The X17 Journey: From Nuclear Experiments to Atomic Electron Motion

Fernando Arias Aragón

June, 25th, 2025

Based on:

FAA, L. Darmé, G. Grilli di Cortona, E. Nardi, 2403.15387, PRL132(2024)261801 **FAA**, L. Darmé, G. Grilli di Cortona, E. Nardi, 2407.15941, PRL134(2025)061802 **FAA**, G. Grilli di Cortona, E. Nardi, L. Veissière, 2504.00100, JHEP06(2025)199 **FAA**, G. Grilli di Cortona, E. Nardi, C. Toni, 2504.11439

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Overview

- The X17 particle
 - Anomalies in Nuclear Transitions
 - Consistency and Explanation
- A particle physics probe: PADME
 - Resonant Production of the X17
 - Signal Shape: Atomic Electron Motion
 - The PADME Excess
- Atoms as Electron Accelerators
 - *a*_µ
 - New Physics Searches

The X17 Particle – Nuclear Anomalies

Timeline:

- 2015: First anomaly observed in ${}^{8}Be^{*}(18.15 MeV) \xrightarrow{\text{Krasznahorkay et al., PRL116(2016)042501}}{\rightarrow g.s.$
- 2017: Improved setup, similar anomaly in ${}^{8}Be^{*}(17.64 MeV) \rightarrow \overset{\text{Krasznahorkay et al., EPJ WebConf. 142(2017)01019}}{g.s.}$
- 2018: ⁸Be result confirmed, hint at anomaly ${}^{4}He*(21 MeV)$
- 2019: Confirmation of ${}^{4}He$ excess (7,2 σ) consistent with X17
- **2021**: Preliminary results for ${}^{12}C^*(17.2 \text{ MeV})$: large angle excess
- 2022: Confirmation of ${}^{12}C$ excess
- 04/2023: Giant dipole resonance anomaly observed in ${}^{7}Li^{*}(pe^{+}e^{-})^{8}Be^{-1}$
- 08/2023: Observation of the ${}^{8}Be$ anomaly in a different spectrometer $\frac{\text{Tran The Anh et al., Universe 10(2024)4, 168}}{2}$
- 11/2024: MEG-II sees no significant signal at $1,5\sigma^{\frac{\text{Afanaciev et al., 2411.07994 nucl-ex}}{2411.07994 nucl-ex}}$
- 05/2025: PADME sees an excess around 17 MeV in e^+e^- final state Bossi et al., 2505.24797 hep-ex

• e^+e^- angle θ correlated to mass m_X of single new particle

- Can the SM explain these anomalies?
 - Multipole interference X Zhang and Miller, Phys.Lett.B 773 (2017) 159-165
 - Nuclear chain reaction X B. Koch, Nucl.Phys.A 1008 (2021) 122143
 - Higher order processes: peaked distributions ? P. Kálmán and T. Keszthelyi, Eur.Phys.J.A 56 (2020) 8, 205
 - Full second-order calculation \checkmark (for ⁸*Be*) $\stackrel{Aleksejevs et al., 2102.01127}{\bullet}$

Gysbers et al., Phys.Rev.C 110 (2024) 1, 015503

- Ab-initio No-Core Shell Model with Continuum: consistent with ATOMKI background X
- *Ab-initio* detailed study of ${}^{4}He$ reaction: no bumps in SM \times

No conclusive explanation within the SM

• If not SM, then what?

X boson spin parity	Process		
xialvector Vector Pseudoscalar Scal	· Vector	Axialvector	$N^* \to N$
1 0,2 1 /	0, 2	1	$^{8}\text{Be}(18.15) \rightarrow ^{8}\text{Be}$
1 0,2 1 /	0, 2	1	$^{8}\text{Be}(17.64) \rightarrow ^{8}\text{Be}$
/ 1 0 /	1	/	$^{4}\text{He}(21.01) \rightarrow {}^{4}\text{He}$
1 / / 0	/	1	$^{4}\text{He}(20.21) \rightarrow {}^{4}\text{He}$
0, 2 1 / 1	1	0, 2	$^{12}C(17.23) \rightarrow ^{12}C$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0, 2 1 / 1	1 / 1 0, 2	${}^{8}\text{Be}(17.64) \rightarrow {}^{8}\text{Be}$ ${}^{4}\text{He}(21.01) \rightarrow {}^{4}\text{He}$ ${}^{4}\text{He}(20.21) \rightarrow {}^{4}\text{He}$ ${}^{12}\text{C}(17.23) \rightarrow {}^{12}\text{C}$

Adapted from D. Barducci and C. Toni, JHEP 02 (2023) 154

The X17 Particle – Summary

- Anomalies seen in three different nuclei, two independent experiments
- Not single or last bin effects: clear bumps
- A single new particle greatly improves fits
- SM fails to give conclusive explanations
- (Axial)vector kinematically (θ and y) and dynamically (coupling and BR) robust

PADME – Resonant Production

• Beam Test Facility @ Laboratori Nazionali di Frascati: positron accelerator

 $E_{+} \in [150, 500] \text{ MeV} \to \sqrt{s} \in [12.5, 22.5] \text{ MeV}$

Perfect for X17!

