The Cosmic Axion Background Jeff Dror

JD w/ Rodd & Murayama 2101.09287

Structure Formation

The Cosmic Axion Background Jeff Dror

JD w/ Rodd & Murayama 2101.09287

. . .

Structure Formation

Outline

Axions and dark radiation

General overview Experimental Sensitivity CaB Production

General overview Experimental Sensitivity CaB Production

$$\mathcal{L} \supset -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \supset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$$

$$\mathcal{L} \supset -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \supset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$$

[compiled at - https://github.com/cajohare/AxionLimits]

[compiled at - https://github.com/cajohare/AxionLimits]

[compiled at - https://github.com/cajohare/AxionLimits]

[compiled at - https://github.com/cajohare/AxionLimits]

Copiously produced in early universe

Copiously produced in early universe

Light axions are stable

$$a \cdots \gamma \gamma = \frac{\Gamma}{H_0} \sim \left(\frac{m_a}{100 \text{ eV}}\right)^3 \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2$$

Copiously produced in early universe

Light axions are stable

$$a \cdots \gamma \gamma = \frac{\Gamma}{H_0} \sim \left(\frac{m_a}{100 \text{ eV}}\right)^3 \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2$$

Could be responsible for H_0 -tension ("universe-age" mystery) $\tau_{\text{universe}} = \begin{cases} 12.7 \pm 0.1 \text{ byr} & (\text{late}) \\ 13.7 \pm 0.1 \text{ byr} & (\text{early}) \end{cases}$ [Verde, Treu, Riess - 1907.10625] [Planck - 1807.06209]

Copiously produced in early universe

Light axions are stable

$$a \cdots \gamma \gamma = \frac{\Gamma}{H_0} \sim \left(\frac{m_a}{100 \text{ eV}}\right)^3 \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2$$

Could be responsible for H_0 -tension ("universe-age" mystery)

Seeing the axi-verse through $g_{a\gamma\gamma}$

[Moore,Cole,Berry - 1408.0740]

Seeing the axi-verse through $g_{a\gamma\gamma}$

[Moore,Cole,Berry - 1408.0740]

Seeing the axi-verse through $g_{a\gamma\gamma}$

Calculating experimental sensitivities

Experimental Sensitivity

CaB Production

Axion electrodynamics

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - J_{\mu}A^{\mu} + g_{a\gamma\gamma}a\mathbf{E}\cdot\mathbf{B}$$

Axion electrodynamics

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - J_{\mu}A^{\mu} + g_{a\gamma\gamma}a\mathbf{E}\cdot\mathbf{B}$$

$$\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma}(\nabla a) \cdot \mathbf{B}$$
$$\nabla \times \mathbf{E} = -\dot{\mathbf{B}}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{B} = \dot{\mathbf{E}} + \mathbf{J} + g_{a\gamma\gamma}(\dot{a}\mathbf{B} + \nabla a \times \mathbf{E})$$

Axion electrodynamics

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - J_{\mu}A^{\mu} + g_{a\gamma\gamma}a\mathbf{E}\cdot\mathbf{B}$$

$$\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma}(\nabla a) \cdot \mathbf{B} \quad \longleftarrow \quad \text{effective charge}$$

$$\nabla \times \mathbf{E} = -\dot{\mathbf{B}}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \dot{\mathbf{E}} + \mathbf{J} + g_{a\gamma\gamma}(\dot{a}\mathbf{B} + \nabla a \times \mathbf{E})$$

Axion electrodynamics

-1

Axion electrodynamics

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - J_{\mu} A^{\mu} + g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$$

$$\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} (\nabla \mathbf{z}) \cdot \mathbf{B}$$

$$\nabla \times \mathbf{E} = -\dot{\mathbf{B}}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \dot{\mathbf{E}} + \mathbf{J} + g_{a\gamma\gamma} (\dot{a}\mathbf{B} + \nabla \mathbf{g} \times \mathbf{E})$$

$$\bullet \text{effective current}$$

Dark Matter

•
$$\nabla a \propto |\vec{\mathbf{v}}_a| \sim 10^{-3}$$

• only effective current

Axion electrodynamics

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - J_{\mu}A^{\mu} + g_{a\gamma\gamma}a\mathbf{E}\cdot\mathbf{B}$$

 $\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} (\nabla a) \cdot \mathbf{B} \quad \longleftarrow \quad \text{effective charge}$ $\nabla \times \mathbf{E} = -\dot{\mathbf{B}}$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{B} = \dot{\mathbf{E}} + \mathbf{J} + g_{a\gamma\gamma} (\dot{a}\mathbf{B} + \nabla a \times \mathbf{E}) \quad \longleftarrow \quad \text{effective current}$

