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Neutrino oscillations : 3-flavour model

Flavor eigenstates Mass eigenstates

Complex mixing matrix
(ϴ12, ϴ13, ϴ23, δCP) 

● Oscillations : νi interferences ● Neutrino Mixing

Daya Bay

Develop as a function of L/E

3 undistinguishable paths

Large mixing !

source detector



Neutrino oscillations : 3+1 model

Flavor eigenstates Mass eigenstates
● 4x4 mixing matrix ● Oscillations : νi interferences 

4 undistinguishable paths

source detector

Some neutrinos apparently missing (oscillations to νs)
Oscillations probabilities (Pee, Pµe, etc) changed because of 

1) 3x3 submatrix not unitary anymore  new amplitude for known → Δm²
2) 4th mass eigenstate  new frequency → Δm²41 5/46

‘let’s intoduce a sterile 
neutrino with mass ... (G)eV’

 → improper phrasing !

 2 ways to find a 
sterile neutrino 



Finding a sterile neutrino 1/2 : indications
1. Anomalies in measurement of SM oscillations (Pµµ, Pµe, etc)

from experiments studying SM neutrinos
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illustration  : DUNE

Alteration of oscillation 
around SM maximum

Additional appearance at 
new L/E

Additional disappearance 
at new L/E

Several anomalies were 
found ‘by chance’ over the 
last decades and could be 

explain by 3+1 model

See part 2 of the talk

Alteration of oscillation 
around SM maximum

2a

2b 2 regions to look for a sterile :

New L/E

Existing L/E

2a

2b



Finding a sterile neutrino 2/2 : confirmation ?
2a. Are some neutrinos missing ?
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> Measure precisely the oscillations at known L/E
• Side-product of several experiments : reactor, 

accelerator, atmospheric, solar neutrinos

> Investigate new L/E ( small L/E ↔ high Δm² )
● Very close to reactors / source
● Using Near Detectors of accelerator experiments

example  : Daya Bay example  : DUNE
example  : STEREO example  : SNBD

Dedicated experiments are 
optimized for new interesting Δm²

See part 3 
of the talk

2b. Perform high-precision measurements of the 
SM oscillations

2a 2b
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 Discrepancy between measured and predicted neutrino rates at nuclear reactors
> Apparition in 2011 [PRD 83 (2011) 073006] after reevalutation of neutrino fluxes (Huber [PRC 84 
(2011) 024617], Mueller [PRC 83 (2011) 054615])

arXiv:2110.06820

Reactor Antineutrino Anomaly
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arXiv:2110.06820

Could be explained by 
additionnal short-distance 
oscillation to a sterile state

NB : contour depends 
on what model is used

3ν model

3+1ν model

Averaged oscillations :
• High Δm²
• sin²(2θ) ≈ 2x deficit



LSND and MiniBooNE anomalies
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PRD 103 (2021) 052002

The MiniBooNE experiment (2000’s) @ FermiLab 
> study of νµ interactions

LSND : L ~30m
MiniBooNE : L~450m

Excess of νe events in νµ beam νµ  ν→ e  at short L due to heavy ν4

νe appearance in 3ν model @ L/E = 500m/MeV



arXiv:2110.06820
Gallium anomaly (GALLEX, SAGE)
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Gallium anomaly
GALLEX, SAGE

sin²(2θ) ≈ 2x deficit
The GALLEX experiment (1990’s) @ Gran Sasso
> observation of solar neutrinos

ν
e e-

71
32Ge71

31Ga

1) Neutrino capture on Ga

2) Circulate liquid to mesure 
the Ge activity

2 Cr sources for calibration
Combined : 0.88 ± 0.05



How to solve these anomalies ?
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The optimistic way The pessimistic way

« There is certainly a sterile neutrino, let’s find it ! » « I don’t think there is a sterile neutrino, let’s cross 
check the so-called anomalies ! »

See part 3 of the talk See part 4 of the talk
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Sterile neutrino searches with nuclear reactors

Antineutrino flux

Useful energy range 
is Eν ~ 2-8 MeV

Detection
Inverse β-decay : νe p  e→ + n1) Fuel elements  (U and Pu isotopes) 

are fissionned
2) Fission fragments undergo β-decays 

in chain 

Total νe flux is combination of all 
decays of all fission fragments

1) e+e- annihilation
2) n capture

 → coincidence in space and time

Survival probability

– Oscillation peak for L/E 
 500m/MeV≈

– Negligible for L  10m≈

Extra term we are 
looking for
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A world-wide effort with reactors

Commercial reactors
- high power, high stat
- extended core (Ø ≈ few m)
- mixed isotopes (irrelevant)

Research reactors 
- lower power, lower stat
- compact core (Ø ≈ 0.5m)
- pure 235U (irrelevant)

