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• Speculation by Poincaré (1905)


• Einstein provided a firm theoretical background for them (1916) 

Gravitational waves

5

□ hμν = − 16πGTμν
wave equation 
describing two 
polarization modes
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• Speculation by Poincaré (1905)


• Einstein provided a firm theoretical background for them (1916) 

Gravitational waves
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□ hμν = − 16πGTμν
wave equation 
describing two 
polarization modes

The deformation of a ring of test masses 
due to the different polarization
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□ hμν = − 16πGTμν



f ≈
1

2π
GM
R3

≪ 10 kHz

Gravitational waves



f ≈
1

2π
GM
R3

≪ 10 kHz

No known astrophysical objects are small and dense 
enough to produce gravitational waves beyond 10 kHz

Gravitational waves
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High-frequency gravitational waves

A growing community is 
seriously considering the 
search of high frequency 
gravitational waves 

10

Stochastic 

Coherent 
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Revisiting Gertsenhstein’s ideas
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Revisiting Gertsenhstein’s ideas
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• The conversion of gravitational waves into electromagnetic waves is a 
classical process. Its rate does not involve 


• Involving gravity the conversion probabilities are small. It may be 
compensated by a ‘detector’ of cosmological size.


• The process is strictly analogous to axion-photon conversion.

ℏ

Raffelt, Stodolski’89

The (inverse) Gertsenhstein Effect 

13

P ∼ GB2L2
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• The conversion of gravitational waves into electromagnetic waves is a 
classical process. Its rate does not involve 


• Involving gravity the conversion probabilities are small. It may be 
compensated by a ‘detector’ of cosmological size.


• The process is strictly analogous to axion dark matter conversion.

ℏ

Raffelt, Stodolski’89

The (inverse) Gertsenhstein Effect 
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• Pseudoscalar field


• Solution to the strong CP problem


• Excellent dark matter candidate

a
ℒ = −

1
4

gaγγaFμνF̃μν

Peccei, Quinn 1977

Weinberg, Wilczek 1978
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The QCD axion as dark matter
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Axions act as a source term to Maxwell's equations, effectively 
inducing an electromagnetic current.

∇ ⋅ B = 0
∇ × E + ∂tB = 0

∇ ⋅ E = j0

∇ × B − ∂tE = j

Sikivie, 1983
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j = gaγγ (∇a × E + ∂taB)j0 = − gaγγ ∇a ⋅ B

Axion electrodynamics 
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a

a a

a

• microwave cavities

• MADMAX

• ADMX

• HAYSTAC

• ABRACADABRA

• Lumped element detectors

• …

• CAST

• IAXO

• …..

• Light shining through the walls

• OSCAR

• ALPS II

• …
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• Helioscopes (X rays)


• Haloscopes  (radio frequencies)


• Purely lab experiments 

Axion electrodynamics 
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Still far from testing Early 
Universe signals

a
The (inverse) Gertsenhstein Effect 



Gravitational wave versus 
axion electrodynamics
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jeff

Magnetic

 flux

∇ × B − ∂tE = gaγγ ∂ta B0

jeff

21

The electromagnetic fields produced by the axion drive a 
current through a pickup coil

Low mass axion haloscopes
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jeff

SHAFT

Magnetic

 flux

∇ × B − ∂tE = gaγγ ∂ta B0

jeff
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The electromagnetic fields produced by the axion drive a 
current through a pickup coil

Low mass axion haloscopes
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GWs act as a source term to Maxwell's equations, effectively 
inducing an electromagnetic current.

gμν = ημν + hμν hμν ≪ 1

Gravitational wave electrodynamics
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∇ ⋅ E = − ∇ ⋅ P
∇ ⋅ B = 0

∇ × E = − ∂tB
∇ × B = ∂tE + ∇ × M + ∂tP

Pi = − hijEj Mi = − hijBj ( in  the TT gauge)
Domcke, CGC, Rodd,  2202.00695
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More explicit comparison to axions 

gμν = ημν + hμν hμν ≪ 1
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P = gaγγaB, M = gaγγaE
McAllister et al, 1803.07755


Tobar et al, 1809.01654 

Ouellet et al, 1809.10709 

∇ ⋅ E = − ∇ ⋅ P
∇ ⋅ B = 0

∇ × E = − ∂tB
∇ × B = ∂tE + ∇ × M + ∂tP
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Axions act as a source term to Maxwell's equations, effectively 
inducing an electromagnetic current.