Dark Matter

••
$$\nabla a \propto |\vec{\mathbf{v}}_a| \sim 10^{-3}$$

•• only effective current

CaB

- current + charge
- ► dependence on direction

HAYSTAC

$$(\nabla^2 - \partial_t^2) \vec{\mathbf{E}} = g_{a\gamma\gamma} \left(\vec{\mathbf{B}}_0 \partial_t^2 a - (\vec{\mathbf{B}}_0 \cdot \vec{\nabla}) \vec{\nabla} a \right)$$

General overview Experimental Sensitivity CaB Production

$$(
abla^2 - \partial_t^2) \vec{\mathbf{E}} = g_{a\gamma\gamma} \left(\vec{\mathbf{B}}_0 \partial_t^2 a - (\vec{\mathbf{B}}_0 \cdot \vec{
abla}) \vec{
abla} a
ight)$$

- $(\nabla^2 \partial_t^2) \vec{\mathbf{E}} = g_{a\gamma\gamma} \left(\vec{\mathbf{B}}_0 \partial_t^2 a (\vec{\mathbf{B}}_0 \cdot \vec{\nabla}) \vec{\nabla} a \right)$
- 1) Solve $\vec{\mathbf{B}}_0 = 0$ modes, $\vec{\mathbf{e}}_n$
- 2) Expand $\vec{\mathbf{E}} = \sum_n A_n \vec{\mathbf{e}}_n$
- 3) Insert and solve for A_n

new term $\hat{\mathbf{k}}$ -axion direction

11/22

$$\begin{tabular}{|c|c|c|c|c|} $$ simplified \\ limits \end{tabular} P^{\rm DM}_a(\omega) &= P^{\rm CaB}_a(\omega) \\ $$ be easier to see $$ b$$

General overview Experimental Sensitivity CaB Production

 $g^2_{a\gamma\gamma}(\omega) \ \Omega_{\rm DM} Q_{\rm DM} = \ \Omega_a(\omega) \ (g^{\rm SE}_{a\gamma\gamma})^2 Q_a$

$$\begin{array}{c|c} \mbox{simplified}\\ \mbox{limits} \end{array} P_a^{\rm DM}(\omega) \ = \ P_a^{\rm CaB}(\omega) & \mbox{caution: DM may}\\ \mbox{be easier to see} \end{array}$$

$$\begin{array}{c} g_{a\gamma\gamma}^2(\omega) \ \Omega_{\rm DM}Q_{\rm DM} \ = \ \Omega_a(\omega) \ (g_{a\gamma\gamma}^{\rm SE})^2 Q_a & \mbox{1 bin}\\ \mbox{} & \m$$

Producing a cosmic axion background

spectrum (almost) fixed

$$\rho_a = \frac{1}{2\pi^2} \frac{\omega^4}{e^{\omega/T_a} - 1}$$

$$T_d \text{ is free-ish}$$

$$T_a \sim T_\gamma \sim 10^{-4} \text{eV}$$

Thermal production - spectrum

Thermal production - spectrum

Thermal production - spectrum

Dark matter decaying into axions?

General overview Experimental Sensitivity CaB Production

The string spectrum

The string spectrum

The string spectrum

2102.07723]

General overview Experimental Sensitivity CaB Production

The string spectrum

The string spectrum

Experimental sensitivity

The string spectrum

Experimental sensitivity

The string spectrum

Experimental sensitivity

Scalar pushed from minimum during inflation

Scalar pushed from minimum during inflation

$$\chi_i \gg f_a$$
 at end of inflation

$$V(\Phi) = \lambda^2 \left(|\Phi|^2 - f_a^2 \right)^2$$

Oscillations when $m_{\chi}^{\text{eff}}(\chi_i) \simeq \lambda \chi_i \sim H$

Typical energy:

Energy density:

$$\begin{split} V(\Phi) &= \lambda^2 \left(|\Phi|^2 - f_a^2 \right)^2 & \text{Oscillations when} \\ m_\chi^{\text{eff}}(\chi_i) &\simeq \lambda \chi_i \sim H \end{split} \\ \text{Typical energy:} & \bar{\omega}_a \sim m_\chi^{\text{eff}}(\chi_i) \left(\frac{s(T_0)}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_\chi^{\text{eff}}(\chi_i)}{\text{MeV}} \right)^{1/2} \end{split}$$