- L ~ O(1 km)
- restricted to smaller Δm²
- larger detectors possible
- no reactor background

- L ~ O(10 m)
- access to large Δm²
- restricted space available, high 
background environnement

 ← Complementary coverage  →

Δm²41 unknown ; oscillation peak at
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Challenge #1 : environnement
L~10m → vicinity of reactor core

● Design constraints
Limited space, limited floor load in the reactor 
building

 → Constraints : size of detector, amount of shielding

● Large backgrounds
 Cosmogenic : surface level   low overburden (building + →

muon veto, max ~10 m.w.e.)
 Ambient fast neutron flux
 Noise from surrounding experiments (γ, n, B field)

Example : STEREO 

Example : PROSPECT 

Good S/B is 
challenging !
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Answer #1 : signal selection
How to get to S/B ~ 1 ? ● Cosmogenic background : spallation neutron in the shielding

> Reduced by muon veto
> Remainder: measured when the reactor is off● Signal topology : IBD

Prompt signal
Delayed signal

νe

n

n

µ

STEREO

● Accidental background : random coincidence of two events
> Reduced by coincidence cuts
> Measured in a control region with large Δt
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Answer #1 : signal selection
How to get to S/B ~ 1 ?

● Pulse Shape Discrimination
 > separation e-like and p-like recoils

PRD 103:032001 (2021)

Excitation of liquid scintillator molecules :
● low dE/dx (e,γ)  singlet states  faster de-excitation→ →
● high dE/dx (p,n)  triplet states  slower de-excitation→ →

IBD

cosmics

On-Off joint fit in PSD space
Similar approach for all 
experiments at research 

reactors
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Challenge #2 : dependence on flux models

 Oscillations induce spectral distortions between baselines

 Comparing data(L) to no-oscillation prediction depends on flux 
models

 Comparing data(L) to data(L’) is independent of flux models

 Reactor flux predictions do not match measurements
 Notably the « 5 MeV bump », first seen by Daya Bay, RENO, 

Double Chooz (commercial reactors)

STEREO final measurement

 → Comparison of baselines gives 
model- independent results

 Different detectors
 Different detector parts
 Movable detector

Nature Physics 16, 558-564 (2020)

 → Energy regions do not oscillate at 
the same frequency

… and several flux models are available



20/46

Challenge #3 : resolution on L/E

Extended cores (commercial reactors) 
size ~3m

 → σL/L up to 15%

Example : DANSS 

core

detector

Small cores (research reactors) 
      size ~0.5m

 → σL/L down to 3%
 → resolution on E is dominant

Effect on a 20 % resolution on L/E

Averaged oscillations
 → no sensitivity to Δm²

Resolution on L/E : several physical effects
● Energy resolution of the detector
● Width of energy bins
● Uncertainty on baseline L
● Resolution on vertex position

Sensitivity region of 
experiments at 

commercial reactors is 
smaller in Δm²

(but larger in sin²2θ due to 
statistics)
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Answer #3 : reconstruction / calibration of Eν

Determination of Eν is key for oscillation studies

Target p at rest  → ν-kinematics carried by positron
Energy of prompt signal (e+e–) :

1. Sources (known γ-lines)
1% accuracy

2. 12B β-decays (continuous)
Produced by µ capture on 12C

3. Joint fit source + 12B
Excellent agreement data/MC

PRD 102 (2020) 052002

> Goal = produce a detailled 
detector response in simulation
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Very short baseline experiments

Commercial reactors
- high power, high stat
- extended core (Ø ≈ few m)
- mixed isotopes (irrelevant)

Research reactors 
- lower power, lower stat
- compact core (Ø ≈ 0.5m)
- pure 235U (irrelevant)

- L ~ O(10 m)
- access to large Δm²
- restricted space available, high 
background environnement
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The PROSPECT experiment

ν
e

High Flux Isotope Reactor
Oak Ridge, USA

85 MW HEU reactor core with 
46% duty cycle

Compact core Ø 44cm, h=51cm 

Segmented detector
L  6.7 – 9.2m≈  

● 4t liquid scintillator + 6Li 
● 2D array of segments for fiducialization 

and bkgd suppression (no overburden) 
●  500 νe/day, S/B = 1.4

● 5 % resolution at 1 MeV

Fiducial 
volume

NIM A922 (2019) 287-309
https://prospect.yale.edu

ν e

Segment with damaged PMT
Out of fiducial volume

Analysis method
● Group segments with similar baseline

● Relative measurement using ratio to baseline-
averaged spectrum  independent of flux models→
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The STEREO experiment