PADME – Resonant Production PADME strategy for the X_{17} search

Attempt using the virial theorem <u>Plestid and Wise, Phys.Rev.D 110 (2024) 5, 056032</u>

 $\mathrm{d}\sigma\simeq\mathrm{d}\sigma_0+\mathrm{d}\sigma_\mathcal{B}$

$$\mathrm{d}\sigma_{\mathcal{B}} = \frac{1}{Z_A m_e} \bigg(-\frac{7}{3} \epsilon_A - \langle \hat{V}_1 \rangle_A \bigg) \mathrm{d}\sigma_0$$

$$\langle \hat{V}_1 \rangle_A = Z_A \times \int d^3 r \ n_A(\mathbf{r}) \left(\frac{-Z_A \alpha}{|\mathbf{r}|} \right)$$

Virial theorem does not account for fast electrons 17

[Peskin-Schroeder (or any other text-book)]

$$d\boldsymbol{\tau} = \frac{d^{3}p}{(2\pi)^{3}} \int \frac{d^{3}k_{A}}{(2\pi)^{3}} \int \frac{d^{3}k_{B}}{(2\pi)^{3}} \frac{(2\pi)^{4}\delta(\boldsymbol{E}_{A}) + \boldsymbol{E}_{B} - \boldsymbol{E}_{X})\delta^{(3)}(\vec{k}_{A} + \vec{k}_{B} - \vec{p})}{2\boldsymbol{E}_{X}2\boldsymbol{E}_{k_{A}}2\boldsymbol{E}_{B} | \boldsymbol{v}_{A} - \boldsymbol{v}_{B} |} \left[\boldsymbol{\phi}_{A} \boldsymbol{\phi}_{A}^{\dagger} \boldsymbol{\phi}_{A} \right]^{2} \mathcal{M}(\boldsymbol{k}_{A}, \boldsymbol{k}_{B} \rightarrow \boldsymbol{p}) \left[2 \boldsymbol{\phi}_{B}(\vec{k}_{B}) \right]^{2}}$$

$$e^{+} \boldsymbol{k}_{B} \boldsymbol{p} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v}$$

$$k_{A} \boldsymbol{\rho} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v}$$

$$e^{-} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v}$$

$$e^{-} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v}$$

$$Matrix element$$

[Peskin-Schroeder (or any other text-book)]

$$d\sigma = \frac{d^{3}p}{(2\pi)^{3}} \int \frac{d^{3}k_{A}}{(2\pi)^{3}} \int \frac{d^{3}k_{B}}{(2\pi)^{3}} \frac{(2\pi)^{4}\delta(E_{A} + E_{B} - E_{X})\delta^{(3)}(\vec{k}_{A} + \vec{k}_{B} - \vec{p})}{2E_{X}2E_{k_{A}}2E_{B} \left| v_{A} - v_{B} \right|} \left[\phi_{Aq}(\vec{k}_{A}) \right|^{2} \mathcal{M}(k_{A}, k_{B} \to p) \left|^{2} \phi_{B}(\vec{k}_{B}) \right|^{2}$$

• Beam positrons are free with momentum p_B

$$\int \frac{dk_B^3}{(2\pi)^3} \left| \phi_B(\vec{k}_B) \right|^2 = 1, \quad \left| \phi_B(\vec{k}_B) \right|^2 = (2\pi)^3 \delta^3 \left(\vec{p}_B - \vec{k}_B \right)$$

• Neglect binding energies

$$E_A \simeq m_e$$

• Isotropic electron momentum distribution

$$\sigma = \int_{k_A^{\min}}^{k_A^{\max}} dk_A \frac{|\mathcal{M}|^2 k_A n(k_A)}{16\pi p_B |E_B k_A x_0(k_A) - E_{k_A} p_B|} \frac{x_0(k_A) = \frac{2E_A E_B + 2m_e^2 - m_X^2 - k_A^2}{2k_A p_B}}{k_A^{\max,\min}} = \left| p_B \pm \sqrt{(E_A + E_B)^2 - m_X^2} \right|^2$$

FAA, G. Grilli di Cortona, E. Nardi, C. Toni, 2504,11439

FAA, G. Grilli di Cortona, E. Nardi, C. Toni, 2504,11439

Atoms as Electron Accelerators

 $\mathscr{L} \supset -i\epsilon e \bar{\psi}_e \gamma^\mu \psi_e A'_\mu$

KLOE, 2015

NA48

PADME sensitivity

90% C.L., $E_B = 288$ MeV

 $N_{poT} = 10^{18}, \, \delta_B = 0.5\%$

- Electron motions *smears* cross sections •
- Resonant production lower at the minimum, but wider range of masses
- Effective as a new energy scanning method
- Exploits large Z materials and very intense beams

 10^{-3}

2. Radiative return method

Atoms as Electron Accelerators - a_{μ}

PROPOSAL:

[FAA, Darmé, Grilli di Cortona, Nardi, PRL134(2025)061802]

Positron annihilation on atomic electrons of a fixed target with high Z (e.g. ^{92}U). The $\sigma_{had}(s)$ energy dependence is scanned by the relativistic electron velocity of the inner atomic shells.