Energy density:

$$\begin{split} V(\Phi) &= \lambda^2 \left(|\Phi|^2 - f_a^2 \right)^2 & \begin{array}{c} \text{Oscillations when} \\ m_\chi^{\text{eff}}(\chi_i) &\simeq \lambda \chi_i \sim H \end{split} \\ \text{Typical energy:} & \bar{\omega}_a \sim m_\chi^{\text{eff}}(\chi_i) \left(\frac{s(T_0)}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \ \text{eV} \left(\frac{m_\chi^{\text{eff}}(\chi_i)}{\text{MeV}} \right)^{1/2} \end{split} \\ \text{Energy density:} & \Omega_a \sim 3 \times 10^{-7} \left(\frac{\chi_i}{M_{\text{Pl}}} \right)^2 \end{split}$$

$$\begin{split} V(\Phi) &= \lambda^2 \left(|\Phi|^2 - f_a^2 \right)^2 & \begin{array}{c} \text{Oscillations when} \\ m_\chi^{\text{eff}}(\chi_i) &\simeq \lambda \chi_i \sim H \end{split} \\ \text{Typical energy:} & \bar{\omega}_a \sim m_\chi^{\text{eff}}(\chi_i) \left(\frac{s(T_0)}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_\chi^{\text{eff}}(\chi_i)}{\text{MeV}} \right)^{1/2} \\ \text{Energy density:} & \Omega_a \sim 3 \times 10^{-7} \left(\frac{\chi_i}{M_{\text{Pl}}} \right)^2 & & \\ \end{array} \end{split}$$

$$\begin{split} V(\Phi) &= \lambda^2 \left(|\Phi|^2 - f_a^2 \right)^2 & \text{Oscillations when} \\ m_\chi^{\text{eff}}(\chi_i) &\simeq \lambda \chi_i \sim H \end{split} \\ \text{Typical energy:} & \bar{\omega}_a \sim m_\chi^{\text{eff}}(\chi_i) \left(\frac{s(T_0)}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_\chi^{\text{eff}}(\chi_i)}{\text{MeV}} \right)^{1/2} \\ \text{Energy density:} & \Omega_a \sim 3 \times 10^{-7} \left(\frac{\chi_i}{M_{\text{Pl}}} \right)^2 & \text{detectable?} \end{split}$$

Assume χ dark matter

$$\begin{split} V(\Phi) &= \lambda^2 \left(|\Phi|^2 - f_a^2 \right)^2 & \text{Oscillations when} \\ m_\chi^{\text{eff}}(\chi_i) &\simeq \lambda \chi_i \sim H \end{split} \\ \text{Typical energy:} & \bar{\omega}_a \sim m_\chi^{\text{eff}}(\chi_i) \left(\frac{s(T_0)}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_\chi^{\text{eff}}(\chi_i)}{\text{MeV}} \right)^{1/2} \\ \text{Energy density:} & \Omega_a \sim 3 \times 10^{-7} \left(\frac{\chi_i}{M_{\text{Pl}}} \right)^2 & \text{detectable?} \end{split}$$

Assume χ dark matter

$$\begin{split} V(\Phi) &= \lambda^2 \left(|\Phi|^2 - f_a^2 \right)^2 & \text{Oscillations when} \\ m_\chi^{\text{eff}}(\chi_i) &\simeq \lambda \chi_i \sim H \end{split} \\ \text{Typical energy:} & \bar{\omega}_a \sim m_\chi^{\text{eff}}(\chi_i) \left(\frac{s(T_0)}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_\chi^{\text{eff}}(\chi_i)}{\text{MeV}} \right)^{1/2} \\ \text{Energy density:} & \Omega_a \sim 3 \times 10^{-7} \left(\frac{\chi_i}{M_{\text{Pl}}} \right)^2 & \text{detectable?} \end{split}$$

Assume χ dark matter

 χ_i [GeV]

$$V(\Phi) = \lambda^{2} \left(|\Phi|^{2} - f_{a}^{2} \right)^{2}$$
Oscillations when
 $m_{\chi}^{\text{eff}}(\chi_{i}) \simeq \lambda \chi_{i} \sim H$
Typical energy:
 $\bar{\omega}_{a} \sim m_{\chi}^{\text{eff}}(\chi_{i}) \left(\frac{s(T_{0})}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_{\chi}^{\text{eff}}(\chi_{i})}{\text{MeV}} \right)^{1/2}$
Energy density:
 $\Omega_{a} \sim 3 \times 10^{-7} \left(\frac{\chi_{i}}{M_{\text{Pl}}} \right)^{2}$
detectable?
Assume χ dark matter
 $\frac{10^{19}}{p_{\chi} = \rho_{\text{DM}}}$
 $\frac{\rho_{\varphi} = 10^{-9}\rho_{z}}{p_{\chi} = 0^{-1} \rho_{\varphi}}$
 $\frac{10^{10}}{10^{4}}$
 $\frac{10^{10}}{p_{\chi}^{2}}$
 $\frac{10^{10}}{p_{\chi}^{2}}$