Segmented detector 
6 cells: L ≈ 9.4 – 11.2 m with 37cm step

● 1.6t liq. scintillator + Gd
● 9% resolution @ 1 MeV

● About 380 νe/day, S/B ≈ 1.1

ν e

Réacteur Haut Flux (RHF)
ILL, Grenoble, France

58 MW HEU reactor
Compact core Ø 40cm, h=80cm
Noise from nearby instruments

JINST 13 (2019) 07, P07009
www.stereo-experiment.org

+ pull terms 

● Look for relative distortions between cells
● Free params φi absorb model  

dependence

Analysis method

Data over no-oscillation adjusted model

No sign of 
significant 
oscillations
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The Neutrino-4 experiment

Reactor 
core

90 MW HEU reactor
Compact core 42x42x35cm

Highly enriched 235U fuel

Reactor SM-3 Dimitrovgrad, Russia

ν
e

Movable segmented detector
L ≈ 6.4 – 11.9m with 23 cm steps (24 positions)

● 1m3 liquid scintillator + Gd
● Assumed flat 250 keV resolution
● About 300 ν / day (S/B  0.54≈ )

PRD 104 (2021) 032003

● Summation of these ratios in L/E space

● Relative measurement using ratio 
to baseline-averaged spectrum

Analysis method
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The DANSS experiment JINST 11, P11011 (2016)

Kalininskaya NPP Dimitrovgrad, Russia

ν e

Movable detector
L ≈ 10 – 12m (3 positions : top, middle, bottom)

● 1m3 plastic scintillator, Gd coating
● Resolution of 34%/ E√
● 5000 νe/day, 1.7% background

changed 2x / week

3 GW reactor, extended core (Ø h≈ ≈3m) Analysis method
Ratio of spectra at ≠ positions
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1 controversial observation … 
Neutrino-4

sin²(2θ14) ≈ 0.36
Δm²14  7.3 eV²≈

( 2.7σ )

Some concerns however
● Low S/B (0.54)

Oscillatory pattern of cosmic background 
amplified x2

background-only

● No systematics included in statistical analysis
● Analysis performed with average of 3 times the 

same data (different E binning)
Artificial increase of the dataset
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… but no clear sign of a sterile neutrino
STEREO

107k neutrinos

PRELIMINARY

PROSPECT
51k neutrinos

Sensibility limited by 
resolution on E and L

Neutrino-4 best fit 
+ 1σ contour DANSS

5M neutrinos

● RAA best-fit point : >4σ
● Neutrino-4 best fit : 3.1σ

● RAA+Gallium best-fit point : 2.5σ
● Neutrino-4 best fit : >95%CL

● RAA+Gallium best-fit point : >5σ

No conclusive sign of a sterile neutrino 
corresponding to Reactor or Gallium Anomaly

Very good sensitivity 
due to statistics
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Short baseline experiments : Daya Bay

Commercial reactors
- high power, high stat
- extended core (Ø ≈ few m)
- mixed isotopes (irrelevant)

- L ~ O(1 km)
- restricted to smaller Δm²
- larger detectors possible
- no reactor background
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The Daya Bay experiment

Analysis results  PRL 125 (2021) 071801

Δm²31

● Sterile search in νe disappearance transfered to 
 νe disappearance

● LSND/MiniBooNE global fit : excluded >99%CL

MINOS(+)

Daya Bay

Daya Bay
Daya Bay and Ling Ao (II) NPPs

L = 550m, 1600m

Gd-loaded liquid 
scintillator 

NIM A 685 (2012) 78-97

 8 identical detectors (4 NDs + 4 FDs)
 Each 20t of Gd-loaded liquid scintillator 

 Energy resolution 8% @1MeV

Very good sensitivity 
due to statistics
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Let’s confirm the sterile neutrino !

Reactor anomaly :
no sterile

νe appearance anomaly : 
no sterile 

Gallium anomaly : 
no sterile

Remaining region at Δm² > 10 eV² can’t be covered by oscillation experiments
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Kopeykin et al. : reactor anomaly revisited

arXiv:2110.06820

● RAA = deficit w.r.t. Huber-Mueller model 

● Huber-Mueller : conversion model
  β decays produce e– along with νe

  →measure the total e– spectrum from U or 
Pu and convert it to νe

● β spectrum measured in the 1980’s at ILL 
 Irradiate 235UO2 foils during ~2 days with 

neutrons to initiate fission
 Measure electron spectrum

Phys. Lett. B 160 325–30
1: spectrometer    5: 235U/239Pu/empty foils
6: spinning wheel (10turns/min) 7: n beam

● Kopeykin : 
  new measurement of β spectra 235U/239Pu
  spinning wheel to ensure same irradiation 

level of the two isotopes

No more 
anomaly !

arXiv:2103.01684
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BEST : gallium anomaly revisited

Gallium anomaly
Including BEST

● Size 2m x 2m
● 2 volumes for relative 

measurement

ν
e e-

71
32Ge71

31Ga

1) Neutrino capture on Ga

2) Circulate liquid to mesure the Ge 
activity

3) Cr source gives monoenergetic 
neutrino beam 

● Same principle than GALLEX, SAGE

PRC 105 (2022) 065502

SAGE/GALLEX: 0.88 ± 0.05

SAGE/GALLEX/BEST: 0.80 ± 0.045

sin²(2θ) ≈ 2x deficit

Anomaly confirmed ! 2.5σ  4σ→

… but no difference between volumes ?!
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SBND-ICARUS : MiniBooNE anomaly revisited

A. Schukraft, talk at Neutrino 2022

Results coming in 1-2 years
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Do we really need a sterile neutrino ?