More explicit comparison to axions 
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Axion 
electrodynamics

Gravitational wave 
electrodynamics

An example Gertsenshtein effect

Effective current

( in  the TT gauge)

Benchmark QCD axion

jμ
eff = (−∇ ⋅ P, ∇ × M + ∂tP)

Pi = − hijEj Mi = − hijBj

McAllister et al, 1803.07755

Tobar et al, 1809.01654 


Ouellet et al, 1809.10709 

P = gaγγaB, M = gaγγaE

Domcke, CGC, Rodd,  2202.00695

a

h ∼ 10−22
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DMRadio program
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Magnetic

 flux

jeff
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Magnetic

 flux
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jeff

Domcke, CGC, Rodd,  2202.00695
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Magnetic

 flux
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jeff
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Toroidal magnetic fields
Domcke, CGC, Rodd,  2202.00695
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Magnetic

 flux
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jeff
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• Only one polarization 


• Suppression at small frequencies


• The sensitivity scaling with the volume is faster than for axions 

Toroidal magnetic fields
Domcke, CGC, Rodd,  2202.00695
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Magnetic

 flux
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jeff
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• Only one polarization 


• Suppression at small frequencies


• The sensitivity scaling with the volume is faster than for axions 

ωR ≪ 1

Toroidal magnetic fields
Domcke, CGC, Rodd,  2202.00695
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Magnetic

 flux
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jeff
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Toroidal magnetic fields
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Magnetic

 flux
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• Only one polarization 


• Suppression at small frequencies


• The sensitivity scaling with the volume is faster than for axions 

ωR ≪ 1

Toroidal magnetic fields



Selection rules

 work in progress: 2306.xxxxx
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DMRadio program
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Magnetic

 flux

jeff

Toroidal and 
solenoidal 
geometries



Beyond toroidal configurations
Domcke, CGC, Lee, Rodd (in progress)

Solenoidal external field

and vertical pickup loop
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Domcke, CGC, Lee, Rodd (in progress)

Selection rules

Write down the detector response matrix for a wave coming from an arbitrary direction, 
and impose cylindrical symmetry for both external magnetic field and loop:
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Domcke, CGC, Lee, Rodd (in progress)

Selection rules

Write down the detector response matrix for a wave coming from an arbitrary direction, 
and impose cylindrical symmetry for both external magnetic field and loop:
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Domcke, CGC, Lee, Rodd (in progress)

Selection rules

Write down the detector response matrix for a wave coming from an arbitrary direction, 
and impose cylindrical symmetry for both external magnetic field and loop:
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Domcke, CGC, Lee, Rodd (in progress)

Selection rules

There are more rules: I warmly invite you to have a look at the paper in a few days

Write down the detector response matrix for a wave coming from an arbitrary direction, 
and impose cylindrical symmetry for both external magnetic field and loop:

ωL ≪ 1
Expect 
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jeff

Gravitational waves

 in low mass axion haloscopes

Domcke, CGC, Rodd,  2202.00695

Domcke, CGC, Lee, Rodd (in progress)

Break cylindrical symmetry
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In the proper detector frame the coordinate system closely matches the intuitive description of an Earth-based 
laboratory, with the gravitational wave acting as a Newtonian force. 

 Proper detector frame

42

The  dependence is unavoidableω2

Domcke, CGC, Rodd,  2202.00695
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In the proper detector frame the coordinate system closely matches the intuitive description of an Earth-based 
laboratory, with the gravitational wave acting as a Newtonian force. 
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The  dependence is unavoidableω2

Domcke, CGC, Rodd,  2202.00695

 Proper detector frame
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Conclusions
The techniques developed for detecting axion dark matter could potentially be used to discover 
new sources of gravitational waves.


Selection rules in detectors exhibiting cylindrical symmetry enforce cancellations in the flux 
associated to gravitational waves.


These cancellations can be avoided by changing the geometry of the pickup loop. We demonstrate 
this for different detector geometries, obtaining a parametric increase of sensitivity. 


Different experimental proposals have coalesced on a strain sensitivity of  for MHz GWs,  still 
orders of magnitude away from signals of the early Universe. Whether we can hope to probe such 
strain sensitivities remains to be determined.


10−22
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(∂2
t +

ωn

Qn
∂t + ω2

n) en(t) = −
∫

Vcav 
d3xE*n ⋅ ∂t jeff 

∫
Vcav

d3x En
2

E(x, t) = ∑
n

en(t)En(x)Eigenmodes

It resonates when the 
GW frequency 
matches one of the 
eigenmode 
frequencies

Other possibilities    

48
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Although cosmic magnetic fields are not expected 
to be perfectly homogeneous, coherent 

oscillations take place in highly homogeneous 
patches.

ℓosc = 4ω/(1 + z)2Xe(z)ω2
pl,0 ≪ 1 pc

⟨Γg↔γ⟩ =
2πGB2ℓ2

osc
Δℓ

𝒫 ≡ ∫l.o.s.
⟨Γg↔γ⟩dt = ∫

zini

0

⟨Γg↔γ⟩
(1 + z) H

dz

( □ + ω2
pl) Aλ = − B∂ℓhλ

□ hλ = 16πGB ∂ℓAλ

The plasma frequency acts as an effective mass 
term

ωpl = e2ne /me

ℓosc ≃ 4ω/ω2
pl

Oscillations after the 
formation of the 

CMB



Cosmic magnetic fields 

𝒫 ≡ ∫l.o.s.
⟨Γg↔γ⟩dt = ∫

zini

0

⟨Γg↔γ⟩
(1 + z) H

dz Domcke, CGC 2021



Upper bounds on stochastic gravitational waves