 χ_i [GeV]

$$V(\Phi) = \lambda^{2} \left(|\Phi|^{2} - f_{a}^{2} \right)^{2}$$
Oscillations when
 $m_{\chi}^{\text{eff}}(\chi_{i}) \simeq \lambda \chi_{i} \sim H$
Typical energy:
 $\bar{\omega}_{a} \sim m_{\chi}^{\text{eff}}(\chi_{i}) \left(\frac{s(T_{0})}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_{\chi}^{\text{eff}}(\chi_{i})}{\text{MeV}} \right)^{1/2}$
Energy density:
 $\Omega_{a} \sim 3 \times 10^{-7} \left(\frac{\chi_{i}}{M_{\text{Pl}}} \right)^{2}$
detectable?
Assume χ dark matter
 $\frac{10^{10}}{10^{10}}$
 $\frac{10^{10}}$

 $m_{\chi} [eV]$

 $\bar{\omega}$ [eV]

1

1

10-6

 10^{-3}

 χ_i [GeV]

$$V(\Phi) = \lambda^2 \left(|\Phi|^2 - f_a^2 \right)^2 \qquad \begin{array}{l} \text{Oscillations when} \\ m_\chi^{\text{eff}}(\chi_i) \simeq \lambda \chi_i \sim H \end{array}$$
Typical energy: $\bar{\omega}_a \sim m_\chi^{\text{eff}}(\chi_i) \left(\frac{s(T_0)}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_\chi^{\text{eff}}(\chi_i)}{\text{MeV}} \right)^{1/2}$
Energy density: $\Omega_a \sim 3 \times 10^{-7} \left(\frac{\chi_i}{M_{\text{Pl}}} \right)^2 \qquad \qquad \begin{array}{c} \text{detectable} \\ \end{array}$
Assume χ dark matter
$$\int_{0^{10}}^{0^{10}} \frac{\psi_{\text{anness}}}{\rho_{\theta} = 10^{-10}\rho_{\theta}} \\ \int_{0^{10}}^{10^{10}} \frac{\varphi_{\theta} = 10^{-10}\rho_{\theta}}{\rho_{\theta} = 0^{-10}\rho_{\theta}} \\ \int_{0^{10}}^{10^{10}} \frac{\varphi_{\theta} = 10^{-10}\rho_{\theta}}{\rho_{\theta} = 0^{-10}\rho_{\theta}}} \\ \int_{0^{$$

 10^{3} 10^{6}

 10^{9}

 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3}

 $\bar{\omega}$ [eV]

 10^{-2}

 χ_i [GeV]

$$V(\Phi) = \lambda^{2} \left(|\Phi|^{2} - f_{a}^{2} \right)^{2}$$
Oscillations when
 $m_{\chi}^{\text{eff}}(\chi_{i}) \simeq \lambda \chi_{i} \sim H$
Typical energy:
 $\bar{\omega}_{a} \sim m_{\chi}^{\text{eff}}(\chi_{i}) \left(\frac{s(T_{0})}{s(T_{\text{osc}})} \right)^{1/3} \sim 10^{-15} \text{ eV} \left(\frac{m_{\chi}^{\text{eff}}(\chi_{i})}{\text{MeV}} \right)^{1/2}$
Energy density:
 $\Omega_{a} \sim 3 \times 10^{-7} \left(\frac{\chi_{i}}{M_{\text{Pl}}} \right)^{2}$
detectable?
Assume χ dark matter
 $\frac{10^{10}}{10^{10}}$
 $\frac{10^{10}}$

$$m_\chi~[
m eV]$$
General overview Experimental Sensitivity CaB Produ

 $\bar{\omega}$ [eV]

Conclusions: axi-verse through $g_{a\gamma\gamma}$

Conclusions: axi-verse through $g_{a\gamma\gamma}$

How to probe $\omega \ll \text{meter}^{-1}$?

 $\vec{\mathbf{J}}_{\text{eff}} = g_{a\gamma\gamma}\vec{\mathbf{B}}_0\partial_t a - g_{a\gamma\gamma}\vec{\mathbf{E}}_0\times\nabla a$

LC circuit for readout

[1310.8545 - Sikivie, Sullivan, Tanner]

How to probe $\omega \ll \text{meter}^{-1}$? $\vec{\mathbf{J}}_{\text{eff}} = g_{a\gamma\gamma} \vec{\mathbf{B}}_0 \partial_t a - g_{a\gamma\gamma} \vec{\mathbf{E}}_0 \times \nabla a$ LC circuit for readout

[1310.8545 - Sikivie, Sullivan, Tanner]

"ABRACADABRA" "DM-radio"

 $1/_{1}$