Reactor anomaly 
solved

νe appearance 
anomaly 

Gallium anomaly 
confirmed
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Overview

Reactor anomaly νe appearance anomalyGallium anomaly

● Possible steriles rejected
● No sterile needed anymore

● Possible steriles rejected
● Anomaly was confirmed… 

● Possible steriles rejected
● Anomaly to be checked

Easy and appealing to explain a data/theory discrepancy by a sterile neutrino… 
but is it really relevant ?
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Global picture and perspectives

Snowmass 2021 white paper 2203.07214

Current situation Ahead of us

Neutrino-4

● The experimental challenges of very short baseline 
reactor experiments have been met !

● Complementary constraints from short- and very-
short-baseline experiments

● KATRIN (neutrino mass measurement) excludes the 
high-Δm² solutions

● Several upgrades are planned (PROSPECT, DANSS, 
Neutrino-4)

● Positive observations (BEST, Neutrino-4) in (strong) 
tension with other experiments, to be confirmed in 
the next few years

BEST

SBL

VSBL



Thank you !
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KATRIN Goal : measure max E(e-) with 



42/46

Short-baseline experiments

Daya Bay RENO Double Chooz
Chooz-B NPP, France

L = 400m, 1050m

EPJC 81 (2021) 775

Hanbit NPP, Korea
L ≈ 300m, 1380m

Daya Bay and Ling Ao (II) NPPs
L = 550m, 1600m

Gd-loaded liquid 
scintillator 

NIM A 685 (2012) 78-97
Near detector

Far detector

Nucl.Phys.B 908 
(2016) 94-115

 Identical ND and FD
 Gd-loaded liquid scintillator (GdT, 10m3)

 Energy resolution 7% @1MeV

 8 identical detectors (4 NDs + 4 FDs)
 Each 20t of Gd-loaded liquid scintillator 

 Energy resolution 8% @1MeV

 Identical ND and FD
 16t Gd-loaded liquid scintillator
 Energy resolution 8% @1MeV
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The Solid experiment

Reactor BR2 Mol, Belgium

40-80 MW HEU reactor
Compact core Ø<50cm, h=90cm

Segmented detector 
L ≈ 6.3 – 8.9m

8mwe concrete

 Bi-Po background rejection
Unexpectedly high contamination of 6LiF:ZnS 

(2 orders of magnitude above IBD)

 → BiPonator
Machine Learning PSD method to separate α/n

n dataset (AmBe source)
α dataset (BiPo decay)

αn

94 % α rejection for 
80 % neutron efficiency

≈90 νe/day with S/B = 1/3

ν
e

● 12.8k scintillator cubes (5cm)3 with 
6LiF:ZnS foils  double scintillation→

● Pulse shape discrimination on LiF:ZnS
● 1.6t fiducial volume

● 12% resolution @1MeV
● Selection based on event topology

JINST 16 (2021) P02025; 
D.Gabinski’s talk at Nufact21
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Solid results

Analysis status

● Currently working on 
phase-I data (2 yrs of data)

● Analysis will be stat. limited

● Detector upgrade with improved MPPCs
 40 % more light yield
 Better energy resolution
 Improved reconstruction of annihilation 

gammas  event topology→

● Phase-II detector taking data since late 
2020

First exclusion contour 
coming soon !

D.Gabinski’s talk at Nufact21

Solid Upgrade
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Neutrino-4 results PRD 104 (2021) 032003

Analysis results 

sin²(2θ14) ≈ 0.36
Δm²14  7.3 eV²≈

(Wilks thm)

2.9σ with Wilks thm
2.7σ with F-C

Analysis method

● Summation of Rik in L/E space

● Relative measurement using ratio 
to baseline-averaged spectrum

(Feldman-Cousins)
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Neutrino-4 future plans

New antineutrino 
detector

Installation 2022
Data taking 2023-24

Reactor 
core

4 sub-detectors with 5x5 cells, double-PMT readout
● New scintillator  PSD capability, reduce correlated bkg→
● More Gd  reduce accidental background→

About 3x more sensitive

10x5 cells, single-PMT readout

Upgrade

Current

R.M. Samoilov, talk at Nucleus 2020
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