• Resonant annihilation: $2 \rightarrow 1$ process

$$\sigma = \int_{k_A^{\min}}^{k_A^{\max}} dk_A \frac{\left|\mathcal{M}\right|^2 k_A n(k_A)}{16\pi p_B \left| E_B k_A x_0(k_A) - E_{k_A} p_B \right|}$$

• $e^+e^- \rightarrow \mu^+\mu^-: 2 \rightarrow 2$, more complex phase space

$$\sigma = \int_0^\infty dp_2 \int_0^\infty dk_A \int_0^\pi d\theta_2 \int_0^\pi d\theta_A \frac{p_2 k_A \left| \phi\left(k_A\right) \right|^2}{2^8 \pi^5 E_2} \left(2\pi - \arccos x_0 \right) \frac{\left| \mathcal{M}_{free}(k_A, p_B \to k_A + p_B - p_2, p_2) \right) \right|^2}{\sqrt{1 - x_0^2} |E_B k_A c_{\theta_A} - E_{k_A} p_B|} \Pi\left(\frac{x_0}{2}\right) d\theta_A \left(\frac{p_2 k_A \left| \phi\left(k_A\right) \right|^2}{2^8 \pi^5 E_2} \right) \left(2\pi - \arccos x_0 \right) \frac{\left| \mathcal{M}_{free}(k_A, p_B \to k_A + p_B - p_2, p_2) \right) \right|^2}{\sqrt{1 - x_0^2} |E_B k_A c_{\theta_A} - E_{k_A} p_B|}$$

$$x_{0} = \frac{m_{1}^{2} + k_{A}^{2} + p_{2}^{2} + p_{B}^{2} + 2k_{A}p_{B}c_{\theta_{A}} - 2p_{2}c_{\theta_{2}}\left(p_{B} + k_{A}c_{\theta_{A}}\right) - \left(E_{A} + E_{B} - E_{2}\right)^{2}}{2k_{A}p_{2}s_{\theta_{A}}s_{\theta_{2}}}$$

Atoms as Electron Accelerators - a_{μ}

PROPOSAL:

[FAA, Darmé, Grilli di Cortona, Nardi, PRL134(2025)061802]

Positron annihilation on atomic electrons of a fixed target with high Z (e.g. ^{92}U). The $\sigma_{had}(s)$ energy dependence is scanned by the relativistic electron velocity of the inner atomic shells.

Atoms as Electron Accelerators - NP Searches

- New Intensity vs Energy dynamics
- Can reach difficult parts of some parameter spaces

	$N_{\rm e^+oT}/{\rm year}$	E_B	^{74}W target	z_D
LNF	10^{18}	$450\mathrm{MeV}$	$5\mathrm{cm}$	$3\mathrm{m}{-}100\mathrm{m}$
JLab	10^{21}	$12{ m GeV}$	$1\mathrm{cm}-5\mathrm{cm}$	$3\mathrm{m}{-}100\mathrm{m}$
CERN	10^{13}	$100 { m ~GeV}$	$5\mathrm{cm}$	$3\mathrm{m}{-}100\mathrm{m}$

$$\mathscr{L} \supset -i\epsilon e \,\bar{\psi}_e \gamma^\mu \psi_e A'_\mu$$

Atoms as Electron Accelerators - NP Searches

 $\mathscr{L} \supset i m_e g_{ae} a \overline{\psi}_e \gamma_5 \psi_e$

FAA, G. Grilli di Cortona, E. Nardi, L. Veissière, JHEP06(2025)199

Conclusions

- Anomalies from 3 different nuclei point towards the same invariant mass
- SM does not provide satisfying explanations
- A single new (axial)vector may be *hidden* behind the anomalies
- PADME is the ideal particle experiments to produce the X17
- Given its narrow with, electron motion effects are crucial for the signal shape
- A local 2.5 σ excess was observed at the precisely expected mass
- Atomic electron motion shows potential for SM and New Physics

THANK YOU FOR YOUR ATTENTION

Beyond FEAR - Compton Profile

Beyond FEAR - Compton profile

Compton profile: Radon transform of the electron momentum distribution function along a certain direction

$$J(q) = \frac{1}{4\pi^2} \int_{|q|}^{\infty} n(k) \, k \, dk$$
$$J(k_z) = \iint dk_x \, dk_y \, n(k_x, k_y, k_z) \qquad \underbrace{+\text{isotropy}}_{\int_{-\infty}^{+\infty}} J(q) \, dq = Z$$

Beyond FEAR - Data and Theory

X-Ray determination of the Electron Momentum Density in Diamond, Graphite and Carbon Black [Phys. Rev. 176 (1968) 900] Theoretical Compton profile of diamond, boron nitride and carbon nitride [Physica B 521 (2017) 361-364]

New obtention of the HVP

$$a_{\mu}^{\exp} = (116592059 \pm 22) \cdot 10^{-11}$$

New obtention of the HVP

[Aoyama et al., 2006.04822, Phys. Rept. 887 (2020) 1-166]

