{Z}_6.$ (20) from Dunsky, Ghoshal, Murayama, Sakakihara, White `21

GWs from segments

Cosmological B-L breaking

extend SM by gauging $U(1)_{B-L}$ & adding 3 RH neutrinos:

cosmological B-L breaking

Buchmüller, VD, Schmitz `12, Buchmüller, VD, Kamada, Schmitz `13+`14

parameter space

GWs from metastable cosmic strings

Buchmüller, VD, Schmitz `12,